导航:首页 > 无线网络 > 信号处理中的神经网络

信号处理中的神经网络

发布时间:2023-11-27 10:58:49

① 神经网络到底有什么作用,具体是用来干什么的

神经网络(Artificial Neural Networks,简写为ANNs)也简称为神经网络(NNs)或称作连接模型(Connection Model),它是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。
神经网络可以用于模式识别、信号处理、知识工程、专家系统、优化组合、机器人控制等。随着神经网络理论本身以及相关理论、相关技术的不断发展,神经网络的应用定将更加深入。

② 概率神经网络主要是用来做什么的

作用:这种网络已较广泛地应用于非线性滤波、模式分类、联想记忆和
概率密度估计当中。

概率神经网络是由Specht博士在1989年提出的,它与统计信号处理
的许多概念有着紧密的联系。当这种网络用于检测和模式分类时,可以
得到贝叶斯最优结果。它通常由4层组成。第一层为输入层,每个神经
元均为单输入单输出,其传递函数也为线性的,这一层的作用只是将输
入信号用分布的方式来表示。第二层称之为模式层,它与输入层之间通
过连接权值Wij相连接.模式层神经元的传递函数不再是通常的Sigmoid
函数,而为
g(Zi)=exp[(Zi-1)/(s*s)]
其中,Zi为该层第i个神经元的输入,s为均方差。第三层称之为累加层
,它具有线性求和的功能。这一层的神经元数目与欲分的模式数目相同
。第四层即输出层具有判决功能,它的神经元输出为离散值1和-1(或0
),分别代表着输入模式的类别。
许多研究已表明概率神经网络具有如下特性:
(1)训练容易,收敛速度快,从而非常适用于实时处理;
(2)可以完成任意的非线性变换,所形成的判决曲面与贝叶斯最优
准则下的曲面相接近;
(3)具有很强的容错性;
(4)模式层的传递函数可以选用各种用来估计概率密度的核函数,
并且,分类结果对核函数的形式不敏感;
(5)各层神经元的数目比较固定,因而易于硬件实现。

③ 人工神经网络的作用

人工神经网络(Artificial Neural Network,即ANN ),是20世纪80 年代以来人工智能领域兴起的研究热点。它从信息处理角度对人脑神经元网络进行抽象, 建立某种简单模型,按不同的连接方式组成不同的网络。在工程与学术界也常直接简称为神经网络或类神经网络。神经网络是一种运算模型,由大量的节点(或称神经元)之间相互联接构成。每个节点代表一种特定的输出函数,称为激励函数(activation function)。每两个节点间的连接都代表一个对于通过该连接信号的加权值,称之为权重,这相当于人工神经网络的记忆。网络的输出则依网络的连接方式,权重值和激励函数的不同而不同。而网络自身通常都是对自然界某种算法或者函数的逼近,也可能是对一种逻辑策略的表达。

最近十多年来,人工神经网络的研究工作不断深入,已经取得了很大的进展,其在模式识别、智能机器人、自动控制、预测估计、生物、医学、经济等领域已成功地解决了许多现代计算机难以解决的实际问题,表现出了良好的智能特性。

中文名
人工神经网络
外文名
artificial neural network
别称
ANN
应用学科
人工智能
适用领域范围
模式分类
精品荐读

“蠢萌”的神经网络
作者:牛油果进化论
快速
导航
基本特征

发展历史

网络模型

学习类型

分析方法

特点优点

研究方向

发展趋势

应用分析
神经元
如图所示
a1~an为输入向量的各个分量
w1~wn为神经元各个突触的权值
b为偏置
f为传递函数,通常为非线性函数。以下默认为hardlim()
t为神经元输出
数学表示 t=f(WA'+b)
W为权向量
A为输入向量,A'为A向量的转置
b为偏置
f为传递函数
可见,一个神经元的功能是求得输入向量与权向量的内积后,经一个非线性传递函数得到一个标量结果。
单个神经元的作用:把一个n维向量空间用一个超平面分割成两部分(称之为判断边界),给定一个输入向量,神经元可以判断出这个向量位于超平面的哪一边。
该超平面的方程: Wp+b=0
W权向量
b偏置
p超平面上的向量
基本特征
人工神经网络是由大量处理单元互联组成的非线性、自适应信息处理系统。它是在现代神经科学研究成果的基础上提出的,试图通过模拟大脑神经网络处理、记忆信息的方式进行信息处理。
人工神经网络具有四个基本特征:
(1)非线性 非线性关系是自然界的普遍特性。大脑的智慧就是一种非线性现象。人工神经元处于激活或抑制二种不同的状态,这种行为在数学上表现为一种非线性关系。具有阈值的神经元构成的网络具有更好的性能,可以提高容错性和存储容量。
人工神经网络
(2)非局限性 一个神经网络通常由多个神经元广泛连接而成。一个系统的整体行为不仅取决于单个神经元的特征,而且可能主要由单元之间的相互作用、相互连接所决定。通过单元之间的大量连接模拟大脑的非局限性。联想记忆是非局限性的典型例子。
(3)非常定性 人工神经网络具有自适应、自组织、自学习能力。神经网络不但处理的信息可以有各种变化,而且在处理信息的同时,非线性动力系统本身也在不断变化。经常采用迭代过程描写动力系统的演化过程。
(4)非凸性 一个系统的演化方向,在一定条件下将取决于某个特定的状态函数。例如能量函数,它的极值相应于系统比较稳定的状态。非凸性是指这种函数有多个极值,故系统具有多个较稳定的平衡态,这将导致系统演化的多样性

④ 什么是BP神经网络

BP算法的基本思想是:学习过程由信号正向传播与误差的反向回传两个部分组成;正向传播时,输入样本从输入层传入,经各隐层依次逐层处理,传向输出层,若输出层输出与期望不符,则将误差作为调整信号逐层反向回传,对神经元之间的连接权矩阵做出处理,使误差减小。经反复学习,最终使误差减小到可接受的范围。具体步骤如下:
1、从训练集中取出某一样本,把信息输入网络中。
2、通过各节点间的连接情况正向逐层处理后,得到神经网络的实际输出。
3、计算网络实际输出与期望输出的误差。
4、将误差逐层反向回传至之前各层,并按一定原则将误差信号加载到连接权值上,使整个神经网络的连接权值向误差减小的方向转化。
5、対训练集中每一个输入—输出样本对重复以上步骤,直到整个训练样本集的误差减小到符合要求为止。

⑤ 信号处理的神经网络方法

信号处理的神经网络方法如下:

1、原数据可能数据量很大,维数很,计算机处理起来时间复杂度很高,预处理可以降低数据维度写作猫。数据的很多特性非常影响神经网络等分类模型的效果。

2、比如数据值得分布不在一个尺度上,当地气温值与当地月工资显然不在一个数量级上,这时,需要数据规范化,把这两个特征的数据都规范到0到1,这样使得它们对卖弊模型的影响具有同样的尺度。

我们挑选BP、RBF、SOFM、LVQ、Hopfield这5种已成功应用于解决实际信号处理问题的网络结构进行详细介绍,并对如何利用它们解决信号处理问题进行分析。另外还介绍了量子比特神经网络这种新兴网络结构。

⑥ 神经网络是什么

神经网络可以指向两种,一个是生物神经网络,一个是人工神经网络。
生物神经网络:一般指生物的大脑神经元,细胞,触点等组成的网络,用于产生生物的意识,帮助生物进行思考和行动。
人工神经网络(Artificial Neural Networks,简写为ANNs)也简称为神经网络(NNs)或称作连接模型(Connection Model),它是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。
人工神经网络:是一种应用类似于大脑神经突触联接的结构进行信息处理的数学模型。在工程与学术界也常直接简称为“神经网络”或类神经网络。

⑦ 神经网络模型的信息处理

人工神经网络对神经元的兴奋与抑制进行模拟,故而首先应了解神经元的兴奋与抑制状态。
一个神经元的兴奋和抑制两种状态是由细胞膜内外之间不同的电位差来表征的。在抑制状态,细胞膜内外之间有内负外正的电位差,这个电位差大约在-50— -100mv之间。在兴奋状态,则产生内正外负的相反电位差,这时表现为约60—100mv的电脉冲。细胞膜内外的电位差是由膜内外的离子浓度不同导致的。细胞的兴奋电脉冲宽度一般大约为1ms。神经元的兴奋过程电位变化如图1—3所示。
图1-3.神经元的兴奋过程电位变化 对神经细胞的研究结果表明:神经元的电脉冲几乎可以不衰减地沿着轴突传送到其它神经元去。
由神经元传出的电脉冲信号通过轴突,首先到达轴突末梢,这时则使其中的囊泡产生变化从而释放神经递质,这种神经递质通过突触的间隙而进入到另一个神经元的树突中。树突上的受体能够接受神经递质从而去改变膜向离子的通透性.使膜外内离子浓度差产生变化;进而使电位产生变化。显然,信息就从一个神经元传送到另一个神经元中。
当神经元接受来自其它神经元的信息时,膜电位在开始时是按时间连续渐渐变化的。当膜电位变化经超出一个定值时,才产生突变上升的脉冲,这个脉冲接着沿轴突进行传递。神经元这种膜电位高达一定阀值才产生脉冲传送的特性称阀值特性。
这种阀值特性从图1—3中也可以看出。
神经元的信息传递除了有阀值特性之外,还有两个特点。一个是单向性传递,即只能从前一级神经元的轴突末梢传向后一级神经元的树突或细胞体,不能反之。另一个是延时性传递.信息通过突触传递,通常会产生0.5-1ms的延时。 神经元对来自其它神经元的信息有时空综合特性。
在神经网络结构上,大量不同的神经元的轴突末梢可以到达同一个神经元的树突并形成大量突触。来源不同的突触所释放的神经递质都可以对同一个神经元的膜电位变化产生作用。因此,在树突上,神经元可以对不同来源的输入信息进行综合。这就是神经元对信息的空间综合特性。
对于来自同一个突触的信息,神经元可以对于不同时间传入的信息进行综合。故神经元对信息有时间综合特性。 从神经元轴突上传递的信息是等幅、恒宽、编码的离散电脉冲信号,故而是一个数字量。但在突触中神经递质的释放和树突中膜电位的变化是连续的。故而,这时说明突触有D/A功能。在神经元的树突膜电位高过一定阀值时,则又变成电脉冲方式由轴突传送出去。故而,这个过程说明神经元有A/D功能。
很明显,信息通过一个神经元传递时,神经元对信息执行了D/A、A/D转换过程。
从上面可知,神经元对信息的处理和传递有阀值,D/A、A/D和综合等一系列特性和功能。

⑧ 神经网络原理及应用

神经网络原理及应用
1. 什么是神经网络?
神经网络是一种模拟动物神经网络行为特征,进行分布式并行信息处理的算法。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。
人类的神经网络

2. 神经网络基础知识
构成:大量简单的基础元件——神经元相互连接
工作原理:模拟生物的神经处理信息的方式
功能:进行信息的并行处理和非线性转化
特点:比较轻松地实现非线性映射过程,具有大规模的计算能力
神经网络的本质:

神经网络的本质就是利用计算机语言模拟人类大脑做决定的过程。
3. 生物神经元结构

4. 神经元结构模型

xj为输入信号,θi为阈值,wij表示与神经元连接的权值,yi表示输出值
判断xjwij是否大于阈值θi
5. 什么是阈值?
临界值。
神经网络是模仿大脑的神经元,当外界刺激达到一定的阈值时,神经元才会受刺激,影响下一个神经元。

6. 几种代表性的网络模型
单层前向神经网络——线性网络
阶跃网络
多层前向神经网络(反推学习规则即BP神经网络)
Elman网络、Hopfield网络、双向联想记忆网络、自组织竞争网络等等
7. 神经网络能干什么?
运用这些网络模型可实现函数逼近、数据聚类、模式分类、优化计算等功能。因此,神经网络广泛应用于人工智能、自动控制、机器人、统计学等领域的信息处理中。虽然神经网络的应用很广,但是在具体的使用过程中到底应当选择哪种网络结构比较合适是值得考虑的。这就需要我们对各种神经网络结构有一个较全面的认识。
8. 神经网络应用

阅读全文

与信号处理中的神经网络相关的资料

热点内容
手机怎么登陆中国电信网络 浏览:769
设置新网络如何设置 浏览:397
为什么有时候wifi连上却没网络 浏览:859
家用网络是多少芯光纤的 浏览:257
数据网络怎么才能投屏 浏览:459
全新宝来车载wifi连上没有网络 浏览:900
esxi网络适配器安全设置 浏览:213
销售伞怎么做网络营销 浏览:3
手机网络请求超时104 浏览:925
开发者选项网络设置enable 浏览:227
陕西网络教育院校都有哪些 浏览:779
手机网络里的续租 浏览:293
立思辰网络安全 浏览:222
飞机网络连接需要在起飞前 浏览:120
分享网络密码是什么 浏览:239
vivox21的网络扫码连接在哪里 浏览:301
联想无线网络连接有二个 浏览:325
网络投票工作叫什么好听 浏览:973
如果改家里的网络密码 浏览:105
宽带无线网络办理哪里好 浏览:637

友情链接