① 无线传感器网络的无线传感器网络研究趋势
经过十几年的发展,无线传感器网络积累了大量的研究成果,在这十几年研究中,主要以学术界为主,大多是私有的针对特定场景的协议,难以进行大规模应用推广。这几年无线传感器网络或者物联网受到产业界的高度重视,为实现不同企业产品的互联互通,标准化被提上日程。目前许多标准化组织参与到物联网、无线传感器网络标准的制定,如Zigbee、Z-WAVE、6Lowpan、ISA100.11a、IEEE802.15.4等,并且日益成熟,相关产品日益丰富,物联网产业雏形基本成形。
基于标准化的协议进行研发成为不可阻挡的技术趋势,已经成为行业共识。目前IETF制定的6Lowpan标准体系,是符合IPv6技术的专门为物联网定制的无线自组网体系,包括802.15.4物理层和MAC层、6Lowpan适配层、IPv6、Roll RPL组网路由协议、CoAP应用层协议,该技术标准具有开放、免费、与互联网无缝集成、海量地址空间等优势,最可能成为物联网、无线传感器网络技术的事实标准,是该领域的发展趋势。
《无线传感器网络》作为国内最早的研究书籍,对该领域的各个方面进行综述和介绍,是很好的入门资料。然而近几年,该领域技术的快速发展,出现了一些新的技术与相关书籍,形成新的研究趋势,值得关注和进一步研究,相关研究如下:
IPSO 6Lowpan技术白皮书
类似相关书籍《6LoWPAN: The Wireless Embedded Internet 》
类似相关书籍《Interconnecting Smart Objects with IP》
② 无线传感器在网络中的应用设计
下面是由整理的毕业设计论文《无线传感器在网络中的应用设计》,欢迎阅读。
1引言
无线传感器网络(Wireless Sensor Networks,简称WSNs)是由部署在监测区域内大量的廉价微型传感器节点组成,通过无线通信形成一个多跳自组织网络系统,能够实时监测、感知和采集网络分布区域内监视对象的各种信息,并加以处理,完成数据采集和监测任务。WSNs综合了传感器、嵌入式计算、无线通讯、分布式信息处理等技术,具有快速构建、自配置、自调整拓扑、多跳路由、高密度、节点数可变、无统一地址、无线通信等特点,特别适用于大范围、偏远距离、危险环境等条件下的实时信息监测,可以广泛应用于军事、交通、环境监测和预报、卫生保健、空间探索等各个领域。
2节点的总体设计和器件选型
2.1节点的总体设计
WSNs微型节点应用数量比较大,更换和维护比较困难,要求其节点成本低廉和工作时间尽可能长;功能上要求WSNs中不应该存在专门的路由器节点,每个节点既是终端节点,又是路由器节点。节点间采用移动自组织网络联系起来,并采用多跳的路由机制进行通信。因此,在单个节点上,一方面硬件必须低能耗,采用无线传输方式;另一方面软件必须支持多跳的路由协议。基于这些基本思想,设计了以高档8位AVR单片机ATmega128L为核心,结合外围传感器和2.4 GHz无线收发模块CC2420的WSNs微型节点。这两款器件的体积非常小,加上外围电路,其整体体积也很小,非常适合用作WSNs节点的元件。
图1给出WSNs微型节点结构。它由数据采集单元、数据处理单元、数据传输单元和电源管理单元4部分组成。数据采集单元负责监测区域内信息的采集和数据转换,设计中包括了可燃性气体传感器和湿度传感器;数据处理单元负责控制整个节点的处理操作、路由协议、同步定位、功耗管理、任务管理等;数据传输单元负责与其他节点进行无线通信,交换控制消息和收发采集数据;电源管理单元选通所用到的传感器,节点电源由几节AA电池组成,实际工业应用中采用微型纽扣电池,以进一步减小体积。为了调试方便及可扩展性,可将数据采集单元独立出来,做成两块能相互套接的可扩展主板。
2.2处理器选型
处理器的选型要求和指标是功耗低,保证长时间不更换电源也能顺利工作,供给电压小于5 V,有较快的处理速度和能力,由于节点是需要大量安置的,所以价格也要相对便宜。选用AVR单片机,考虑到电路中I/O的个数不多,功耗低、成本低、适合与无线器件接口配合等多方面因素,综合对比后,选用Atmel公司的ATmega128L。该微型控制器拥有丰富的片上资源,包括4个定时器、4 KB SRAM、128KB Flash和4 KBEEPROM;拥有UART、SPI、I2C、JTAG接口,方便无线器件和传感器的接入;有6种电源节能模式,方便低功耗设计。
2.3无线通信器件选型 CC2420是一款符合ZigBee技术的高集成度工业用射频收发器,其MAC层和PHY层协议符合802.15.4规范,工作于2.4 GHz频段。该器件只需极少外部元件,即可确保短距离通信的有效性和可靠性。数据传输单元模块支持数据传输率高达250 Kb/s,即可实现多点对多点的快速组网,系统体积小、成本低、功耗小,适于电池长期供电,具有硬件加密、安全可靠、组网灵活、抗毁性强等特点。
2.4传感器选型
由于WSNs是用于矿下安全监测,常要检测矿下可燃气体的浓度(预防瓦斯气体浓度过高)和空气湿度,所以要选择测量气体浓度和湿度的传感器。
2.4.1 HIH-4000系列测湿传感器
HIH-4000系列测湿传感器作为一个低成本、可软焊的单个直插式组件(SIP)能提供仪表测量质量的相对湿度(RH)传感性能。RH传感器可用在二引线间有间距的配量中,它是一个热固塑料型电容传感元件,其内部具有信号处理功能。传感器的多层结构对应用环境的不利因素,诸如潮湿、灰尘、污垢、油类和环境中常见的化学品具有最佳的抗力,因此可认定它能适用矿下环境。
2.4.2 MR511热线型半导体气敏元件
MR511型气敏元件利用气体吸附在金属氧化物半导体表面而产生热传导变化及电传导变化的原理,由白金线圈电阻值变化测定气体浓度。MR511由检测元件和补偿元件配对组成电桥的两个臂,遇可燃性气体时,检测元件的电阻减小,桥路输出电压变化,该电压变化随气体浓度的增大而成比例增大,补偿元件具有温度补偿作用。MR511除具有灵敏度高、响应恢复时间短、稳定性好特点外,还具有功耗小,抗环境温湿度干扰能力强的优点。WSNs的节能和井下恶劣温湿环境要求MR5111可以满足。
3 WSNs节点设计
3.1数据采集单元
考虑到无线传感器网络节点的节能和井下恶劣的温湿环境,为了便于数据采集,系统设计采用HIH-4000-01型测湿度传感器和MR511热线型半导体气体传感器。图2、图3分别给出其电路设计图。
3.2数据处理单元
ATmega128L的外围电路设计简单,设计时注意在数字电路的电源并人多只电容滤波。ATmega128L的工作时钟源可以选取外部晶振、外部RC振荡器、内部RC振荡器、外部时钟源等方式。工作时钟源的选择通过ATmega128L的内部熔丝位来设计。熔丝位可以通过JTAG编程、ISP编程等方式设置。ATmega128L采用7.3728 MHz和32.768 kHz两个外部晶振。前者用作工作时钟,后者用作实时时钟源。
3.3数据传输单元
3.3.1 CC2420外围电路设计
图4给出数据传输单元的外围电路。CC2420只需要极少的外围元器件。其外围电路包括晶振时钟电路、射频输入/输出匹配电路和微控制器接口电路3部分。
射频输入/输出匹配电路主要用来匹配器件的输入输出阻抗,使其输入输出阻抗为50 Ω,同时为器件内部的PA及LNA提供直流偏置。射频输入/输出是高阻抗,有差别。射频端最适合的负载是115+j180 Ω。C61、C62、C71、C81、L61组成不平衡变压器,L62和L81匹配射频输入输出到50 Ω;L61和L62同时提供功率放大器和低噪声放大器的直流偏置。内部的T/R开关是为了切换低噪声放大器/功率放大器。R451偏置电阻是电流基准发生器的精密电阻。CC2420本振信号既可由外部有源晶体提供,也可由内部电路提供。若由内部电路提供时,需外加晶体振荡器和两只负载电容,电容的大小取决于晶体的频率及输入容抗等参数。设计采用16 MHz晶振时,其电容值约为22 pF。C381和C391是外部晶体振荡器的负载电容。片上电压调节器提供所有内部1.8 V电源的供应。C42是电压调节器的负载电容,用于稳定调节器。为得到最佳性能必须使用电源去耦。在应用中使用大小合适的去耦电容和功率滤波器是非常重要的。CC2420可以通过4线SPI总线(SI、SO、SCLK、CSn)设置器件的工作模式,并实现读,写缓存数据,读/写状态寄存器等。通过控制FIFO和FIFOP引脚接口的状态可设置发射/接收缓存器。
3.3.2配置IEEE 802.15.4工作模式
CC2420为IEEE 802.15.4的数据帧格式提供硬件支持。其MAC层的帧格式为:头帧+数据帧+校验帧;PHY层的帧格式为:同步帧+PHY头帧+MAC帧,帧头序列的长度可通过设置寄存器改变,采用16位CRC校验来提高数据传输的可靠性。发送或接收的数据帧被送入RAM中的128字节缓存区进行相应的帧打包和拆包操作。表1给出CC2420的四线串行SPI接口引脚功能。它是设计单片机电路的依据,充分发挥这些功能是设计无线通信产品的前提。
3.3.3 CC2420与单片机接口电路设计
图5给出CC2420与ATmega128L单片机的接口电路。CC2420通过简单的四线(SI、SO、SCLK、CSn)与SPI兼容串行接口配置,这时CC2420是受控的。ATmega128L的SPI接口工作在主机模式,它是SPI数据传输的控制方;CC2420设为从机工作方式。当ATmega128L的SPI接口设为主机工作方式时,其硬件电路不会自动控制SS引脚。因此,在SH通信时,应在SPI接口初始化,它是由程序控制SS,将其拉为低电平,此后,当把数据写入主机的SPI数据寄存器后,主机接口将自动启动时钟发生器,在硬件电路的控制下,移位传送,通过MOSI将数据移出ATmega128L,并同时从CC2420由MISO移人数据,8位数据全部移出时,两个寄存器就实现了一次数据交换。
4结语
通过对于无线传感器网络节点中传感器元件、数据处理模块、数据传输模块和电源的选择,设计了一种以CC2420和ATmega128L为主体的硬件方案。利用该方案设计的CC2420和ATmega128L的外围电路以及两者之间的接口电路。此外,还对传感器与单片机的接口电路进行设计。通过实验验证,设计的硬件节点基本上达到了项目要求,经调试能通过传感器正确真实地采集数据,并实现两个无线节点(两个电路板。AA电池供电)在30 m左右的通信、传输数据、并反映到终端设备。
③ 无线传感器网络技术与应用的目录
第1章无线传感器网络概述
1.1传感器网络的研究历史
1.1.1早期的军用传感器网络研究
1.1.2美军DARPA的分布式传感器网络研究计划
1.1.320世纪80年代和90年代的军用传感器网络
1.1.421世纪的传感器网络研究
1.2WSN基本概念
1.2.1什么是WSN
1.2.2WSN与MANET的异同
1.2.3WSN的通信体系结构
1.3WSN的主要技术
1.3.1系统体系结构
1.3.2网络与通信的控制
1.4影响WSN设计的因素
1.4.1容错
1.4.2扩展性
1.4.3价格
1.4.4硬件限制
1.4.5WSN拓扑
1.4.6WSN工作环境
1.4.7传输媒介
1.4.8功耗
参考文献
第2章无线传感器网络竞争类MAC协议
2.1传感器媒介访问控制协议(S-MAC)
2.1.1能量浪费原因分析
2.1.2S-MAC协议概述
2.1.3休眠的协调
2.1.4避免旁听与消息分片传输
2.1.5时延分析
2.1.6S-MAC协议实现
2.1.7S-MAC协议的性能
2.2超时MAC协议(T-MAC)
2.2.1T-MAC协议概述
2.2.2T-MAC基本协议
2.2.3分群与同步
2.2.4RTS操作与TA选择
2.2.5避免旁听
2.2.6不对称通信
2.2.7T-MAC的性能
2.3伯克利媒介访问控制协议(B-MAC)
2.3.1B-MAC协议的设计与实现
2.3.2寿命建模
2.3.3参数
2.3.4自适应控制
参考文献
第3章无线传感器网络分配类MAC协议
3.1流量自适应媒介访问协议(TRAMA)
3.1.1TRAMA协议概述
3.1.2TRAMA协议组成
3.1.3访问方式与相邻节点协议
3.1.4传输时间安排交换协议
3.1.5自适应选举算法
3.1.6TRAMA的性能
3.2分布式随机时隙安排协议(DRAND)
3.2.1TDMA时隙分配问题定义
3.2.2DRAND算法详述
3.2.3DRAND正确性
3.2.4DRAND复杂性分析
3.2.5DRAND的性能
3.3功率高效与时延意识媒介访问协议(PEDAMACS)
3.3.1PEDAMACS协议概述
3.3.2PEDAMACS分组格式
3.3.3本地拓扑建立阶段
3.3.4AP拓扑信息收集阶段
3.3.5传输时间安排阶段
3.3.6拓扑调整阶段
3.3.7传输时间安排算法
参考文献
第4章无线传感器网络混合类MAC协议
4.1斑马MAC协议(Z-MAC)
4.1.1时间同步协议(TPSN)
4.1.2Z-MAC协议概述
4.1.3相邻节点寻找与时隙分配
4.1.4本地成帧
4.1.5Z-MAC协议的传输控制
4.1.6发送规则
4.1.7直接竞争通知
4.1.8Z-MAC传输时间安排的接收
4.1.9本地时间同步
4.1.10Z-MAC协议的性能
4.1.11Z-MAC协议随机分析
4.2漏斗-MAC协议
4.2.1漏斗问题
4.2.2按需发送信标
4.2.3面向中心节点的传输时间安排
4.2.4定时与成帧
4.2.5Meta-传输时间安排的广播
4.2.6动态深度调整
4.2.7漏斗-MAC协议的测试床实验评估
参考文献
第5章无线传感器网络数据中心路由协议
5.1协商式传感器信息分发协议(SPIN)
5.1.1SPIN概述
5.1.2Meta-Data
5.1.3SPIN消息
5.1.4SPIN资源管理
5.1.5SPIN实现
5.1.6SPIN-1:3步握手协议
5.1.7SPIN-2:低能量门限的SPIN-1
5.1.8用于与SPIN比较的其他数据分发算法
5.1.9SPIN的性能评估
5.1.10SPIN小结
5.2定向扩散
5.2.1定向扩散的组成要素
5.2.2命名
5.2.3兴趣与梯度
5.2.4数据传播
5.2.5路径建立与路径裁剪的强化
5.2.6定向扩散的分析评估
5.2.7定向扩散的仿真评估
参考文献
第6章无线传感器网络分层路由协议
6.1低能量自适应分群分层(LEACH)
6.1.1LEACH协议体系结构
6.1.2群首选择算法
6.1.3分群算法
6.1.4稳定状态阶段
6.1.5LEACH-C:BS建立分群
6.1.6LEACH的分析与仿真
6.2两层数据分发协议(TTDD)
6.2.1两层数据分发
6.2.2栅格结构
6.2.3TTDD转发
6.2.4栅格维护
6.2.5TTDD开销分析
6.2.6TTDD的性能
6.2.7TTDD讨论
参考文献
第7章无线传感器网络地理位置路由协议
7.1定位技术
7.1.1距离测量与角度测量
7.1.2位置计算
7.1.3TPS网络模型
7.1.4TPS定位方案
7.1.5TPS技术性能分析
7.2贪婪地理路由算法
7.2.1概述
7.2.2基于DT的膨胀分析
7.2.3贪婪转发(GF)
7.2.4有界Voronoi贪婪转发(BVGF)
7.2.5网络膨胀分析总结
7.2.6基于概率通信模型的扩充
7.3位置辅助泛洪协议(LAF)
7.3.1LAF协议概述
7.3.2采用LAF分发信息
7.3.3LAF中的资源管理
7.3.4栅格维护开销
7.3.5数据分发规程的完备性
7.3.6LAF节能分析
7.3.7位置估计中的误差
7.3.8LAF的性能
参考文献
第8章无线传感器网络端到端可靠传输协议
8.1事件到中心节点的可靠传输协议(ESRT)
8.1.1问题定义
8.1.2评估环境
8.1.3特性区域
8.1.4ESRT协议描述
8.1.5拥塞检测
8.1.6ESRT协议对并发事件的处理
8.1.7ESRT协议的性能分析
8.1.8ESRT协议的仿真结果
8.1.9?的正确选择
8.2基于多电台虚拟中心节点的过载流量管理(SIPHON)
8.2.1拥塞检测与预防(CODA)
8.2.2虚拟中心节点寻找与可见度范围控制
8.2.3SIPHON拥塞检测
8.2.4改变流量的传输路径
8.2.5次网络中的拥塞
8.2.6虚拟中心节点开销分析
参考文献
第9章无线传感器网络逐跳可靠传输协议
9.1合成拥塞控制技术(FUSION)
9.1.1拥塞崩溃的症状
9.1.2逐跳流量控制
9.1.3速率限制
9.1.4MAC层优先级化
9.1.5应用自适应
9.2慢分发、快提取可靠传输协议(PSFQ)
9.2.1PSFQ协议概述
9.2.2PSFQ分发操作
9.2.3PSFQ提取操作
9.2.4PSFQ报告操作
9.2.5单个分组消息的交付
9.2.6PSFQ的性能
9.3下行数据可靠交付可扩展体系结构(GARUDA)
9.3.1面临的挑战
9.3.2可靠性语义
9.3.3GARUDA的基本原理
9.3.4单个分组或第一个分组的交付
9.3.5即时构建GARUDA核
9.3.6两阶段丢失恢复
9.3.7其他可靠性语义的支持
9.3.8GARUDA的性能
参考文献
第10章无线传感器网络数据融合技术
10.1树状结构累积
10.1.1分布式生成树算法
10.1.2E-Span树
10.2不受应用约束的自适应数据累积(AIDA)
10.2.1AIDA协议概述
10.2.2AIDA体系结构
10.2.3AIDA控制单元中的累积方案
10.2.4AIDA累积功能单元
10.2.5AIDA分组格式
10.2.6AIDA分组头开销分析
10.2.7AIDA节省分析
10.2.8AIDA的性能
10.3无结构累积法与半结构累积法
10.3.1数据意识任意组播(DAA)
10.3.2ToD上的动态转发
10.3.3性能分析
10.3.4ToD和DAA的性能
参考文献
第11章无线传感器网络安全
11.1WSN安全概述
11.1.1WSN安全威胁模型
11.1.2WSN安全面临的障碍
11.1.3WSN安全要求
11.1.4WSN安全解决方案的评估
11.2WSN中的安全攻击
11.2.1物理层安全攻击
11.2.2链路层安全攻击
11.2.3对WSN网络层(路由)的攻击
11.2.4对传输层的攻击
11.3SPINS安全解决方案
11.3.1符号
11.3.2SNEP
11.3.3μTESLA
11.3.4μTESLA详细描述
11.3.5SPINS实现
11.3.6SPINS性能评估
11.4LEAP+安全解决方案
11.4.1假设条件
11.4.2LEAP+概述
11.4.3单独密钥的建立
11.4.4成对密钥的建立
11.4.5分群密钥的建立
11.4.6全网密钥的建立
11.4.7本地广播认证
11.4.8LEAP+安全分析
11.4.9LEAP+性能评估
参考文献
第12章无线传感器网络中间件技术
12.1WSN中间件面临的挑战
12.2WSN中间件的功能要求
12.3ZebraNet系统中的中间件系统(Impala)
12.3.1ZebraNet系统简介
12.3.2ZebraNet中间件体系结构
12.3.3应用适配器
12.3.4应用更新器
12.3.5周期性操作调度
12.3.6事件处理模型
12.3.7Impala网络接口
12.3.8Impala评估
12.4传感器信息网络化体系结构(SINA)
12.4.1SINA的功能组成
12.4.2信息抽象
12.4.3传感器查询与任务分配语言(SQTL)
12.4.4传感器执行环境(SEE)
12.4.5信息收集方法
12.4.6应用举例
参考文献
第13章无线传感器网络应用及编程
13.1传感器网络的应用
13.1.1军事应用
13.1.2环境应用
13.1.3医疗卫生应用
13.1.4家庭应用
13.1.5其他商业应用
13.2WSN应用设计原理
13.2.1设计方面
13.2.2确定WSN操作坊式
13.3WSN网络编程
13.3.1编程抽象
13.3.2现有若干编程模型简介
13.4分层编程与ATaG编程架构
13.4.1WSN的分层编程
13.4.2抽象任务图编程架构(ATaG)
13.4.3采用ATaG的应用开发方法
13.4.4一个ATaG应用例子
参考文献
……
④ 物联网无线传感器网络的应用领域有哪些
主要特点
大规模
为了获取精确信息,在监测区域通常部署大量传感器节点,可能达到成千上万,甚至更多。传感器网络的大规模性包括两方面的含义:一方面是传感器节点分布在很大的地理区域内,如在原始大森林采用传感器网络进行森林防火和环境监测,需要部署大量的传感器节点;另一方面,传感器节点部署很密集,在面积较小的空间内,密集部署了大量的传感器节点。
传感器网络的大规模性具有如下优点:通过不同空间视角获得的信息具有更大的信噪比;通过分布式处理大量的采集信息能够提高监测的精确度,降低对单个节点传感器的精度要求;大量冗余节点的存在,使得系统具有很强的容错性能;大量节点能够增大覆盖的监测区域,减少洞穴或者盲区。
自组织
在传感器网络应用中,通常情况下传感器节点被放置在没有基础结构的地方,传感器节点的位置不能预先精确设定,节点之间的相互邻居关系预先也不知道,如通过飞机播撒大量传感器节点到面积广阔的原始森林中,或随意放置到人不可到达或危险的区域。这样就要求传感器节点具有自组织的能力,能够自动进行配置和管理,通过拓扑控制机制和网络协议自动形成转发监测数据的多跳无线网络系统。
在传感器网络使用过程中,部分传感器节点由于能量耗尽或环境因素造成失效,也有一些节点为了弥补失效节点、增加监测精度而补充到网络中,这样在传感器网络中的节点个数就动态地增加或减少,从而使网络的拓扑结构随之动态地变化。传感器网络的自组织性要能够适应这种网络拓扑结构的动态变化。
动态性
传感器网络的拓扑结构可能因为下列因素而改变:①环境因素或电能耗尽造成的传感器节点故障或失效;②环境条件变化可能造成无线通信链路带宽变化,甚至时断时通;③传感器网络的传感器、感知对象和观察者这三要素都可能具有移动性;④新节点的加入。这就要求传感器网络系统要能够适应这种变化,具有动态的系统可重构性。
可靠性
WSN特别适合部署在恶劣环境或人类不宜到达的区域,节点可能工作在露天环境中,遭受日晒、风吹、雨淋,甚至遭到人或动物的破坏。传感器节点往往采用随机部署,如通过飞机撒播或发射炮弹到指定区域进行部署。这些都要求传感器节点非常坚固,不易损坏,适应各种恶劣环境条件。
⑤ 无线传感器,主要应用在哪些方面
�丫���簧俚奈尴叽�衅魍�缈�纪度胧褂谩D壳拔尴叽�衅魍�绲挠τ弥饕��性谝韵铝煊颍骸�
1.环境的监测和保护
随着人们对于环境问题的关注程度越来越高,需要采集的环境数据也越来越多,无线传感器网络的出现为随机性的研究数据获取提供了便利,并且还可以避免传统数据收集方式给环境带来的侵入式破坏。比如,英特尔研究实验室研究人员曾经将32个小型传感器连进互联网,以读出缅因州大鸭岛上的气候,用来评价一种海燕巢的条件。无线传感器网络还可以跟踪候鸟和昆虫的迁移,研究环境变化对农作物的影响,监测海洋、大气和土壤的成分等。此外,它也可以应用在精细农业中,来监测农作物中的害虫、土壤的酸碱度和施肥状况等。
2.医疗护理无线传感器网络在医疗研究、护理领域也可以大展身手。罗彻斯特大学的科学家使用无线传感器创建了一个智能医疗房间,使用微尘来测量居住者的重要征兆(血压、脉搏和呼吸)、睡觉姿势以及每天24小时的活动状况。英特尔公司也推出了无线传感器网络的家庭护理技术。该技术是做为探讨应对老龄化社会的技术项目(CAST)的一个环节开发的。该系统通过在鞋、家具以家用电器等家中道具和设备中嵌入半导体传感器,帮助老龄人士、阿尔茨海默氏病患者以及残障人士的家庭生活。利用无线通信将各传感器联网可高效传递必要的信息从而方便接受护理。而且还可以减轻护理人员的负担。英特尔主管预防性健康保险研究的董事EricDishman称,在开发家庭用护理技术方面,无线传感器网络是非常有前途的领域。
3.军事领域由于无线传感器网络具有密集型、随机分布的特点,使其非常适合应用于恶劣的战场环境中,使其非常适合应用于恶劣的战场环境中,包括侦察敌情、监控兵力、装备和物资,判断生物化学攻击等多方面用途。美国国防部远景计划研究局已投资几千万美元,帮助大学进行智能尘埃传感器技术的研发。哈伯研究公司总裁阿尔门丁格预测:智能尘埃式传感器及有关的技术销售将从2004年的1000万美元增加到2010年的几十亿美元。
4.其他用途
无线传感器网络还被应用于其他一些领域。比如一些危险的工业环境如井矿、核电厂等,工作人员可以通过它来实施安全监测。也可以用在交通领域作为车辆监控的有力工具。此外和还可以在工业自动化生产线等诸多领域,英特尔正在对工厂中的一个无线网络进行测试,该网络由40台机器上的210个传感器组成,这样组成的监控系统将可以大大改善工厂的运作条件。它可以大幅降低检查设备的成本,同时由于可以提前发现问题,因此将能够缩短停机时间,提高效率,并延长设备的使用时间。尽管无线传感器技术目前仍处于初步应用阶段,但已经展示出了非凡的应用价值,相信随着相关技术的发展和推进,一定会得到更大的应用。
⑥ 简叙无线传感器网络的功能 列出无线传感器网络在4种应用领域中所起到的作用
1.、军事应用
2、环境科学
3、医疗健康
4、空间探索
⑦ 无线传感器网络的特点及关键技术
无线传感器网络的特点及关键技术
无线传感器网络被普遍认为是二十一世纪最重要的技术之一,是目前计算机网络、无线通信和微电子技术等领域的研究热点。下面我为大家搜索整理了关于无线传感器网络的特点及关键技术,欢迎参考阅读!
一、无线传感器网络的特点
与其他类型的无线网络相比,传感器网络有着鲜明的特征。其主要特点可以归纳如下:
(一)传感器节点能量有限。当前传感器通常由内置的电池提供能量,由于体积受限,因而其携带的能量非常有限。如何使传感器节点有限的能量得到高效的利用,延长网络生存周期,这是传感器网络面临的首要挑战。
(二)通信能力有限。无线通信消耗的能量与通信距离的关系为E=kdn。其中,参数n的取值为2≤n≤4,n的取值与许多因素有关。但是不管n具体的取值,n的取值范围一旦确定,就表明,无线通信的能耗是随着距离的增加而更加急剧地增加的。因此,在满足网络连通性的要求下,应尽量采用多跳通信,减少单跳通信的距离。通常,传感器节点的通信范围在100m内。
(三)计算、存储和有限。一方面为了满足部署的要求,传感器节点往往体积小;另一方面出于成本控制的目的`,节点的价格低廉。这些因素限制了节点的硬件资源,从而影响到它的计算、存储和通信能力。
(四)节点数量多,密度高,覆盖面积广。为了能够全面准确的监测目标,往往会将成千上万的传感器节点部署在地理面积很大的区域内,而且节点密度会比较大,甚至在一些小范围内采用密集部署的方式。这样的部署方式,可以让网络获得全面的数据,提高信息的可靠性和准确性。
(五)自组织。传感器网络部署的区域往往没有基础设施,需要依靠传感器节点协同工作,以自组织的方式进行网络的配置和管理。
(六)拓扑结构动态变化。传感器网络的拓扑结构通常是动态变化的,例如部分节点故障或电量耗尽退出网络,有新的节点被部署并加入网络,为节约能量节点在工作和休眠状态间进行切换,周围环境的改变造成了无线通信链路的变化,以及传感器节点的移动等都会导致传感器网络拓扑结构发生变化。
(七)感知数据量巨大。传感器网络节点部署范围大、数量多,且网络中的每个传感器通常都产生较大的流式数据并具有实时性,因此网络中往往存在数量巨大的实时数据流。受传感器节点计算、存储和带宽等资源的限制,需要有效的分布式数据流管理、查询、分析和挖掘方法来对这些数据流进行处理。
(八)以数据为中心。对于传感器网络的用户而言,他们感兴趣的是获取关于特定监测目标的真实可靠的数据。在使用传感器网络时,用户直接使用其关注的事件作为任务提交给网络,而不是去访问具有某个或某些地址标识的节点。传感器网络中的查询、感知、传输都是以数据为中心展开的。
(九)传感器节点容易失效。由于传感器网络应用环境的特殊性以及能量等资源受限的原因,传感器节点失效(如电池能量耗尽等)的概率远大于传统无线网络节点。因此,需要研究如何提高数据的生存能力、增强网络的健壮性和容错性以保证部分传感器节点的损坏不会影响到全局任务的完成。此外,对于部署在事故和自然灾害易发区域的无线传感器网络,还需要进一步研究当事故和灾害导致大部分传感器节点失效时如何最大限度地将网络中的数据保存下来,以提供给灾害救援和事故原因分析等使用。
二、关键技术
无线传感器网络作为当今信息领域的研究热点,设计多学科交叉的研究领域,有非常多的关键技术有待研究和发现,下面列举若干。
(一)网络拓扑控制。通过拓扑控制自动生成良好的拓扑结构,能够提高路由协议和MAC协议的效率,可为数据融合、时间同步和目标定位等多方面奠定基础,有利于节省能量,延长网络生存周期。所以拓扑控制是无线传感器网络研究的核心技术之一。目前,拓扑控制主要研究的问题是在满足网络连通度的前提下,通过功率控制或骨干网节点的选择,剔除节点之间不必要的通信链路,生成一个高效的数据转发网络拓扑结构。
(二)介质访问控制(MAC)协议。在无线传感器网络中,MAC协议决定无线信道的使用方式,在传感器节点之间分配有限的无线通信资源,用来构建传感器网络系统的底层基础结构。MAC协议处于传感器网络协议的底层部分,对传感器网络的性能有较大影响,是保证无线传感器网络高效通信的关键网络协议之一。传感器网络的强大功能是由众多节点协作实现的。多点通信在局部范围需要MAC协议协调其间的无线信道分配,在整个网络范围内需要路由协议选择通信路径。
在设计MAC协议时,需要着重考虑以下几个方面:
(1)节省能量。传感器网络的节点一般是以干电池、纽扣电池等提供能量,能量有限。
(2)可扩展性。无线传感器网络的拓扑结构具有动态性。所以MAC协议也应具有可扩展性,以适应这种动态变化的拓扑结构。
(3)网络效率。网络效率包括网络的公平性、实时性、网络吞吐量以及带宽利用率等。
(三)路由协议。传感器网络路由协议的主要任务是在传感器节点和Sink节点之间建立路由以可靠地传递数据。由于传感器网络与具体应用之间存在较高的相关性,要设计一种通用的、能满足各种应用需求的路由协议是困难的,因而人们研究并提出了许多路由方案。
(四)定位技术。位置信息是传感器节点采集数据中不可或缺的一部分,没有位置信息的监测消息可能毫无意义。节点定位是确定传感器的每个节点的相对位置或绝对位置。节点定位分为集中定位方式和分布定位方式。定位机制也必须要满足自组织性,鲁棒性,能量高效和分布式计算等要求。
(五)数据融合。传感器网络为了有效的节省能量,可以在传感器节点收集数据的过程中,利用本地计算和存储能力将数据进行融合,取出冗余信息,从而达到节省能量的目的。
(六)安全技术。安全问题是无线传感器网络的重要问题。由于采用的是无线传输信道,网络存在偷听、恶意路由、消息篡改等安全问题。同时,网络的有限能量和有限处理、存储能力两个特点使安全问题的解决更加复杂化了。
;⑧ 无线传感器应用传感器类型
无线传感器是当前信息领域中研究的热点之一,可用于特殊环境实现信号的采集、处理和发送。无线传感器网络是一种全新的信息获取和处理技术,在现实生活中得到了越来越广泛的应用。接下来小编为大家介绍无线传感器应用及传感器类型。
无线传感器应用
1、军事领域的应用
在军事领域,由于WSN具有密集型、随机分布的特点,使其非常适合应用于恶劣的战场环境。利用WSN能够实现监测敌军区域内的兵力和装备、实时监视战场状况、定位目标、监测核攻击或者生物化学攻击等。
2、辅助农业生产
WSN特别适用于以下方面的生产和科学研究。例如,大棚种植室内及土壤的温度、湿度、光照监测、珍贵经济作物生长规律分析与测量、葡萄优质育种和生产等,可为农村发展与农民增收带来极大的帮助。采用WSN建设农业环境自动监测系统,用一套网络设备完成风、光、水、电、热和农药等的数据采集和环境控制,可有效提高农业集约化生产程度,提高农业生产种植的科学性。
3、生态监测与灾害预警
WSN可以广泛地应用于生态环境监测、塌基生物种群研究、气象和地理研究、洪水、火灾监测。环境监测为环境保护提供科学的决策依据,是生态保护的基础。在野外地区或者不宜人工监测的区域布置WSN可以进行长期无人值守的不间断监测,为生态环境的保护和研究提供实时的数据资料。
具体的应用包括:通过跟踪珍稀鸟类等动物的栖息、觅食习惯进行濒危种群的研究;在河流沿线区域布置传感器节点,随时监测水位及水资源被污染的情况;在泥石流、滑坡等自然灾害容易发生的地区布置节点,可提前发出灾害预警,及时采取相应抗灾措施;可在重点保护林区布置大量节点随时监控内部火险情况,一旦发现火情,可立刻发出警报,并给出具体位置及当前火势的大小;可将节点布置在发生地震、水灾等灾害的地区、边远山区或偏僻野外地区,用于临时应急通信。
4、基础设施状态监测系统
WSN技术对于大型工程的安全施工以及建筑物安全状况的监测有积极的帮助作用。通过布置传感器节点,可以及时准确地观察大楼、桥梁和其他建筑物的状况,及时发现险情,及时进行维修,避免造成严重后果。
5、工业领域的应用
在工业安全方面,传感器网络技术可用于危险的工作环境,例如在煤矿、石油钻井、核电厂和组装线布置传感器节点,可以随时监测工作环境的安全状况,为工作人员的安全提供保证。另外,传感器节点还可以代替部分工作人员到危险的环境中执行任务,不仅降低了危险程度,还提高了对险情的反应精度和速度。
6、在智能交通中保障安全畅通
智能交通系统团档谨(ITS)是在传统交通体系的基础上发展起来的新型交通系统,它将信息、通信、控制和计算机技术以及其他现代通信技术综合应用于交通领域,并将“人—车—路—环境”有机地结合在一起。在现有的交通设施中增加一种无线传感器网络技术,将能够从根本上缓解困扰现代交通的安全、通畅、节能和环保等问题,同时还可以提高交通工作效率。因此,将无线传感器网络技术应用于智能交通系统已经成为近几年的研究热点。
7、在医疗系统大有作为
近年来,无线传感器网络在医疗系统和健康护理方面已有很多应用,例如,监测人体的各种生理数据,跟踪和监控医院中医生和患者的行动,以及医院的药物管理等。如果在住院病人身蠢卜上安装特殊用途的传感器节点,例如心率和血压监测设备,医生就可以随时了解被监护病人的病情,在发现异常情况时能够迅速抢救。
8、促进信息家电设备更加智能
无线传感器网络的逐渐普及,促进了信息家电、网络技术的快速发展,家庭网络的主要设备已由单一机向多种家电设备扩展,基于无线传感器网络的智能家居网络控制节点为家庭内、外部网络的连接及内部网络之间信息家电和设备的连接提供了一个基础平台。
传感器类型
1、振动传感器
每个节点的最高采样率可设置为4KHz,每个通道均设有抗混叠低通滤波器。采集的数据既可以实时无线传输至计算机,也可以存储在节点内置的2M数据存储器内,保证了采集数据的准确性。有效室外通讯距离可达300m,节点功耗仅30mA,使用内置的可充电电池,可连续测量18小时。如果选择带有USB接口的节点,您既可以通过USB接口对节点充电,也可以快速地把存储器内的数据下载到计算机里面。
2、应变传感器
节点结构紧凑,体积小巧,由电源模块、采集处理模块、无线收发模块组成,封装在PPS塑料外壳内。节点每个通道内置有独立的高精度120-1000Ω桥路电阻和放大调理电路,可以方便地由软件自动切换选择1/4桥,半桥,全桥测量方式,兼容各种类型的桥路传感器,比如应变,载荷,扭距,位移,加速度,压力,温度等。节点同时支持2线和3线输入方式,桥路自动配平,也可以存储在节点内置的2M数据存储器。有效室外通讯距离可达300m。可连续测量十几个小时。
3、扭矩传感器
节点结构紧凑,体积小巧,封装在树脂外壳内。节点每个通道内置有高精度120-1000Ω桥路电阻和放大调理电路。桥路自动配平。节点的空中传输速率可以达到250KBPS,有效实时数据传输率达到4KSPS,有效室内通讯距离可达100米。节点设计有专门的电源管理软硬件,在实时不间断传输情况下,节点功耗仅25mA,使用普通9V电池,可连续测量几十个小时。对于长期监测应用,以5分钟间隔发送一次扭矩值,数年不需要更换电池,大大提高了系统的免维护性。