导航:首页 > 无线网络 > 自动化无线网络技术

自动化无线网络技术

发布时间:2024-06-15 10:05:24

‘壹’ ZigBee是什么意思

Zigbee,在中国被译为"紫蜂",它与蓝牙相类似,是一种新兴的短距离无线技术。

Zigbee是IEEE802。15。4协议的代名词。根据这个协议规定的技术是一种短距离、低功耗的无线通信技术。

这一名称来源于蜜蜂的八字舞,由于蜜蜂(bee)是靠飞翔和“嗡嗡”(zig)地抖动翅膀的“舞蹈”来与同伴传递花粉所在方位信息,也就是说蜜蜂依靠这样的方式构成了群体中的通信网络。

其特点是近距离、低复杂度、自组织、低功耗、低数据速率、低成本。主要适合用于自动控制和远程控制领域,可以嵌入各种设备。简而言之,ZigBee就是一种便宜的,低功耗的近距离无线组网通讯技术。

(1)自动化无线网络技术扩展阅读:

对于ZigBee无线通信技术的特征而言,主要表现为:

其一,ZigBee能源消耗显着低于其他无线通信技术。通常而言,ZigBee开展传输处理过程中对应需求的功率为1MW。倘若ZigBee进入休眠状态,则其所需的功率将更低。通俗来讲,通过为装置有ZigBee的设备配备两节5号电池,该设备便可持续运行超过6个月的时间。

其二,ZigBee研发及使用所需投入的成本偏低。现阶段,ZigBee的成本普遍无需交付专利费。通常情况下,应用ZigBee过程中仅需交付最初的6美元,后续的实际操作便不会产生更高的费用。由此表明,ZigBee的研发及使用成本可为广大用户所接受。

‘贰’ 智能工业的智能工业的关键技术--物联网技术

智能工业的实现是基于物联网技术的渗透和应用,并与未来先进制造技术相结合,形成新的智能化的制造体系。所以,智能工业的关键技术在于物联网技术。 包括识别、定位、追踪、监控和管理的一种网络技术。
FRID、NFC,WSN 制造业供应链管理物联网应用于企业原材料采购、库存、销售等领域,通过完善和优化供应链管理体系,提高了供应链效率,降低了成本。空中客车(Airbus)通过在供应链体系中应用传感网络技术,构建了全球制造业中规模最大、效率最高的供应链体系。
生产过程工友老拿艺优化物联网技术的应用提高了生产线过程检测、实时参数采集、生产设备监控、材料消耗监测的能力和水平。生产过程的智能监控、智能控制、智能诊断、智能决策、智能维护水平不断提高。钢铁企业应用各种传感器和通信网络,在生产过程中实现对加工产品的宽度、厚度、温度的实时监控,从而提高了产品质量,优化了生产流程。
产品设备监控管理各种传感技术与制造技术融合,实现了对产品设备操作使用记录、设备故障诊断的远程监控。GE Oil&Gas集团在全球建立了13个面向不同产品的i-Center,通过传感器和网络对设备进行在线监测和实时监控,并提供设备维护和故障诊断的解决方案。
环保监测及能源管理物联网与环保设备的融合实现了对工业生产过程中产生的各种污染源及污染治理各环节关键指标的实时监控。在重点排污企业排污口安装无线传感设备,不仅可以实时监测企业排污数据,而且可以远程关闭排污口,防止突发性环境污染事故的发生。电信运营商已开始推广基于物联网的污染治理实时监测解决方案。
工业安全生产管理把感应器嵌入和装备到矿山设备、油气管道、矿工设备中,可以感知危险环境中工作人员、设备机器、周边环境等方面的安全状态信息,将现有分散、独立、单一的网络监管平台提升为系统、开放、多元的综合网络监管平台,实现实时感知、准确辨识、快捷响应、有效控制。 物联网的产业链即所谓的DCM(Device、Connect、Manage)跟工业自动化的三层架构是互相呼应的,在物联网的环境中,每一层次自原来的传统功能大幅进化,在Device(设备)达到所谓的全面感知,就是让原本的物,提升为智能物件,可以识别或撷取各种数据;好搭而在Connect(连接)层则是要达到可靠传递,除了原有的有线网络外更扩展到各种无线网络;而在Manage(管理)层部分,则是要将原有的管理功能进步到智能处理,对撷取到的各种数据做更具智能的处理与呈现。
传统的工业自动化控制系统主要包括3个层次,分别是设备层(device layer)、控制层(control layer)、以及信息层(information layer)。设备层的功能是将现场设备以网络节点的形式挂接在现场总线网络上,依照现场总线的协议标准,设备采用功能模块的结构,通过组态设计,完成数据撷取、A/D转换、数字滤波、温度压力补偿、PID控制等各种功能;控制层是自动化的基础,从现场设备中获取数据,完成各种控制、运行参数的监测、警报和趋势分析等功能,控制层的功能一般由工业计算机或PLC等控制器完成,这些控制器具备网络能力以协调网络节点之间的数据通信,同时也实现现场总线网段与以太网段的连接;第三层信息层提供实现远程控制的平台,并连接到企业自动化系统,同时从控制层提取有关生产数据用于制定综合管理决策。
自另一个角度来,物联网可以使所谓的自动化跟信息化‘两化融合’的愿景更具体实现,自动化业者长期以来都朝着信息化目标前进,在物联网的基础下,原先传统的C/S(Client/Server)架构,可以转换成B/S(Browser/Server)架构,在生产制造、智能建筑、新能源、环境监控、以及设备控制领域有更广泛的应用。具体而言,自动化资料如果没有经过讯息化的集成,一般使用者还是无法使用;同样的,如果仅有讯息化功能,却缺乏自动化的内容,一样也是空泛无用,两者缺一不可。 与未来先进制造技术相结合是物联网含棚应用的生命力所在。物联网是信息通信技术发展的新一轮制高点,正在工业领域广泛渗透和应用,并与未来先进制造技术相结合,形成新的智能化的制造体系。这一制造体系仍在不断发展和完善之中。概括起来,物联网与先进制造技术的结合主要体现在8个领域。
泛在感知网络技术建立服务于智能制造的泛在网络技术体系,为制造中的设计、设备、过程、管理和商务提供无处不在的网络服务。面向未来智能制造的泛在网络技术发展还处于初始阶段。
泛在制造信息处理技术建立以泛在信息处理为基础的新型制造模式,提升制造行业的整体实力和水平。泛在信息制造及泛在信息处理尚处于概念和实验阶段,各国政府均将此列入国家发展计划,大力推动实施。
虚拟现实技术采用真三维显示与人机自然交互的方式进行工业生产,进一步提高制造业的效率。虚拟环境已经在许多重大工程领域得到了广泛的应用和研究。未来,虚拟现实技术的发展方向是三维数字产品设计、数字产品生产过程仿真、真三维显示和装配维修等。
人机交互技术传感技术、传感器网、工业无线网以及新材料的发展,提高了人机交互的效率和水平。制造业处在一个信息有限的时代,人要服从和服务于机器。随着人机交互技术的不断发展,我们将逐步进入基于泛在感知的信息化制造人机交互时代。
空间协同技术空间协同技术的发展目标是以泛在网络、人机交互、泛在信息处理和制造系统集成为基础,突破现有制造系统在信息获取、监控、控制、人机交互和管理方面集成度差、协同能力弱的局限,提高制造系统的敏捷性、适应性、高效性。
平行管理技术未来的制造系统将由某一个实际制造系统和对应的一个或多个虚拟的人工制造系统所组成。平行管理技术就是要实现制造系统与虚拟系统的有机融合,不断提升企业认识和预防非正常状态的能力,提高企业的智能决策和应急管理水平。
电子商务技术制造与商务过程一体化特征日趋明显,整体呈现出纵向整合和横向联合两种趋势。未来要建立健全先进制造业中的电子商务技术框架,发展电子商务以提高制造企业在动态市场中的决策与适应能力,构建和谐、可持续发展的先进制造业。
系统集成制造技术系统集成制造是由智能机器人和专家共同组成的人机共存、协同合作的工业制造系统。它集自动化、集成化、网络化和智能化于一身,使制造具有修正或重构自身结构和参数的能力,具有自组织和协调能力,可满足瞬息万变的市场需求,应对激烈的市场竞争。 从整体上来看,物联网还处于起步阶段。物联网在工业领域的大规模应用还面临一些关键技术问题,概括起来主要有以下几个方面。
工业用传感器工业用传感器是一种检测装置,能够测量或感知特定物体的状态和变化,并转化为可传输、可处理、可存储的电子信号或其他形式信息。工业用传感器是实现工业自动检测和自动控制的首要环节。在现代工业生产尤其是自动化生产过程中,要用各种传感器来监视和控制生产过程中的各个参数,使设备工作在正常状态或最佳状态,并使产品达到最好的质量。可以说,没有众多质优价廉的工业传感器,就没有现代化工业生产体系。
工业无线网络技术工业无线网络是一种由大量随机分布的、具有实时感知和自组织能力的传感器节点组成的网状(Mesh)网络,综合了传感器技术、嵌入式计算技术、现代网络及无线通信技术、分布式信息处理技术等,具有低耗自组、泛在协同、异构互连的特点。工业无线网络技术是继现场总线之后工业控制系统领域的又一热点技术,是降低工业测控系统成本、提高工业测控系统应用范围的革命性技术,也是未来几年工业自动化产品新的增长点,已经引起许多国家学术界和工业界的高度重视。
工业过程建模没有模型就不可能实施先进有效的控制,传统的集中式、封闭式的仿真系统结构已不能满足现代工业发展的需要。工业过程建模是系统设计、分析、仿真和先进控制必不可少的基础。
此外,物联网在工业领域的大规模应用还面临工业集成服务代理总线技术、工业语义中间件平台等关键技术问题。
智能工业的价值
工业化的基础是自动化,自动化领域发展了近百年,理论,实践都已经非常完善了。特别是随着现代大型工业生产自动化的不断兴起和过程控制要求的日益复杂营运而生的DCS控制系统,更是计算机技术,系统控制技术、网络通讯技术和多媒体技术结合的产物。DCS的理念是分散控制,集中管理。虽然自动设备全部联网,并能在控制中心监控信息而通过操作员来集中管理。但操作员的水平决定了整个系统的优化程度。有经验的操作员可以使生产最优,而缺乏经验的操作员只是保证了生产的安全性。是否有办法做到分散控制,集中优化管理?需要通过物联网根据所有监控信息,通过分析与优化技术,找到最优的控制方法,是物联网可以带给DCS控制系统的。IT信息发展的前期其信息服务对象主要是人,其主要解决的问题是解决信息孤岛问题。当为人服务的信息孤岛问题解决后,是要在更大范围解决信息孤岛问题。就是要将物与人的信息打通。人获取了信息之后,可以根据信息判断,做出决策,从而触发下一步操作;但由于人存在个体差异,对于同样的信息,不同的人做出的决策是不同的,如何从信息中获得最优的决策?另外“物”获得了信息是不能做出决策的,如何让物在获得了信息之后具有决策能力?智能分析与优化技术是解决这个问题的一个手段,在获得信息后,依据历史经验以及理论模型,快速做出最有决策。数据的分析与优化技术在两化融合的工业化与信息化方面都有旺盛的需求。

‘叁’ 无线WiFi什么原理

现在无线WiFi已经成为了我们生活中不可缺少的一部分,走到哪,哪里就有WiFi。我为大家整理了无线WiFi的原理,供大家参考阅读!

无线WiFi的原理

无线WiFi俗称无线宽带,全称Wireless Fideliry。无线局域网又常被称作WiFi网络,这一名称来源于全球最大的无线局域网技术推广与产品认证组织——WiFi联盟(WiFi Alliance)。作为一种无线联网技术,WiFi早已得到了业界的关注。WiFi终端涉及手机、PC(笔记本电脑)、平板电视、数码相机、投影机等众多产品。目前,WiFi网络已应用于家庭、企业以及公众热点区域,其中在家庭中的应用是较贴近人们生活的一种应用方式。由于WiFi网络能够很好地实现家庭范围内的网络覆盖,适合充当家庭中的主导网络,家里的其他具备WiFi功能的设备,如电视机、影碟机、数字音响、数码相框、照相机等,都可以通过WiFi网络这个传输媒介,与后台的媒体服务器、电脑等建立通信连接,实现整个家庭的数字化与无线化,使人们的生活变得更加方便与丰富。目前,除了用户自行购置WiFi设备建立无线家庭网络外,运营商也在大力推进家庭网络覆盖。比如,中国电信的“我的E家”,将WiFi功能加入到家庭网关中,与有线宽带业务绑定。今后WiFi的应用领域还将不断扩展,在现有的家庭网、企业网和公众网的基础上向自动控制网络等众多新领域发展。

无线通信的简述

与有线传输相比,无线传输具有许多优点。或许最重要的是,它更灵活。无线信号可以从一个发射器发出到许多接收器而不需要电缆。所有无线信号都是随电磁波通过空气传输的,电磁波是由电子部分和能量部分组成的能量波。

在无线通信中频谱包括了9khz到300000Ghz之间的频率。每一种无线服务都与某一个无线频谱区域相关联。无线信号也是源于沿着导体传输的电流。电子信号从发射器到达天线,然后天线将信号作为一系列电磁波发射到空气中。

信号通过空气传播,直到它到达目标位置为止。在目标位置,另一个天线接收信号,一个接收器将它转换回电流。接收和发送信号都需要天线,天线分为全向天线和定向天线。在信号的传播中由于反射、衍射和散射的影响,无线信号会沿着许多不同的路径到达其目的地,形成多径信号。

无线通信的基本原理

无线通信是利用电波信号可以在自由空间中传播的特性进行信息交换的一种通信方式。在移动中实现的无线通信又通称为移动通信,人们把二者合称为无线移动通信。简单讲,无线通信是仅利用电磁波而不通过线缆进行的通信方式。

1,无线频谱

所有无线信号都是随电磁波通过空气传输的,电磁波是由电子部分和能量部分组成的能量波。声音和光是电磁波得两个例子。无线频谱(也就是说,用于广播、蜂窝电话以及卫星传输的波)中的波是不可见也不可听的——至少在接收器进行解码之前是这样的。

“无线频谱”是用于远程通信的电磁波连续体,这些波具有不同的频率和波长。无线频谱包括了9khz到300 000Ghz之间的频率。每一种无线服务都与某一个无线频谱区域相关联。例如,AM广播涉及无线通信波谱的低端频率,使用535到1605khz之间的频率。

无线频谱是所有电磁波谱的一个子集。在自然界中还存在频率更高或者更低的电磁波,但是他们没有用于远程通信。低于9kz的频率用于专门的应用,如野生动物跟踪或车库门开关。频率高于300 000Ghz的电磁波对人类来说是可见的,正是由于这个原因,他们不能用于通过空气进行通信。例如,我们将频率为428570Ghz的电磁波识别为红色。

当然,通过空气传播的信号不一定会保留在一个国家内。因此,全世界的国家就无线远程通信标准达成协议是非常重要的。ITU就是管理机构,它确定了国际无线服务的标准,包括频率分配、无线电设备使用的信号传输和协议、无线传输及接收设备、卫星轨道等。如果政府和公司不遵守ITU标准,那么在制造无线设备的国家之外就可能无法使用它们。

2,无线传输的特征

虽然有线信号和无线信号具有许多相似之处——例如,包括协议和编码的使用——但是空气的本质使得无线传输与有线传输有很大的不同。当工程师门谈到无线传输时,他们是将空气作为“无制导的介质”。因为空气没有提供信号可以跟随的固定路径,所以信号的传输是无制导的。

正如有线信号一样,无线信号也是源于沿着导体传输的电流。电子信号从发射器到达天线,然后天线将信号作为一系列电磁波发射到空气中。信号通过空气传播,直到它到达目标位置为止。在目标位置,另一个天线接收信号,一个接收器将它转换回电流。

注意,在无线信号的发送端和接收端都使用了天线,而要交换信息,连接到每一个天线上的收发器都必须调整为相同的频率。

3,天线

每一种无线服务都需要专门设计的天线。服务的规范决定了天线的功率输出、频率及辐射图。天线的“辐射图”描述了天线发送或接收的所有电磁能的三维区域上的相对长度。“定向天线”沿着一个单独的方向发送无线电信号。这种天线用在来源需要与一个目标位置(如在点对点连接中)通信时。定向天线还可能用在多个接收节点排列在一条线上时。或者,它可能用在维持信号的一定距离上的强度比覆盖一个较广的地理区域更重要时,因为天线可以使用它的能量在更多的方向发送信号,也可以在一个方向上发送更长的距离。使用定向天线无线服务的一些例子包括卫星下行线路和上行线路,无线LAN以及太空、海洋和航空导弹。

与之相比,“全向天线”在所有的方向上都与相同的强度和清晰度发送和接收无线信号。这种天线用在许多不同的接收器都必须能够获得信号时,或者用在接收器的位置高度易变时。电视台和广播站使用全向天线,大多数发送移动电话的发射塔也是如此。

无线信号传输中的一个重要考虑是天线可以将信号传输的距离,同时还使信号能够足够强,能够被接收机清晰地解释。无线传输的一个简单原则是,较强的信号将传输的比较弱的信号更远。

正确的天线位置对于确保无线系统的最佳性能也是非常重要的。用于远程信号传输的天线经常都安装在塔上或者高层的顶部。从高处发射信号确保了更少的障碍和更好的信号接收。

4,信号传播

在理想情况下,无线信号直接在从发射器到预期接收器的一条直线中传播。这种传播被称为“视线”(Line Of Sight,LOS),它使用很少的能量,并且可以接收到非常清晰的信号。不过,因为空气是无制导介质,而发射器与接收器之间的路径并不是很清晰,所以无线信号通常不会沿着一条直线传播。当一个障碍物挡住了信号的路线时,信号可能会绕过该物体、被该物体吸收,也可能发生以下任何一种现象:发射、衍射或者散射。物体的几何形状决定了将发生这三种现象中的那一种。

(1)反射、衍射和散射

无线信号传输中的“反射”与其他电磁波(如光或声音)的反射没有什么不同。波遇到一个障碍物并反射——或者弹回——到其来源。对于尺寸大于信号平均波长的物体,无线信号将会弹回。例如,考虑一下微波炉。因为微波的平均波长小于1毫米,所以一旦发出微波,它们就会在微波炉的内壁(通常至少有15cm长)上反射。究竟哪些物体会导致无线信号反射取决于信号的波长。在无线LAN中,可能使用波长在1~10米之间的信号,因此这些物体包括墙壁、地板天花板及地面。

在“衍射”中,无线信号在遇到一个障碍物时将分解为次级波。次级波继续在它们分解的方向上传播。如果能够看到衍射的无线电信号,则会发现它们在障碍物周围弯曲。带有锐边的物体——包括墙壁和桌子的角——会导致衍射。

“散射”就是信号在许多不同方向上扩散或反射。散射发生在一个无线信号遇到尺寸比信号的波长更小的物体时。散射还与无线信号遇到的表面的粗糙度有关。表面也粗糙,信号在遇到该表面是就越容易散射。在户外,树木会路标都会导致移动电话信号的散射。

另外,环境状况(如雾、雨、雪)也可能导致反射、散射和衍射

(2)多路径信号

由于反射、衍射和散射的影响,无线信号会沿着许多不同的路径到达其目的地。这样的信号被称为“多路径信号”。多路径信号的产生并不取决于信号是如何发出的。它们可能从来源开始在许多方向上以相同的辐射强度,也可能从来源开始主要在一个方向上辐射。不过,一旦发出了信号,由于反射、衍射和散射的影响,它们就将沿着许多路径传播。

无线信号的多路径性质既是一个优点又是一个缺点。一方面,因为信号在障碍物上反射,所以它们更可能到达目的地。在办公楼这样的环境中,无线服务依赖于信号在墙壁、天花板、地板以及家具上的反射,这样最终才能到达目的地。

多路径信号传输的缺点是因为它的不同路径,多路径信号在发射器与接收器之间的不同距离上传播。因此,同一个信号的多个实例将在不同的时间到达接收器,导致衰落和延时。

5,窄带、宽带及扩展频谱信号

传输技术根据它们的信号使用了无线频谱的部分大小而有所不同。一个重要区别就是无线使用窄带还是宽带信号传输。在“窄带”,发射器在一个单独的频率或者非常小的频率范围上集中信号能量。与窄带相反,“宽带”是指一种使用无线频谱的相对较宽频带的信号传输方式。

使用多个频率来传输信号被称为扩展频谱技术,换句话说,在传输过程中,信号从来不会持续停留在一个频率范围内。在较宽的频带上分布信号的一个结果是它的每一个频率需要的功率比窄带信号传输更小。信号强度的这种分布使扩展频谱信号更不容易干扰在同一个频带上传输的窄带信号。

在多个频率上分布信号的另一个结果是提高了安全性。因为信号是根据一个只有获得授权的发射器和接收器才知道的序列来分布的,所以未获授权的接收器更难以捕获和解码这些信号。

扩展频谱的一个特定实现是“跳频扩展频谱”(Frequency Hopping Spread Spectrum ,FHSS)。在FHSS传输中,信号与信道的接收器和发射器知道的同一种同步模式在一个频带的几个不同频率之间跳跃。另一种扩展频谱信号被称为“直接序列扩展频谱”(Direct Sequence Spread Spectrum,DSSS)。在DSSS中,信号的位同时分布在整个频带上。对每一位都进行了编码,这样接收器就可以在接收到这些位时重组原始信号。

6,固定和移动

每一种无线通信都属于以下两个类别之一:固定或移动。在“固定”无线系统中,发射器和接收器的位置是不变的。传输天线将它的能量直接对准接收器天线,因此,就有更多的能量用于该信号。对于必须跨越很长的距离或者复杂地形的情况,固定的无线连接比铺设电缆更经济。

不过,并非所有通信都适用固定无线。例如,移动用户不能使用要求他们保留在一个位置来接收一个信号的服务。相反,移动电话、寻呼、无线LAN以及 其它许多服务都在使用“移动”无线系统。在移动无线系统中,接收器可以位于发射器特定范围内部的任何地方。这就允许接收器从一个位置移动到另一个位置,同时还继续接受信号。

无线通信原理的发展现状

1,分类

无线通信主要包括微波通信和卫星通信。微波是一种无线电波,它传送的距离一般只有几十千米。但微波的频带很宽,通信容量很大。微波通信每隔几十千米要建一个微波中继站。卫星通信是利用通信卫星作为中继站在地面上两个或多个地球站之间或移动体之间建立微波通信联系。

2,热点技术

(1)4G

第四代移动电话行动通信标准,指的是第四代移动通信技术,外语缩写:4G。该技术包括TD-LTE和FDD-LTE两种制式(严格意义上来讲,LTE只是3.9G,尽管被宣传为4G无线标准,但它其实并未被3GPP认可为国际电信联盟所描述的下一代无线通讯标准IMT-Advanced,因此在严格意义上其还未达到4G的标准。只有升级版的LTE Advanced才满足国际电信联盟对4G的要求)。4G是集3G与WLAN于一体,并能够快速传输数据、高质量、音频、视频和图像等。4G能够以100Mbps以上的速度下载,比目前的家用宽带ADSL(4兆)快25倍,并能够满足几乎所有用户对于无线服务的要求。此外,4G可以在DSL和有线电视调制解调器没有覆盖的地方部署,然后再扩展到整个地区。很明显,4G有着不可比拟的优越性。

(2)ZigBee技术

ZigBee技术主要用于无线个域网(WPAN),是基于IEE802.15.4无线标准研制开发的,是一种介于RFID和蓝牙技术之间的技术提案,主要应用在短距离并且数据传输速率不高的各种电子设备之间。ZigBee协议比蓝牙、高速率个域网或802.11x无线局域网更简单使用,可以认为是蓝牙的同族兄弟。

(3)WLAN与WAPI

WLAN(无线局域网)是一种借助无线技术取代以往有线布线方式构成局域网的新手段,可提供传统有线局域网的所有功能,是计算机网络与无线通信技术相结合的产物。它是通用无线接入的一个子集,支持较高传输速率(2Mb/s~54Mb/s,甚至更高),利用射频无线电或红外线,借助直接序列扩频(DSSS)或跳频扩频(FHSS)、GMSK、OFDM等技术,甚至将来的超宽带传输技术UWBT,实现固定、半移动及移动的网络终端对Internet网络进行较远距离的高速连接访问。目前,原则上WLAN的速率尚较低,主要适用于手机、掌上电脑等小巧移动终端。1997年6月,IEEE推出了802.11标准,开创了WLAN先河,WLAN领域现在主要有IEEE802.11x系列与HiperLAN/x系列两种标准。

WAPI是WLAN Authentication and Privacy Infrastructure的缩写。WAPI作为我国首个在计算机网络通信领域的自主创新安全技术标准,能有效阻止无线局域网不符合安全条件的设备进入网络,也能避免用户的终端设备访问不符合安全条件的网络,实现了“合法用户访问合法网络”。WAPI安全的无线网络本身所蕴含的“可运营、可管理”等优势,已被以中国移动、中国电信为代表的极具专业能力的运营商积极挖掘并推广、应用,运营市场对WAPI的应用进一步促进了其他行业市场和消费者关注并支持WAPI。目前市场上已有50多款来自全球主要手机制造商的智能手机支持WAPI,包括诺基亚、三星、索爱、酷派。而中国三大电信运营商也都已开始或完成第一批WAPI热点的招标和竞标工作,以中国移动为例,到目前为止已实际部署了大概10万个WAPI热点。这意味着WAPI的生态系统已基本建成,WAPI商业化的大门已经打开。

(4)短距离无线通信(蓝牙、RFID、IrDA)

蓝牙(Bluetooth)技术,实际上是一种短距离无线电技术。利用蓝牙技术,能够有效地简化掌上电脑、笔试本电脑和移动电话手机等移动通信终端设备之间的通信,也能够成功地简化以上这些设备与因特网之间的通信,从而使这些现代通信设备与因特网之间的数据传输变得更加迅速高效,进而为无线通信拓宽道路。蓝牙采用分散式网络结构以及快跳频和短包技术,支持点对点及点对多点通信,工作在全球通用的2.4GHz ISM(即工业、科学、医学)频段,其数据速率为1Mbps,采用时分双工传输方案实现全双工传输。蓝牙技术为免费使用,全球通用规范,在现今社会中的应用范围相当广泛。

RFID是Radio Frequency Identification的缩写,即射频识别,俗称电子标签。射频识别技术是一项利用射频信号通过空间耦合(交变磁场或电磁场)实现无接触信息传递并通过所传递的信息达到识别目的的技术。目前RFID产品的工作频率有低频(125kHz~134kHz)、高频(13.56MHz)和超高频(860MHz~960MHz),不同频段的RFID产品有不同的特性。射频识别技术被广泛应用于工业自动化、商业自动化、交通运输控制管理、防伪等众多领域,例如WalMart、Tesco、美国国防部和麦德龙超市都在它们的供应链上应用RFID技术。在将来,超高频的产品会得到大量的应用。

IrDA是一种利用红外线进行点对点通信的技术,也许是第一个实现无线个人局域网(PAN)的技术。目前其软硬件技术都很成熟,在小型移动设备,如PDA、手机上广泛使用。事实上,当今每一个出厂的PDA及许多手机、笔记本电脑、打印机等产品都支持IrDA。IrDA的主要优点是无需申请频率的使用权,因而红外通信成本低廉。它还具有移动通信所需的体积小、功耗低、连接方便、简单易用的特点;且由于数据传输率较高,适于传输大容量的文件和多媒体数据。此外,红外线发射角度较小,传输安全性高。IrDA的不足在于它是一种视距传输,2个相互通信的设备之间必须对准,中间不能被其他物体阻隔,因而该技术只能用于2台(非多台)设备之间的连接(而蓝牙就没有此限制,且不受墙壁的阻隔)。IrDA目前的研究方向是如何解决视距传输问题及提高数据传输率。

(5)WiMAX

WiMAX全称为World Interoperability for Microwave Access,即全球微波接入互操作系统,可以替代现有的有线和DSL连接方式,来提供最后一英里的无线宽带接入,其技术标准为IEEE 802.16,其目标是促进IEEE 802.16的应用。相比其他无线通信系统,WiMAX的主要优势体现在具有较高的频谱利用率和传输速率上,因而它的主要应用是宽带上网和移动数据业务。

(6)超宽带无线接入技术UWB

UWB(Ultra Wideband)是一种无载波通信技术,利用纳秒至微微秒级的非正弦波窄脉冲传输数据。通过在较宽的频谱上传送极低功率的信号,UWB能在10米左右的范围内实现数百Mb/s至数Gb/s的数据传输速率。UWB具有抗干扰性能强、传输速率高、带宽极宽、消耗电能小、发送功率小等诸多优势,主要应用于室内通信、高速无线LAN、家庭网络、无绳电话、安全检测、位置测定、雷达等领域。

对于UWB技术,应该看到,它以其独特的速率以及特殊的范围,也将在无线通信领域占据一席之地。由于其高速、窄覆盖的特点,它很适合组建家庭的高速信息网络。它对蓝牙技术具有一定的冲击,但对当前的移动技术、WLAN等技术的威胁不大,反而可以成为其良好的补充。

(7)EnOcean

EnOcean无线通信标准被采纳为国际标准“ISO/IEC 14543-3-10”,这也是世界上唯一使用能量采集技术的无线国际标准。EnOcean能量采集模块能够采集周围环境产生的能量,从光、热、电波、振 动、人体动作等获得微弱电力。这些能量经过处理以后,用来供给EnOcean超低功耗的无线通讯模块,实现真正的无数据线,无电源线,无电池的通讯系统。 EnOcean无线标准ISO/IEC14543-3-10使用868MHz,902MHz,928MHz和315MHz频段,传输距离在室外是300 米,室内为30米。

(8)Z-Wave

Z-Wave是由丹麦公司Zensys所主导的无线组网规格, Z-Wave是一种新兴的基于射频的、低成本、低功耗、高可靠、适于网络的短距离无线通信技术。工作频带为908.42MHz,868.42MHz信号的有效覆盖范围在室内是30m,室外可超过100m,适合于窄带宽应用场合。Z-Wave技术也是低功耗和低成本的技术,有力地推动着低速率无线个人区域网。

‘肆’ ZigBee鎶链链夊摢浜涗紭锷 ZigBee绯荤粺锷熻兘浠嬬粛銆愯﹁В銆

銆銆ZigBee鎶链镄勫簲鐢ㄦ柟钖戝畾浣崭簬瀹跺涵镊锷ㄥ寲銆佹ゼ瀹囱嚜锷ㄥ寲銆佷紶镒熷櫒搴旂敤绛夈傝ョ郴缁熺殑镞犵嚎缃戠粶阃氢俊妯″潡閲囩敤CC2430锛屽畠鏄涓棰楃湡姝g殑绯荤粺鑺鐗(SoC)COMS瑙e喅鏂规堬纴杩欑嶆柟妗堣兘澶熸彁楂樻ц兘骞舵弧瓒砕igBee涓哄熀纭镄2.4GHzISM娉㈡靛簲鐢ㄥ逛绠鎴愭湰鍜屼绠锷熻楃殑瑕佹眰銆备篃鍖呭惈涓涓狣SSS(鐩存帴搴忓垪镓╅)灏勯戞敹鍙戞牳蹇冨拰涓涓宸ヤ笟绾у皬宸ч珮鏁堢殑8051鎺у埗鍣ㄣ傛棤绾挎暟浼犳ā鍧楅噰鐢―L6200妯″潡锛 鐢ㄦ埛鍙闇瑕佹嫢链変互鍓嶆墍镡熸倝镄勪覆鍙i氢俊鐭ヨ瘑灏卞彲阃氲繃GPRS缃戠粶杩涜岄氢俊 銆

銆銆1 ZigBee镄勬妧链浼桦娍

銆銆ZigBee镄勬妧链浼桦娍琛ㄧ幇涓轰互涓嫔嚑涓鏂归溃锛

銆銆(1)鐪佺数銆傜敱浜庡伐浣滃懆链熷緢鐭銆佹敹鍙戜俊鎭锷熻楄缉浣庯纴骞朵笖閲囩敤浜嗕紤鐪犳ā寮忥纴锲犳 ZigBee 鎶链鍙浠ョ‘淇2鑺备簲鍙风数姹犳敮鎸侀暱杈6涓链埚埌2骞村乏鍙崇殑浣跨敤镞堕棿銆备笉钖岀殑搴旂敤瀵瑰簲镄勫姛钥楄嚜铹舵槸涓嶅悓镄勚

銆銆(2)鍙闱犮俍igBee鎶链閲囩敤浜嗙版挒阆垮厤链哄埗锛屽悓镞朵负闇瑕佸浐瀹氩甫瀹界殑阃氢俊涓氩姟棰勭暀浜嗕笓鐢ㄦ椂闅欙纴阆垮厤浜嗗彂阃佹暟鎹镞剁殑绔炰簤鍜屽啿绐併侻AC灞傞噰鐢ㄤ简瀹屽叏纭璁ょ殑鏁版嵁浼犺緭链哄埗锛屾疮涓鍙戦佺殑鏁版嵁鍖呴兘蹇呴’绛夊緟鎺ユ敹鏂圭殑纭璁や俊鎭銆

銆銆(3)鎴愭湰浣庛傛ā鍧椾环镙间绠寤夛纴涓擹igBee鍗忚鏄鍏崭笓鍒╄垂镄勚

銆銆(4)镞跺欢鐭銆傞拡瀵规椂寤舵晱镒熺殑搴旂敤浣滀简浼桦寲锛岄氢俊镞跺欢鍜屼粠浼戠湢鐘舵佹縺娲荤殑镞跺欢閮介潪甯哥煭銆傝惧囨悳绱㈡椂寤跺吀鍨嫔间负30ms锛屼紤鐪犳縺娲绘椂寤跺吀鍨嫔兼槸15ms锛屾椿锷ㄨ惧囦俊阆撴帴鍏ユ椂寤朵负15ms銆

銆銆(5)鑺傜偣阃氢俊璁剧疆鏄扑簬閰岖疆銆

銆銆(6)缃戠粶瀹归噺澶с俍igBee鍙浠ラ噰鐢ㄦ槦褰銆佺绣鐘躲佹爲鐘剁粨鏋勭粍缃戯纴钥屼笖鍙浠ラ氲繃浠讳竴鑺傜偣杩炴帴缁勬垚镟村ぇ镄勭绣缁灭粨鏋勚备粠鐞呜轰笂璁诧纴鍏跺彲杩炴帴镄勮妭镣瑰氲揪64000涓銆1涓猌igBee缃戠粶链澶氩彲浠ュ圭撼254涓浠庤惧囧拰1涓涓昏惧囷纴1涓鍖哄烟鍐呭彲浠ュ悓镞跺瓨鍦ㄦ渶澶100涓猌igBee缃戠粶銆

銆銆(7)瀹夊叏銆俍igBee鎻愪緵浜嗘暟鎹瀹屾暣镐ф镆ュ拰閴存潈锷熻兘锛屽姞瀵嗙畻娉曢噰鐢ˋES-128锛屽悓镞跺悇涓搴旂敤鍙浠ョ伒娲诲湴纭瀹氩叾瀹夊叏灞炴с

銆銆(8)鍏ㄧ悆阃氱敤镐у拰瀹屽ソ镄勫紑鏀炬с俍igBee镙囧嗳鍗忚锛屼娇ZigBee璁惧囬棿镄勯氢俊鎴愪负杞昏屾槗涓剧殑浜嬫儏銆

銆銆2 CC2430镄勬妧链鐗圭偣

銆銆CC2430鑺鐗囧欢鐢ㄤ简浠ュ线CC2420鑺鐗囩殑鏋舵瀯锛屽湪鍗曚釜鑺鐗囦笂鏁村悎浜哯igBee灏勯(RF)鍓岖銆佸唴瀛桦拰寰鎺у埗鍣ㄣ傚畠浣跨敤1涓8浣峂CU(8051)锛屽叿链128KB鍙缂栫▼闂瀛桦拰8KB镄凴AM锛岃缮鍖呭惈妯℃嫙鏁板瓧杞鎹(ADC)銆佸嚑涓瀹氭椂鍣(Timer)銆丄ES-128鍗忓悓澶勭悊鍣ㄣ佺湅闂ㄧ嫍瀹氭椂鍣(Watchdogtimer)銆32kHz鏅舵尟镄勪紤鐪犳ā寮忓畾镞跺櫒銆佷笂鐢靛崭綅鐢佃矾(PowerOnReset)銆佹帀鐢垫娴嬬数璺(BrownOutDetection)锛屼互鍙21涓鍙缂栫▼I/O寮曡剼銆侰C2430鑺鐗囬噰鐢0.18μmCMOS宸ヨ压;鍦ㄦ帴鏀跺拰鍙戝皠妯″纺涓嬶纴鐢垫祦鎹熻楀垎鍒浣庝簬27mA鍜25mA銆侰C2430镄勪紤鐪犳ā寮忓拰杞鎹㈠埌涓诲姩妯″纺镄勮秴鐭镞堕棿镄勭壒镐э纴鐗瑰埆阃傚悎闾d簺瑕佹眰鐢垫睁瀵垮懡闱炲父闀跨殑搴旂敤銆

銆銆3 GPRS鏁颁紶妯″潡DL6200

銆銆DL6200妯″潡镄勬牳蹇幂‖浠舵槸浣跨敤涓栫晫鐭ュ悕绉诲姩阃氢俊浜у搧铡傚晢鐢熶骇镄凣PRS鑺鐗囱岃捐$敓浜х殑锛屽叿链夊緢楂樼殑鍙闱犳с备娇鐢―L6200镞讹纴鍙闇瑕佺啛鎭変覆鍙i氢俊鐭ヨ瘑灏卞彲阃氲繃GPRS缃戠粶杩涜岄氢俊銆备笉蹇呭叧蹇冩ā鍧楃殑灏勯戠数璺閮ㄥ垎(浣跨敤绉诲姩杩愯惀鍟嗙殑鍏缃)鍙婄浉鍏崇‖浠惰繛鎺;涓嶅繀鍏冲绩AT鎸囦护闆嗭纴镓链変笌AT鍝嶅簲链夊叧镄勬搷浣滈兘鐢盌L6200妯″潡鍦ㄦā鍧楃殑鍐呴儴瀹屾垚;涓嶅繀鍏冲绩TCP/IP鍗忚鍙娄簰杩炵绣缁灭殑鐩稿叧鐭ヨ瘑锛氱敱浜嶨PRS妯″潡鏄锘轰簬浜掕繛缃戠粶镄勯氢俊鏂瑰纺锛屽湪浣跨敤涓灏辫佷笌INTERNET缃戠粶镓扑氦阆掳纴镓链変笌缃戠粶镄勪俊鎭浜ゆ崲閮界敱DL6200妯″潡鍦ㄥ唴閮ㄨ嚜锷ㄥ畬鎴愶纴镞犻渶鐢ㄦ埛鍙备笌;涓嶅繀鐢ㄦ埛鍗旷嫭𨰾ユ湁涓涓锲哄畾镄処P鍦板潃;鍏锋湁镙煎纺鍙婇忔槑浼犺緭涓ょ崭紶杈撴牸寮;鍏锋湁涓鑸宸ヤ綔妯″纺鍜岀渷鐢靛伐浣沧ā寮;涓庡悇绉岖粍镐佽蒋浠剁洿鎺ヨ繛鎺ユ棤闇涓撶敤镄勯┍锷ㄧ▼搴;鏀鎸佹荤嚎寮忕殑琚锷ㄤ紶杈撴暟鎹鏂瑰纺銆

銆銆4 绯荤粺缁撴瀯鍜屽伐浣滃师鐞

銆銆4.1 绯荤粺镄勭粨鏋勫拰锷熻兘

銆銆绯荤粺鐢卞栫绣鍜屽唴缃戜袱閮ㄥ垎缁勬垚銆傚栫绣鏄鐢盙PRS鏁颁紶妯″潡鍜孭C缁勬垚锛屼袱钥呬箣闂村彲阃氲繃TTL\RS232\RS485浼犺緭淇℃伅锛岃ョ郴缁熼噰鐢ㄤ笂浣嶆満鐢靛钩鎺ュ彛涓篢TL銆

銆銆鍐呯绣鐢盘C链哄拰ZigBee镞犵嚎鏁版嵁阃氢俊妯″潡缁勬垚锛屽畠浠涔嬮棿阃氲繃涓插彛杩炴帴銆俍igBee缃戠粶鐢卞岗璋冨櫒銆佽矾鐢卞櫒鍜岀粓绔璁惧囦笁閮ㄥ垎缁勬垚銆傚岗璋冨櫒鍜岃矾鐢卞櫒绉颁负鍏ㄥ姛鑳借惧嘑FD锛岀粓绔璁惧囩О涓虹簿绠锷熻兘璁惧嘡FD銆傜敱浜庤ョ郴缁熻惧囨瘆杈幂亩鍗曪纴閲囩敤鏄熷瀷缁勭绣鏂瑰纺锛屽皢绐楃併侀棬纾佺瓑鐪嬩綔缁堢璁惧囷纴ZigBee镞犵嚎妯″潡涓哄岗璋冨櫒锛岃ョ郴缁熺粨鏋勭亩鍗曪纴镓浠ヤ笉闇瑕佽矾鐢卞櫒銆傚傚浘3镓绀恒

銆銆(1)鐢ㄦ埛阃氲繃澶栫绣GSM镓嬫満鍙戦佺煭淇″懡浠ょ粰GPRS鏁颁紶妯″潡DL6200锛娈L6200鏀跺埌锻戒护钖庯纴瑙i喷璇ュ懡浠ゃ傝В閲婂畬钖庡彂缁椤唴缃戜腑ZigBee镞犵嚎阃氢俊妯″潡CC2430,鐢辫ユā鍧楁妸锻戒护鍙戠粰鐩稿簲镄勭粓绔璁惧囷纴缁堢璁惧囨敹鍒板懡浠ゅ悗浣滃嚭鐩稿簲镄勭殑锷ㄤ綔銆

銆銆(2)缁堢璁惧囨敹鍒板懡浠ゅ悗锛屼竴鏄浣滃嚭鐩稿簲镄勫姩浣滃悗钖戜笂灞备綔鍑哄簲绛旓纴浜屾槸鎶娄笂灞傞渶瑕佺殑鏁版嵁阃氲繃CC2430妯″潡浼犻佺粰涓婂眰璁惧囥备笂灞傝惧囨敹鍒扮粓绔璁惧囩殑淇℃伅锛岄氲繃DL6200浠ョ煭淇$殑褰㈠纺鍙戦佸埌鐢ㄦ埛镓嬫満涓娿

銆銆(3)褰撴湁涓鏂鍝嶅簲镞讹纴濡傚朵腑链夊皬锅凤纴瑙﹀彂浜嗘姤璀﹁惧囷纴璇ョ粓绔璁惧囧皢绗涓镞堕棿钖戠敤鎴峰彂阃佷俊鎭锛屼互绀烘姤璀︺

銆銆4.2 绯荤粺镄勭‖浠惰捐

銆銆DL6200涓嶉渶瑕佸叧蹇倾T鎸囦护闆嗐备笉闇瑕佸叧蹇僒CP/IP鍗忚鍙娄簰杩炵绣缁灭殑鐩稿叧鐭ヨ瘑锛屾墍链変笌缃戠粶镄勪俊鎭浜ゆ崲閮界敱DL6200妯″潡镊锷ㄥ畬鎴愩备笌钖勭岖粍镐佽蒋浠剁洿鎺ヨ繛鎺ワ纴镞犻渶涓撶敤镄勯┍锷ㄧ▼搴忋侱L6200镄勮繖浜涚壒镣逛娇寰楃‖浠惰捐″緢瀹规槗锛屽畠镄凴XD銆乀DX蹇呴’涓屿igBee镄凴X銆乀X鐩歌繛杩涜屾暟鎹镄勬敹鍙戙

銆銆4.3 绯荤粺镄勮蒋浠惰捐

銆銆璇ョ郴缁熻蒋浠朵富瑕侀氲繃ZigBee缃戠粶鍗忚镎崭綔瀹屾垚鏁版嵁閲囬泦鍜屾暟鎹鏀跺彂锛屽寘𨰾鍒濆嫔寲銆佸彂灏勫拰鎺ユ敹绋嫔簭璁捐★纴浠ュ强瀵规姤璀︿俊鍙风殑鐩戞带銆佸硅繙绋嬫带鍒舵寚浠ょ殑澶勭悊鍜屾墽琛岀瓑銆

銆銆绯荤粺镄勬敹鍙戦噰鐢≒ingPang鍙戦佸嚱鏁

銆銆5 缁撹

銆銆ZigBee镞犵嚎妯″潡鍏锋湁浣庡姛钥椼佷绠鎴愭湰镄勪紭锷匡纴鍦ㄦ弧瓒充汉浠闇姹傜殑浼犺緭阃熺巼镄勬儏鍐典笅锛屽皢浼氩湪涓崭箙镄勫皢𨱒ユ櫘鍙婂埌钖勫跺悇鎴蜂腑銆傛ゅ栵纴浣跨敤镞犵嚎缃戠粶鐪佸幓浜嗛吨鏂拌呬慨镄勮礋𨰾咃纴閲囩敤ZigBee镞犵嚎缃戠粶闅忔椂鍙浠ユ坊锷犳垨鍑忓皯瀹幂殑鑺傜偣锛屽畠瀵圭绣缁沧湁镊缁勮兘锷涖傛墍浠ワ纴鍟嗗搧镄勭粡娴庣▼搴︿互鍙婃妧链镄勫规槗绋嫔害锛屾垚涓哄彂灞旷殑蹇呯劧𨱒′欢銆

‘伍’ 看懂黑科技,3分钟让你读懂ZigBee无线通讯技术

全球通信产业技术的发展呈现三大趋势:无线化、宽带化和IP化。在众多的宽带技术中,无线化尤其是移动通信技术成为近年来通信技术市场的最大亮点,是构成未来通信技术的重要组成部分。

Zigbee是基于IEEE802.15.4标准的低功耗个域网协议。根据这个协议规定的技术是一种短距离、低功耗的无线通信技术。这一名称来源于蜜蜂的八字舞,由于蜜蜂(bee)是靠飞翔和“嗡嗡”(zig)地抖动翅膀的“舞蹈”来与同伴传递花粉所在方位信息,也就是说蜜蜂依靠这样的方式构成了群体中的通信网络。其特点是近距离、低复杂度、自组织、低功耗、高数据速率。主要适合用于自动控制和远程控制领域,可以嵌入各种设备。简而言之,ZigBee就是一种便宜的,低功耗的近距离无线组网通讯技术。

ZigBee的技术原理

ZigBee是一个由可多到65000个无线数传模块组成的一个无线数传网络平台,十分类似现有的移动通信的CDMA网或GSM网,每一个ZigBee网络数传模块类似移动网络的一个基站,在整个网络范围内,它们之间可以进行相互通信;每个网络节点间的距离可以从标准的75米,到扩展后的几百米,甚至几公里;另外整个ZigBee网络还可以与现有的其它的各种网络连接。例如,你可以通过互联网在北京监控云南某地的一个ZigBee控制网络。

ZigBee网络主要是为自动化控制数据传输而建立,而移动通信网主要是为语音通信而建立;每个移动基站价值一般都在百万元人民币以上,而每个ZigBee"基站"却不到1000元人民币;每个ZigBee 网络节点不仅本身可以与监控对对象,例如传感器连接直接进行数据采集和监控,它还可以自动中转别的网络节点传过来的数据资料;除此之外,每一个ZigBee网络节点(FFD)还可在自己信号覆盖的范围内,和多个不承担网络信息中转任务的孤立的子节点(RFD)无线连接。

每个ZigBee网络节点(FFD和RFD)可以可支持多到31个的传感器和受控设备,每一个传感器和受控设备终可以有8种不同的接口方式。可以采集和传输数字量和模拟量。

ZigBee技术的特点

ZigBee技术是一种近距离、低复杂度、低功耗、低速率、低成本的双向无线通讯技术。主要用于距离短、功耗低且传输速率不高的各种电子设备之间进行数据传输以及典型的有周期性数据、间歇性数据和低反应时间数据传输的应用。

自从马可尼发明无线电以来,无线通信技术一直向着不断提高数据速率和传输距离的方向发展。例如:广域网范围内的第三代移动通信网络(3G)目的在于提供多媒体无线服务,局域网范围内的标准从IEEE802.11的1Mbit/s到IEEE802.11g的54Mbit/s的数据速率。而ZigBee技术则致力于提供一种廉价的固定、便携或者移动设备使用的极低复杂度、成本和功耗的低速率无线通信技术。

这种无线通信技术具有如下特点:

1、功耗低

工作模式情况下,ZigBee技术传输速率低,传输数据量很小,因此信号的收发时间很短,其次在非工作模式时,ZigBee节点处于休眠模式。设备搜索时延一般为30ms,休眠激活时延为15ms,活动设备信道接入时延为15ms。由于工作时间较短、收发信息功耗较低且采用了休眠模式,使得ZigBee节点非常省电,ZigBee节点的电池工作时间可以长达6个月到2年左右。同时,由于电池时间取决于很多因素,例如:电池种类、容量和应用场合,ZigBee技术在协议上对电池使用也作了优化。对于典型应用,碱性电池可以使用数年,对于某些工作时间和总时间(工作时间+休眠时间)之比小于1%的情况,电池的寿命甚至可以超过10年。

2、数据传输可靠

ZigBee的媒体接入控制层(MAC层)采用talk-when-ready的碰撞避免机制。在这种完全确认的数据传输机制下,当有数据传送需求时则立刻传送,发送的每个数据包都必须等待接收方的确认信息,并进行确认信息回复,若没有得到确认信息的回复就表示发生了碰撞,将再传一次,采用这种方法可以提高系统信息传输的可靠性。同时为需要固定带宽的通信业务预留了专用时隙,避免了发送数据时的竞争和冲突。同时ZigBee针对时延敏感的应用做了优化,通信时延和休眠状态激活的时延都非常短。

3、网络容量大

ZigBee低速率、低功耗和短距离传输的特点使它非常适宜支持简单器件。ZigBee定义了两种器件:全功能器件(FFD)和简化功能器件(RFD)。对全功能器件,要求它支持所有的49个基本参数。而对简化功能器件,在最小配置时只要求它支持38个基本参数。一个全功能器件可以与简化功能器件和其他全功能器件通话,可以按3种方式工作,分别为:个域网协调器、协调器或器件。而简化功能器件只能与全功能器件通话,仅用于非常简单的应用。一个ZigBee的网络最多包括有255个ZigBee网路节点,其中一个是主控(Master)设备,其余则是从属(Slave)设备。若是通过网络协调器(Network Coordinator),整个网络最多可以支持超过64000个ZigBee网路节点,再加上各个Network Coordinator可互相连接,整个ZigBee网络节点的数目将十分可观。

4、兼容性

ZigBee技术与现有的控制网络标准无缝集成。通过网络协调器(Coordinator)自动建立网络,采用载波侦听/冲突检测(CSMA-CA)方式进行信道接入。为了可靠传递,还提供全握手协议。

5、安全性

Zigbee提供了数据完整性检查和鉴权功能,在数据传输中提供了三级安全性。第一级实际是无安全方式,对于某种应用,如果安全并不重要或者上层已经提供足够的安全保护,器件就可以选择这种方式来转移数据。对于第二级安全级别,器件可以使用接入控制清单(ACL)来防止非法器件获取数据,在这一级不采取加密措施。第三级安全级别在数据转移中采用属于高级加密标准(AES)的对称密码。AES可以用来保护数据净荷和防止攻击者冒充合法器件,各个应用可以灵活确定其安全属性。

6、实现成本低

模块的初始成本估计在6美元左右,很快就能降到1.5-2.5美元,且Zigbee协议免专利费用。目前低速低功率的UWB芯片组的价格至少为20美元。而ZigBee的价格目标仅为几美分。低成本对于ZigBee也是一个关键的因素。

7、时延短

通信时延和从休眠状态激活的时延都非常短,典型的搜索设备时延30ms,休眠激活的时延是15ms, 活动设备信道接入的时延为15ms。因此ZigBee技术适用于对时延要求苛刻的无线控制(如工业控制场合等)应用。

ZigBee与WiFi的区别

相同点:

1、二者都是短距离的无线通信技术;

2、都是使用2.4GHz频段

3、都是采用DSSS技术;

不同点:

1、传输速度不同。 ZigBee的传输速度不高(<250Kbps),但是功耗很低,使用电池供电一般能用3个月以上; WiFi,就是常说的无线局域网,速率大(11Mbps),功耗也大,一般外接电源;

2、应用场合不同。 ZigBee用于低速率、低功耗场合,比如无线传感器网络,适用于工业控制、环境监测、智能家居控制等领域。 WiFi,一般是用于覆盖一定范围(如1栋楼)的无线网络技术(覆盖范围100米左右)。表现形式就是我们常用的无线路由器。在一栋楼内布设1个无线路由器,楼内的笔记本电脑(带无线网卡),基本都可以无线上网了。

3、市场现状不同。ZigBee作为一种新兴技术,自04年发布第一个版本的标准以来,正处在高速发展和推广当中;目前因为成本、可靠性方面的原因,还没有大规模推广; WiFi,技术成熟很多,应用也很多了。 总体上说,二者的区别较大,市场定位不同,相互之间的竞争不是很大。只不过二者在技术上有共同点,二者的相互干扰还是比较大的,尤其是WiFi对于ZigBee的干扰。

二者硬件内存需求对比:ZigBee:32~64KB+;WiFi:1MB+;ZigBee硬件需求低。

二者电池供电上电可持续时间对比:ZigBee:100~1000天;WiFi:1~5天;ZigBee功耗低。 传输距离对比(一般用法,无大功率天线发射装置):ZigBee:1~1000M;WiFi:1~100M;ZigBee传输距离长。 ZigBee劣势: 网络带宽对比:ZigBee:20~250KB/s;WiFi:11000KB/s;ZigBee带宽低,传输慢。

ZigBee的技术应用

作为一种低速率的短距离无线通信技术,ZigBee有其自身的特点,因此有为它量身定做的应用,尽管在某些应用方面可能和其他技术重叠。ZigBee可能的一些应用,包括智能家庭、工业控制、自动抄表、医疗监护、传感器网络应用和电信应用。

1、智能家居

家里可能都有很多电器和电子设备,如电灯、电视机、冰箱、洗衣机、电脑、空调等等,可能还有烟雾感应、报警器和摄像头等设备,以前我们最多可能就做到点对点的控制,但如果使用了ZigBee技术,可以把这些电子电器设备都联系起来,组成一个网络,甚至可以通过网关连接到Internet,这样用户就可以方便的在任何地方监控自己家里的情况,并且省却了在家里布线的烦恼。

2、工业控制

工厂环境当中有大量的传感器和控制器,可以利用ZigBee技术把它们连接成一个网络进行监控,加强作业管理,降低成本。

3、传感器网络应用

传感器网络也是最近的一个研究热点,像货物跟踪、建筑物监测、环境保护等方面都有很好的应用前景。传感器网络要求节点低成本、低功耗,并且能够自动组网、易于维护、可靠性高。ZigBee在组网和低功耗方面的优势使得它成为传感器网络应用的一个很好的技术选择。

目前Zigbee技术还存在的问题

尽管 Zigbee技术在2004年,就被列为当今世界发展最快,最具市场前景的十大新技术之一;关于Zigbee技术的优点,大家也进行了许多讨论,到目前为止,国内外许多厂商也都开发生产了各种各样的 Zigbee产品,并在应用推广上做了大量的工作,然而,实事求是的讲,真正完全使用Zigbee技术来解决具体实际问题,有意义的案例则非常有限。

Zigbee似乎成了一种时髦,但眼下还不能做到真正实用的新技术。就其原因,除了作为一种新技术,它本身需要有一个技术改进和成熟,以及市场培育的过程外,我们在长期应用Zigbee技术来解决实际问题的实践中,还发现如下几个十分重要,而在短期内我们认为十分难以解决的问题:

1、Zigbee的核心技术之一,是动态组网和动态路由,即Zigbee网络考虑了网络中的节点增减变化,网络中的每个节点相隔一定时间,需要通过无线信号交流的方式重新组网,并在每一次将信息从一个节点发送到另一个节点时,需要扫描各种可能的路径,从最短的路经尝试起,这就涉及到无线网络的管理问题。而这些,都需要占用大量的带宽资源,并增加数据传输的时延。特别是随着网络节点数目的增加和中转次数增多。因而,尽管Zigbee的射频传输速率是250kbps, 但经过多次中转后的实际可用速率将大大降低,同时数据传输时延也将大大增加,无线网络管理也就变得越麻烦。这也就是目前Zigbee网络在数据传输时的主要问题。

2、Zigbee这个字,从英语的角度来分析,它是由“Zig”和“bee”两个字组成。前者“Zig”中文的意思是“之“字形的路径,后面一个英文单词“bee”就是蜜蜂的意思,我们的理解,Zigbee网络技术,就是模仿蜜蜂信息传递的方式,通过网络节点之间信息的相互互传,来将一个信息从一个节点传输到远处的另外一个节点。如果按一般标准Zigbee节点,在开阔空间每次数据中转平均增加50米直线传输距离计算,传输500米直线距离需要中转十次;在室内,由于Zigbee所使用的2.4 G的传输频率,一般是通过信号反射来进行传输的,由于建筑物的遮挡,要传输一定的距离,往往需要使用较多的网络节点来进行数据中转,如上述第一条中的分析,这对一个Zigbee网络来讲,并不是一件简单的事情。当然,我们也可使用放大器来增加Zigbee网络节点的传输距离,然而,这必然要大大增加网络节点的功耗和成本,失去了Zigbee低成本低功耗的本来目的。而且,在室内使用这种方法来增加传输距离,效果也有限。显然,一种通过中心点在室外,终端模块在室外的星状网网络通信结构个更加合理。

3、Zigbee的核心技术之一,是每一个网络节点,除了自身作为信息采集点和执行来自中心的命令外,它还承担着随时来自网络的数据中转任务,这样,网络节点的收发机必须随时处于收发接收状态,这就是说它的最低功耗至少在20mA左右,一般使用放大器的远距离网络节点,其耗电量一般在150mA左右。这显然很难使用电池驱动来保证网络节点的正常工作;

4、由于Zigbee中的每一个节点,都参与自动组网和动态路由的工作,因而每个网络节点的单片机也就相对复杂一些,成本自然也就高一些。另外,在Zigbee网络的基础上进行一些针对具体应用的开发工作的量也就大一些。

综上所述 ,我们认为,Zigbee网络,实际上在许多情况下,是牺牲了网络传输效率,带宽以及节点模块的功耗,来换取在许多实际应用中,并不重要的动态组网和动态路由的功能,因为,在一般情况下,我们的网络节点和数据传输途径往往都是固定不变的。因此,当前Zigbee技术尚未解决的节点耗电问题,网络数据传输的效率较低时延较长的问题,以及数据传输距离有限的问题,是当前Zigbee 技术难于得到很好推广的根本原因。

阅读全文

与自动化无线网络技术相关的资料

热点内容
网络连接失败显示黄色感叹号 浏览:310
打印机不连接网络能共享吗 浏览:695
苹果手环带网络和不带网络哪个好 浏览:602
网络不好但信号强这是怎么回事 浏览:804
恢复移动网络数据显示标志 浏览:789
无线网络方向就业方向 浏览:682
电脑网页打开慢是网络问题 浏览:62
移动4g网络多少g停网 浏览:845
网络整体解决方案包含哪些内容 浏览:929
电脑显示无线网络上不了网 浏览:153
网络语被黑了是什么意思 浏览:687
笔记本有些无线网络搜不到 浏览:334
珠海广电网络设置路由器 浏览:156
网络信息鉴定和研判岗位哪个好 浏览:115
你对网络安全的看法 浏览:970
电子企业网络营销研究报告 浏览:549
打电话网络会从wifi变成4g吗 浏览:500
路由器没有网络客服电话 浏览:586
在计算机网络中wan的中文名 浏览:478
电脑网络ip改了怎么恢复 浏览:387

友情链接