导航:首页 > 无线网络 > 图神经网络信号识别

图神经网络信号识别

发布时间:2023-09-02 21:44:38

㈠ BP神经网络的原理的BP什么意思

原文链接:http://tecdat.cn/?p=19936

在本教程中,您将学习如何在R语言中创建神经网络模型。

神经网络(或人工神经网络)具有通过样本进行学习的能力。人工神经网络是一种受生物神经元系统启发的信息处理模型。它由大量高度互连的处理元件(称为神经元)组成,以解决问题。它遵循非线性路径,并在整个节点中并行处理信息。神经网络是一个复杂的自适应系统。自适应意味着它可以通过调整输入权重来更改其内部结构。

该神经网络旨在解决人类容易遇到的问题和机器难以解决的问题,例如识别猫和狗的图片,识别编号的图片。这些问题通常称为模式识别。它的应用范围从光学字符识别到目标检测。

本教程将涵盖以下主题:

㈡ 图神经网络是大数据时代发展的必然(原创)

        大数据的核心是数据智能。数据智能的本质是在大量样本中发现、评估若干概念之间的关联性,归纳形成数学表达,再利用数学表达进行推理运算,从而完成对未知样本的判断决策。这就需要发现海量数据背后的规律,解决数据表征问题。数据智能先后经历了专家系统、传统机器学习和神经网络三个阶段,输入的知识从具体到抽象,从规则到特征再到模式,越来越宏观,智能化处理效率越来越高,对底层的感知和模型的可解释性越来越弱化。随着专家系统逐渐淡出,传统机器学习和神经网络成为数据智能的两大常见技术。实践证明,随着数据集样本的增多,传统机器学习的性能不及神经网络(见图一)。这主要归结于前者的表达能力不如后者。Goodfellow在2013年ICML(国际机器学习大会)上发表了论文《MaxoutNetworks》(最大输出网络)。在这篇论文中证明了MaxoutNetworks能够无限逼近任意连续函数。也即是说,神经网络能够拟合任意连续函数,与传统机器学习相比,神经网络具有突出的表达能力优势。

         (上图):横轴代表数据量,纵轴代表算法精度     

        我们看到几个趋势:行业数据量指数级增长、以GPU为代表的专业芯片算力增长、新型算法层出不穷、学术界的前沿研究、投资界的资金投入、工商业的多种场景,这些因素都促进了神经网络快速发展。神经网络的发展形态有两种方向:一是以DNN深度全连接和CNN卷积神经网络为代表的纵向发展,即层数增多的纵向迭代,典型应用是CV计算机视觉;二是以RNN循环神经网络为代表的横向发展,即神经元之间的横向迭代,典型应用是以NLP自然语言理解为代表的序列处理。神经网络技术同时呈现两种发展形态,并在多个领域有广泛应用,就说明这个技术已经进入成熟期了。下一步往哪个方向发展?很有可能是:将纵向发展和横向发展进行结合,渗透到更多的应用领域。这看似顺水推舟的事情。事实证明,这个判断是正确的,图神经网络就是二者的结合。

        纵观技术圈的发展历史,可以总结出这样的事实:一个理论技术能否在更多的领域推广,关键取决于它能否真实地刻画现实世界的实体特征和关系。如果它刻画得越真实,那么它的应用场景就越多。比如马尔科夫链这个理论,就真实地刻画了现实世界中的时序对象的特征和依赖关系,因此它广泛应用在语音理解、机器翻译、国民经济、事件预测等领域;再如概率图理论,用图来表示事件概率的依存关系,也是真实刻画了现实世界中的实体关系,因此它也广泛应用在反欺诈、图像理解、事件预测等领域。从方法论看,要刻画现实世界的实体,就必须在模型中置入代表这个实体的节点,并且设计出实体之间的依赖关系转化。但无论是马尔科夫链还是概率图等方法,都弱化了嵌入表示,从而丢失了一些隐语义信息,是有缺憾的。

图神经网络(GraphNeural Networks,GNN)的问世,使事情出现了转机。在图神经网络中,存在两种网络。一种是拓扑结构网络,通常描述众多实体及其关系;另一种是特征变换神经网络,通常用于节点、边、图或子图的特征转化。前者完成信息横向传播,实现图信号的拓扑关系传递,理论依据是图论;后者完成信息纵向传播,实现原始特征向嵌入表示的转化,理论依据是深度学习。图神经网络是图论与深度学习的完美结合,它既考虑了实体关系,又考虑了实体特征。与传统图方法和传统深度学习相比,图神经网络具有明显的优势:建模来源数据更充分,更能反映现实世界中实体之间的真实关系,它既能从图结构代表的非欧式空间数据中学习到语义表示,又能让学习到的语义表示最大限度地符合图结构的实体关系。

        现实世界中80%以上的数据更适合用图结构来刻画,比如交通数据、社交数据、分子结构数据、行业经济数据等。图神经网络能适应这样的数据,在分布式学习架构下,图神经网络能处理的数据规模非常庞大,非常适合处理数亿节点的产业数据。因此图神经网络的应用场景更为广泛。近三年来,各种国际顶会关于图神经网络的论文频频发布,众多互联网科技公司(如阿里、网络、字节跳动)花重金在这一领域布局,并取得重大进展,广泛应用于关联搜索、实时推荐、风险防控、异常检测、行为预测、模式识别等。这些现象无疑说明了图神经网络是未来技术发展的重要领域方向。

        综上所述,在行业数据、算法理论、算力支持、市场需求、资本涌入等背景下,图神经网络的迅速崛起是大数据时代发展的必然。

㈢ 如何通过人工神经网络实现图像识别

人工神经网络(Artificial Neural Networks)(简称ANN)系统从20 世纪40 年代末诞生至今仅短短半个多世纪,但由于他具有信息的分布存储、并行处理以及自学习能力等优点,已经在信息处理、模式识别、智能控制及系统建模等领域得到越来越广泛的应用。尤其是基于误差反向传播(Error Back Propagation)算法的多层前馈网络(Multiple-Layer Feedforward Network)(简称BP 网络),可以以任意精度逼近任意的连续函数,所以广泛应用于非线性建模、函数逼近、模式分类等方面。


目标识别是模式识别领域的一项传统的课题,这是因为目标识别不是一个孤立的问题,而是模式识别领域中大多数课题都会遇到的基本问题,并且在不同的课题中,由于具体的条件不同,解决的方法也不尽相同,因而目标识别的研究仍具有理论和实践意义。这里讨论的是将要识别的目标物体用成像头(红外或可见光等)摄入后形成的图像信号序列送入计算机,用神经网络识别图像的问题。


一、BP 神经网络


BP 网络是采用Widrow-Hoff 学习算法和非线性可微转移函数的多层网络。一个典型的BP 网络采用的是梯度下降算法,也就是Widrow-Hoff 算法所规定的。backpropagation 就是指的为非线性多层网络计算梯度的方法。一个典型的BP 网络结构如图所示。

六、总结

从上述的试验中已经可以看出,采用神经网络识别是切实可行的,给出的例子只是简单的数字识别实验,要想在网络模式下识别复杂的目标图像则需要降低网络规模,增加识别能力,原理是一样的。

㈣ 一文详解图神经网络(二)

《The Graph Neural Network Model》

图领域的应用主要可以分为两种类型 :专注于 图的应用(graph-focused) 和 专注于节点的应用(node-focused) 。对于graph-focused的应用,函数 和具体的节点无关,(即 ),训练时,在一个图的数据集中进行分类或回归。对于node-focused的应用, 函数依赖于具体的节点 ,即

在一个图-节点对的集合 , 表示图的集合, 表示节点集合,图领域问题可以表示成一个有如下数据集的监督和启空学习框架:

其中, 表示集合 中的第 个节点, 表示节点 的期望目标(即标签)。节点 的状态用 表示,该节点的输出用 表示, 为 local transition function , 为 local output function ,那么 和 的更新方式如下:

其中, 分别表示节点 的特征向量、与节点 相连的边的特征向量、节点 邻居节点的状态向量、节点 邻居节点的特征向量。 分别为所有的状态、所有的输出、所有的特征向量、所有节点的特征向量的叠加起来的向量,那么上面函数可以写成如下形式:

其中, 为 global transition function , 为 global output function ,分别是 和 的叠加形式

根据 Banach的不动点理论 ,假设 是一个压缩映射函数,那么式子有唯一不动点解,而且可以通过迭代方式逼近该不动点

其中, 表示 在第 个迭代时刻的值,对于任意初值,迭代的误差是以指数速度减小的,使用迭代的形式写出状态和输出的更新表达式为:

GNN的学习就是估计参数 ,使得函数 能够近似估计训练集

其中, 表示在图 中监督学习的节点,对于graph-focused的任务,需要增加一个特殊的节点,该节点用来作为目标节点,这样, graph-focused 任务和 node-focused 任务都能统一到节点预测任务上,学习目标可以是最小化如下二次损失函数

优化算法基于随机梯度下降的策略,优化步骤按照如下几步进行:

在GNN中,函数 不需要满足特定的约束,直接使用多层前馈神经网络,对于函数 ,则需要着重考虑,因为 需要满足压缩映射的条件,而且与不动点计算相关。下面提出两种神经网络和不同的策略来满足这些需求

对于节点n nn状态的计算,将 改成如下形式

相当于是对节点 的每一个邻居节点使用 ,并将得到的值求和来作为节点 的状态,由此,对上式中的函数 按照如下方式实现:

其中,向量 ,矩阵 定唤瞎义为两个前向神旁仔经网络的输出。更确切地说,令产生矩阵 的网络为transition network,产生向量 的网络为forcing network

其中, , , 表示将 维的向量整理(reshape)成 的矩阵,也就是说,将transition network的输出整理成方形矩阵,然后乘以一个系数就得到 , 就是forcing network的输出

在这里,假定 ,这个可以通过设定transition function的激活函数来满足,比如设定激活函数为 tanh() 。在这种情况下, , 和 分别是 的块矩阵形式和 的堆叠形式,可得:

该式表示 对于任意的参数 是一个压缩映射,矩阵 的 1-norm 定义为:

在这个结构中, 通过多层前馈网络实现,但是,并不是所有的参数 都会被使用,因为同样需要保证 是一个压缩映射函数,这个可以通过惩罚项来实现

其中,惩罚项 在 时为 ,在 时为0,参数 定义为希望的 的压缩系数

NLP新人,欢迎大家一起交流,互相学习,共同成长~~

㈤ 本人毕设题目是关于神经网络用于图像识别方面的,但是很没有头续~我很不理解神经网络作用的这一机理

我简单说一下,举个例子,比如说我们现在搭建一个识别苹果和橘子的网络模型:
我们现在得需要两组数据,一组表示特征值,就是网络的输入(p),另一组是导师信号,告诉网络是橘子还是苹果(网络输出t):
我们的样本这样子假设(就是Sampledata1.txt):
p t
1 0 3 1
2 1 4 2
这两组数据是这样子解释的:
我们假设通过3个特征来识别一个水果是橘子还是苹果:形状,颜色,味道,第一组形状、颜色、味道分别为:1 0 3(当然这些数都是我随便乱编的,这个可以根据实际情况自己定义),有如上特征的水果就是苹果(t为1),而形状、颜色、味道为:2 1 4的表示这是一个橘子(t为2)。
好了,我们的网络模型差不多出来了,输入层节点数为3个(形状、颜色,味道),输出层节点为一个(1为苹果2为橘子),隐藏层我们设为一层,节点数先不管,因为这是一个经验值,还有另外的一些参数值可以在matlab里设定,比如训练函数,训练次数之类,我们现在开始训练网络了,首先要初始化权值,输入第一组输入:1 0 3 ,网络会输出一个值,我们假设为4,那么根据导师信号(正确的导师信号为1,表示这是一个苹果)计算误差4-1=3,误差传给bp神经网络,神经网络根据误差调整权值,然后进入第二轮循环,那么我们再次输入一组数据:2 0 4(当仍然你可以还输入1 0 3,而且如果你一直输入苹果的特征,这样子会让网络只识别苹果而不会识别橘子了,这回明白你的问题所在了吧),同理输出一个值,再次反馈给网络,这就是神经网络训练的基本流程,当然这两组数据肯定不够了,如果数据足够多,我们会让神经网络的权值调整到一个非常理想的状态,是什么状态呢,就是网络再次输出后误差很小,而且小于我们要求的那个误差值。
接下来就要进行仿真预测了t_1=sim(net,p),net就是你建立的那个网络,p是输入数据,由于网络的权值已经确定了,我们这时候就不需要知道t的值了,也就是说不需要知道他是苹果还是橘子了,而t_1就是网络预测的数据,它可能是1或者是2,也有可能是1.3,2.2之类的数(绝大部分都是这种数),那么你就看这个数十接近1还是2了,如果是1.5,我们就认为他是苹果和橘子的杂交,呵呵,开玩笑的,遇到x<=0,5、x=1.5、x>=2.5,我一般都是舍弃的,表示未知。

总之就是你需要找本资料系统的看下,鉴于我也是做图像处理的,我给你个关键的提醒,用神经网络做图像处理的话必须有好的样本空间,就是你的数据库必须是标准的。至于网络的机理,训练的方法什么的,找及个例子用matlab仿真下,看看效果,自己琢磨去吧,这里面主要是你隐含层的设置,训练函数选择及其收敛速度以及误差精度就是神经网络的真谛了,想在这么小的空间给你介绍清楚是不可能的,关键是样本,提取的图像特征必须带有相关性,这样设置的各个阈值才有效。OK,好好学习吧,资料去matlab中文论坛上找,在不行就去bau文库上,你又不需要都用到,何必看一本书呢!祝你顺利毕业!

㈥ 基于卷积神经网络的图像识别算法_卷积神经网络提取图像特征

图象识别容易,因为图象可以在一个时间点成像

而语音没有可能在一个时间点的采样有用,语音多出来一个时间轴

而这个时间轴引入的难题就是:换个时间,换个人,换个背景噪音,都变得没法子识别了

目前,主流的大词汇量语音识别系统多采用统计模式识别技术

典型的基于统计模式识别方法的语音识别系统由以下几个基本模块所构成信号处理及特征提取模块

该模块的主要任务是从输入信号中提取特轿猜征,供声学模型处理

同时,它一般也包括了一些信号处理技术,以尽可能降低环境噪声、信道、说话人等因素对特征造成的影响

统计声学模型

典型系统多采用基于一阶隐马尔科夫模型进行建模

发音词典

发音词典包含系统所能处理的词汇集及其发音

发音词典实际提供了声学模型建模单元与语言模型建模单元间的映射

语言模型

语言模型对系统所针对的语言进行建模

理论上,包括正则语言,上下文无关文法在内的各种语言模型都可以作为语言模型,但目前各种系统普遍采用的还是基于统计的N元文法及其变体

解码器

解码器是语音识别系统的核心之一,其任务是对输入的信号,根据声学、语言模型及词典,寻找能够以最大概率输出该信号的词串

从数学角度可以更加清楚的了解上述模块之间的关系

首先,统计语含慎音识别的最基本问题是,给定输入信号或特征序列,符号集(词典),求解符闭老型号串使得:图像识别比语音识别算法的复杂度高多少

阅读全文

与图神经网络信号识别相关的资料

热点内容
联想g50关闭无线网络 浏览:650
苹果wifi网络不稳定打游戏卡顿 浏览:568
手机飞行模式下还能连网络 浏览:538
显示网络连接为什么打印不了 浏览:442
网络运营去哪里找业务 浏览:561
传谋设菜和网络工程哪个好 浏览:70
车载链接手机无线网络 浏览:493
戴尔电脑怎么和手机连接蓝牙网络 浏览:607
手机不装卡连不了网络 浏览:730
数字出版基地网络密码 浏览:131
开源网络是干什么的 浏览:859
网络游戏单机游戏手机游戏的区别 浏览:690
摄像头与网络线如何连接 浏览:577
有信号但是网络很x差 浏览:867
日照市哪里有5g网络 浏览:308
两台电脑桥接广域网络 浏览:825
无线网络怎么在电脑上设置共享 浏览:85
室内无线网络机顶盒怎么设置 浏览:460
修复苹果网络 浏览:597
黄陂靠谱的网络推广多少钱 浏览:160

友情链接