‘壹’ 无线传感器网络操作系统TinyOS的目录
第1章 绪论 1
1.1 无线传感器网络概述 1
1.1.1 无线传感器网络的研究进展 2
1.1.2 无线传感器网络的体系特征 3
1.2 无线传感器网络操作系统 8
1.2.1 无线传感器网络对操作系统的需求 8
1.2.2 现有的无线传感器网络操作系统 10
1.3 TinyOS操作系统概述 13
1.3.1 设计理念 14
1.3.2 技术特点 15
1.3.3 体系结构 16
1.3.4 版本说明 17
1.4 与其他WSN操作系统的比较 20
1.5 本书章节安排 24
第2章 开发环境 26
2.1 TinyOS 2.1在Windows中的安装 26
2.1.1 搭建Java环境 27
2.1.2 安装Cygwin平台 30
2.1.3 安装平台交叉编译器 34
2.1.4 安装TinyOS源码与工具包 36
2.1.5 安装Graphviz图形工具 38
2.2 其他安装方法 39
2.2.1 在Ubuntu 9.10中的安装 39
2.2.2 使用RPM包的手动安装 41
2.2.3 TinyOS 1.x升级到TinyOS 2.x 42
2.2.4 使用CVS更新TinyOS 2.x文件 46
2.3 TinyOS安装后的测试 47
2.3.1 TinyOS文件概览 47
2.3.2 检查运行环境 48
2.3.3 仿真测试 49
2.4 程序的编译和下载 50
2.4.1 代码编辑工具 50
2.4.2 编译程序 52
2.4.3 USB串口驱动 53
2.4.4 下载程序 54
2.5 本章小结 57
第3章 nesC编程语言 58
3.1 nesC语言简介 58
3.2 nesC语言规范 59
3.2.1 接口 61
3.2.2 组件 62
3.2.3 模块及其组成 65
3.2.4 配件及其组成 68
3.3 基于nesC语言的应用程序 73
3.3.1 nesC应用程序简介 73
3.3.2 Blink实例 77
3.3.3 BlinkSingle实例 82
3.3.4 移植TinyOS 1.x代码到2.x 86
3.4 nesC程序运行模型 88
3.4.1 任务 88
3.4.2 内部函数 91
3.4.3 分阶段作业 92
3.4.4 同步与异步 94
3.4.5 原子性代码 95
3.4.6 无线模块的开启过程 96
3.5 编程约定 98
3.5.1 通用约定 98
3.5.2 软件包 98
3.5.3 语法约定 99
3.5.4 TinyOS约定 101
3.6 可视化组件关系图 103
3.7 本章小结 104
第4章 基本操作 106
4.1 点对点的无线通信 106
4.1.1 主动消息概述 106
4.1.2 通信接口和组件 107
4.1.3 消息缓存抽象 109
4.1.4 通过无线电发送消息 110
4.1.5 通过无线电接收消息 117
4.2 节点与PC的串口通信 119
4.2.1 信息源和端口测试 119
4.2.2 基站和监听工具 121
4.2.3 MIG消息接口生成工具 123
4.2.4 SerialForwarder和其他信息源 126
4.2.5 发送信息包到串口 129
4.2.6 基于printf库的打印调试 130
4.2.7 常见的串口通信故障 133
4.3 传感 134
4.3.1 传感简介 134
4.3.2 Sense实例 135
4.3.3 Oscilloscope实例 138
4.4 存储 140
4.4.1 存储简介 140
4.4.2 配置数据的存储 141
4.4.3 日志数据的存储 146
4.4.4 大数据块的存储 148
4.5 本章小结 149
第5章 系统内核 151
5.1 硬件抽象架构 151
5.1.1 架构简介 151
5.1.2 不同层次抽象的结合 154
5.1.3 横向分解 155
5.1.4 微处理器抽象 156
5.1.5 HIL抽象级别 156
5.2 任务和调度 157
5.2.1 任务简介 157
5.2.2 TinyOS 1.x的任务和调度器 157
5.2.3 TinyOS 2.x的任务 159
5.2.4 TinyOS 2.x的调度器 160
5.2.5 调度器的替换 162
5.2.6 调度器的具体实现 165
5.3 系统启动顺序 168
5.3.1 启动顺序简介 168
5.3.2 TinyOS 1.x的启动顺序 168
5.3.3 TinyOS 2.x的启动接口 169
5.3.4 TinyOS 2.x的启动顺序 170
5.3.5 系统启动和软件初始化 174
5.4 资源仲裁 175
5.4.1 资源简介 175
5.4.2 资源类型 176
5.4.3 资源仲裁 178
5.4.4 共享资源的应用实例 183
5.5 微控制器的电源管理 187
5.5.1 微控制器电源管理简介 187
5.5.2 TinyOS 1.x的电源管理 188
5.5.3 TinyOS 2.x的电源管理 189
5.5.4 外围设备和子系统 191
5.6 外围设备的电源管理 191
5.6.1 外围设备电源管理简介 191
5.6.2 电源管理模型 192
5.6.3 显式电源管理 193
5.6.4 隐式电源管理 196
5.7 串口通信 199
5.7.1 串口通信协议简介 199
5.7.2 串口协议栈的实现 200
5.7.3 串口协议栈的抽象 207
5.8 本章小结 207
第6章 平台与仿真 210
6.1 平台 210
6.1.1 平台简介 210
6.1.2 底层I/O口 211
6.1.3 新平台的建立 215
6.1.4 CC2430平台的移植 223
6.2 编译系统 226
6.2.1 编译系统简介 226
6.2.2 自定义编译系统 227
6.2.3 makefile入门 228
6.2.4 编写Makefile文件 230
6.2.5 编译工具 232
6.3 TOSSIM仿真 233
6.3.1 TOSSIM简介 233
6.3.2 仿真编译 234
6.3.3 基于Python的仿真 237
6.3.4 调试语句 239
6.3.5 网络配置 242
6.3.6 变量的观察 250
6.3.7 注入消息包 253
6.3.8 C++接口 256
6.3.9 gdb调试 258
6.4 本章小结 261
第7章 网络协议 262
7.1 分发协议 262
7.1.1 分发协议简介 262
7.1.2 相关接口和组件 263
7.1.3 EasyDissemination实例 265
7.1.4 Drip库和DIP库 269
7.2 汇聚协议 276
7.2.1 汇聚协议简介 276
7.2.2 相关接口和组件 277
7.2.3 CTP协议 279
7.2.4 CTP实现 281
7.2.5 EasyCollection实例 287
7.3 本章小结 291
第8章 高级应用技术 293
8.1 低功耗应用程序 293
8.1.1 能耗管理简介 293
8.1.2 外围设备的电源管理 294
8.1.3 无线模块的电源管理 297
8.1.4 微处理器的电源管理 300
8.1.5 低功耗传感的应用实例 300
8.2 低功耗监听 300
8.2.1 低功耗监听简介 300
8.2.2 相关接口 302
8.2.3 message_t元数据 304
8.2.4 HAL层的改进建议 305
8.3 TOSThreads线程 305
8.3.1 TOSThreads线程简介 305
8.3.2 nesC语言的API接口 306
8.3.3 C语言的API接口 309
8.3.4 支持新的系统服务 310
8.4 CC2420联网安全功能 312
8.4.1 CC2420安全模式简介 313
8.4.2 发送端的配置 313
8.4.3 接收端的配置 314
8.4.4 RadioCountToLeds实例 315
8.5 本章小结 319
第9章 基于TinyOS的应用开发实例 320
9.1 基于TSL2550传感器的光照检测 320
9.1.1 TSL2550简介 320
9.1.2 驱动实现 323
9.1.3 传感测试 330
9.2 基于GSM短信的远程数据传输 334
9.2.1 系统简介 334
9.2.2 功能实现 338
9.2.3 短信测试 348
9.3 基于简单蚁群算法的路由协议 350
9.3.1 算法简介 350
9.3.2 协议实现 353
9.3.3 仿真测试 366
9.4 本章小结 370
附录A nesC语言基本语法 371
附录B TinyOS编程技巧 374
附录C 英汉对照术语表 375
参考文献与网址 378
‘贰’ 求《无线传感器网络》-孙利民-清华大学出版社 的word版的电子版,一定要清楚的word版,质量好追加财富值
建议:
1.书店购买。
2.网上购买。
3.word版本的不会有,因为印刷时的文件是eps、或者方正排版系统做的。不要想了。朋友!
‘叁’ 什么是无线传感器网络
本教程操作环境:windows10系统、Dell G3电脑。
什么是无线传感器网络无线传感器网络(Wireless Sensor Networks, WSN)是一种分布式传感网络,它的末梢是可以感知和检查外部世界的传感器。WSN中的传感器通过无线方式通信,因此网络设置灵活,设备位置可李戚以随时更改,还可以跟互联网进行有线或无线方式的连接。通过无线通信方式形成的一个多跳自组织网络。
基本信息
无线传感器网络是一项通过无线通信技术把数以万计的传感器节点以自由式进行组织与结合进而形成的网络形式。
构成传感器节点的单元分别为:数据采集单元、数据传输单元、数据处理单元以及能量供应单元。
其中数据采集单元通常都是采集监测区域内的信息并加以转换,比如光强度跟大气压力与湿度等;数据传输单元则主要以无线通信和交流信息以及缓扒发送接收那些采集进来的数据信息为主;数据处理单元通常处理的是全部节点的路由协议和管理任务以及定位装置等;能量供应单元为缩减传感器节点占据的面积,会选择微型电池的构成形式。
无线传感器网络当中的节点分为两种,一个是汇聚节点,一个是传感器节点。
汇聚节点主要指的是网关能够在传感器节点当中将错误的报告数据剔除,并与相关的报告相结合将数据加以融合,对发生的事件进行判断。
汇聚节点与用户节点连接可借助广域网络或者卫星直接通信,并对收集到的数据进行处理。
相较于传统式的网络和其他传感器相比,无线传感器网络有以下特点:
(1)组建方式自由。无线网络传感器的组建不受任何外界条件的限制,组建者无论在何时何地,都可以快速地组建起一个功能完善的无线网络传感器网络,组建成功之后的维护管理工作也完全在网络内部进行。
(2)网络拓扑结构的不确定性。从网络层次的方向来看,无线传感器的网络拓扑结构是变化不定的,哪哪陵例如构成网络拓扑结构的传感器节点可以随时增加或者减少,网络拓扑结构图可以随时被分开或者合并。
(3)控制方式不集中。虽然无线传感器网络把基站和传感器的节点集中控制了起来,但是各个传感器节点之间的控制方式还是分散式的,路由和主机的功能由网络的终端实现各个主机独立运行,互不干涉,因此无线传感器网络的强度很高,很难被破坏。
(4)安全性不高。无线传感器网络采用无线方式传递信息,因此传感器节点在传递信息的过程中很容易被外界入侵,从而导致信息的泄露和无线传感器网络的损坏,大部分无线传感器网络的节点都是暴露在外的,这大大降低了无线传感器网络的安全性。
组成结构:
无线传感器网络主要由三大部分组成,包括节点、传感网络和用户这3部分。其中,节点一般是通过一定方式将节点覆盖在一定的范围,整个范围按照一定要求能够满足监测的范围;传感网络是最主要的部分,它是将所有的节点信息通过固定的渠道进行收集,然后对这些节点信息进行一定的分析计算,将分析后的结果汇总到一个基站,最后通过卫星通信传输到指定的用户端,从而实现无线传感的要求。
‘肆’ 无线传感器定义及其应用实例解析
无线传感器,看到这个代名词,我想大多数人是一头雾水,一脸表现出很茫然的样子。这也并不奇怪,无线传感器,目前还只运用于一些大型检测工作中,自然而然,能够接触到它的也就只是一些专业的工作人员了。比如它可以监测地震,然后将监测到的信息通过无线网络传输到检测中心的无线网卡,直接送入到计算机里边儿。既然我们对它有这么多的疑惑,那接下来我就将向大家介绍介绍什么是无线传感器定义以及它的一些应用实例。
无线传感器的组成模块封装在一个外壳内,在工作时它将由电池或振动发电机提供电源,构成无线传感器网络节点,由随机分布的集成有传感器、数据处理单元和通信模块的微型节点,通过自组织的方式构成网络。它可以采集设备的数字信号通档唤过无线传感器网络传输到监控中心的无线网关,直接送入计算机,进行分析处理。如果需要,无线传感器也可以实时传输采集的整个时间历程信号。监控中心也可以通过网关把控制、参数设置等信息无线传输给节点。数据调理采集处理模块把传感器输出的微弱信号经过放大,滤波等调理电路后,送到模数转换器,转变为数字信号,送到主处理器进行数字信号处理,计算出传感器的有效值,位移值等。
桥梁健康检测及监测
桥梁结构健康监测(SHM)是一种基于传感器的主动防御型方法,可以弥补目前安全性能十分重要的结构中,把传感器网络安置到桥梁、建筑和飞机中,利用传感器进行SHM是一种可靠且不昂贵的做法,可以在第一时间检测到缺陷的形成。这种网络可以提早向维修人员报告在关键结构中出现的缺陷,从而避免灾难性事故。
粮仓温湿度监测
无线传感器网络技术在粮库粮仓温度湿度监测领域应用最为普遍,这是由于粮库粮仓温度湿度的测点多,分布广,使用纵横交错的信号线会降低防火安全系数,应用无线传感器网络技术具有低功耗,低成本,布线简单,安装方便,易于组网,便于管理维护等特点。
混凝土浇灌温度监测
在混凝土施工过程中,将数字温度传感器装入导热良好的金属套管内,可保证传感器对混凝土温度变化作出迅速的反应。每个温度监测金属管接入一个无线温度节点,整个现场的无线温度节点通过无线网络传输到施工监控中心,不需要在施工现场布放长电缆,安装布放方便,能够有效解决温度测量点因为施工人员损坏电缆造成的成活率较低的问题.
地震监测
通过使用由大量互连的微型传感器节点组成的传感器网络,可以对不同环境进行不间断的高精度数据搜集。采用低功耗的无线通信模块和无线通信协议可以使传感器网络的生命期延续很长时间。保证了传感器网络的实用性。
无线传感器网络相对于传统的网络,其最明显的特色可以用六个字来概括即:“自旅禅组织,自愈合”。这些特点使得无线传感器网络能够适应复杂多变的环境,去监测人力难以到达的恶劣环境地区。BEETECH无线传感器网络节点体积小巧,不需现场拉线供电,非常方便在应急情况下进行灵活部署监测并预测地质灾害的发生情况。
建筑物振动检测
建筑物悬臂部分不会因为旁边公路及地铁交通所引发的振动而超过舒适度的要求;通过现场测量,收集数据以验证由公路及地铁交通所引发的振动与主楼悬臂振动之相互关系;同时,通过模态分析得到主楼结构在小振幅脉动振动工况下前几阶振动模态的阻尼比,为将来进行结构的小振幅动力分析提供关键数据。
以上这些看起来很“翻番复杂”的文字呢,就是对无线传感器定义以及它的一些应用实例的解析了,这些也都是我所能了解到的知识信息了,对于无线传感器还有很多与其相关的知识信息,但是在这里我也只能给大家提供这么多了。虽然在我们的日常生活中并不会亲身接触到无线拆蠢尘传感器,但是它却一直在我们的身边,给予我们帮助,为我们“保驾护航”。
土巴兔在线免费为大家提供“各家装修报价、1-4家本地装修公司、3套装修设计方案”,还有装修避坑攻略!点击此链接:【https://www.to8to.com/yezhu/zxbj-cszy.php?to8to_from=seo__m_jiare&wb】,就能免费领取哦~
‘伍’ 无线传感器网络
无线传感器网络(wirelesssensornetwork,WSN)是综合了传感器技术、嵌入式计算机技术、分布式信息处理技术和无线通信技术,能够协作地实时监测、感知和采集网络分布区域内的各种环境或监测对象的信息,并对这些数据进行处理,获得详尽而准确的信息。传送到需要这些信息的用户。它是由部署在监测区域内大量的廉价微型传感器节点组成,通过无线通信方式形成一个多跳的自组织的网络系统。传感器、感知对象和观察者构成了传感器网络的三要素。
无线传感器网络作为当今信息领域新的研究热点,涉及到许多学科交叉的研究领域,要解决的关键技术很多,比如:网络拓扑控制、网络协议、网络安全、时间同步、定位技术、数据融合、数据管理、无线通信技术等方面,同时还要考虑传感器的电源和节能等问题。
所谓部署问题,就是在一定的区域内,通过适当的策略布置传感器节点以满足某种特定的需求。优化节点数目和节点分布形式,高效利用有限的传感器网络资源,最大程度地降低网络能耗,均是节点部署时应注意的问题。
目前的研究主要集中在网络的覆盖问题、连通问题和能耗问题3个方面。
基于节点部署方式的覆盖:1)确定性覆盖2)自组织覆盖
基于网格的覆盖:1)方形网格2)菱形网格
被监测目标状态的覆盖:1)静态目标覆盖2)动态目标覆盖
连通问题可描述为在传感器节点能量有限,感知、通信和计算能力受限的情况下,采用一定的策略(通常设计有效的算法)在目标区域中部署传感器节点,使得网络中的各个活跃节点之间能够通过一跳或多跳方式进行通信。连通问题涉及到节点通信距离和通信范围的概念。连通问题分为两类:纯连通与路由连通。
覆盖中的节能对于覆盖问题,通常采用节点集轮换机制来调度节点的活跃/休眠时间。连通中的节能针对连通问题,也可采用节点集轮换机制与调整节点通信距离的方法。而文献中涉及最多的主要是从节约网络能量和平衡节点剩余能量的角度进行路由协议的研究。