导航:首页 > 无线网络 > 请简述无线网络的物理层

请简述无线网络的物理层

发布时间:2023-06-04 05:50:29

计算机网络(2)| 物理层

首先要知道的是,物理层考虑的是怎样才能在连接各种计算机的传输媒体上传输数据比特流,而不是指具体的传输媒体。因为现在的计算机网络中的硬件设备和传输媒体的种类非常的多。而物理层的作用就是要尽可能地屏蔽掉这些不同的差异,从而使得物理层上面的数据链路层感觉不到这些差异,这样就可以让数据链路层“安心”的完成自己的本职工作而不必考虑网络的具体传输媒体和通信手段是什么

物理层的主要任务描述为确定与传输媒体接口有关的一些特性,即以下几个方面:
(1) 机械特性 :指明接口所用的接线器的形状与尺寸,引脚数目和排列,固定和锁定装置等等
(2) 电气特性 :指明在接口电缆的各条线上出现的电压的范围。
(3) 功能特性 :指明某条线上出现的某一电平的电压表示何种意义。
(4) 过程特性 :指明对于不同功能的各种可能事件的出现顺序。

因为物理连接的方式有很多,所以具体的物理协议的种类也有很多,从而传输媒体的种类也是非常之多,所以在介绍物理层时,我们应该先对“接口与通信”有一定的了解。

一个通信系统可以划分为三大部分,即 源系统 传输系统 目的系统

首先介绍源系统,源系统一般包括以下两个部分:
源点: 源点设备产生要传输的数据,例如从计算机的键盘输入汉字,计算机产生输出的数字比特流。源点又称为 源站 或者 信源
发送器: 通常源点生成的数字比特流要通过发送器编码后才能够在传输系统中进行传输。最典型的发送器就是调制器,现在的很多计算器使用的都是内置的解调器(包括调制器和解调器)。

目的系统一般也包括以下两个部分:
接收器: 接收传输系统传送过来的信号,并把它转换为能够被目的设备处理的信息。典型的接收器就是解调器,
终点: 终点设备从接收器获取传送来的数字比特流,然后把信息输出。终点又称为 目的站 或者 信宿

在源系统和目的系统之间的传输系统可以是简单的传输线,也可以是连接在源系统和目的系统之间的复杂网络系统。

然后我们要来辨别一下下面的常用术语:
消息: 指语音,文字,图像等等。
数据: 指使用特定方式表示的信息,通常是有意义的符号序列。这种信息的表示可用计算机或其他机器处理或者产生。
信号: 指数据的电气或电磁的表现。

根据信号中代表消息的参数的取值方式不同,信号可以分为以下两大类:
(1)模拟信号: 代表消息的参数的取值是连续的。
(2)数字信号: 代表消息的参数的取值是离散的。

信道 是用来表示向某一个方向传送消息的媒体,一条通信电路往往包含一条发送信道和一条接收信道。

从通信的双方信息交互的方式来看,可以有以下三种基本方式:
(1)单向通信: 又称为单工通信,即只能有一个方向的通信而没有反方向的交互。无线电广播或有线电广播就是这种类型。
(2)双向交替通信: 又称为半双工通信,即通信双方都可以发送消息,但不能双方同时发送(也不能同时接收)。这种通信方式是一方发送另一方接收。
(3)双向同时通信: 也称为全双工通信,即通信双方都可以同时发送和接收消息。

来自信源的信号称为 基带信号 。像计算机输出的代表各种文字或文件的数据信号都属于基带信号。由于基带信号往往包含有较多的低频成分和直流成分,但是许多信道并不能传输这种低频分量或是直流分量。所以为了解决这一问题,就必须对基带信号进行 调制

调制主要是分为两大类。一类是对基带信号的波形进行变换,使它能够与信道的特征相适应,但是变换后的信号仍然是基带信号,这一类的调制称为 基带调制 ,这一过程也被称为编码。还有一类调制则是需要使用载波进行调制,将基带信号的频率范围搬移到较高的频段,并转换为模拟信号,这样就能更好的在模拟信道中传输,经过载波调制的信号称为带通信号,而使用载波的调制称为 带通调制

不归零制: 正电平代表1,负电平代表0。
归零制: 正脉冲代表1,负脉冲代表0。
曼彻斯特编码: 位周期中心的向上跳变代表0,位周期中心的向下跳变代表1,但是也可以反过来定义。
差分曼彻斯特编码: 在每一位的中心处始终有跳变。位开始边界有跳变代表0,而位开始边界没有跳变代表1。

调幅(AM): 即载波的振幅随着基带数字信号而变化。例如,0或1分别对应于无载波或有载波的输出。
调频(FM): 即载波的频率随着基带数字信号而变化。例如,0或1分别对应于频率的 f1 f2
调相(PM): 即载波的初始相位随着基带数字信号而变化。例如,0或1分别对应于相位0度或180度。
当然,有时为了达到更高的信息传输速率,也必须采用技术上更为复杂但传输效果更好的混合调制方法,例如正交振幅调制等等。

限制信息在信道上的传输速率的因素主要是以下两个。
(1)信道能够通过的范围频率
具体信道所能通过的频率范围总是有限的。信号中的许多高频分量往往不能通过信道,就是因为它的频率超过了信道所能承受的最大频率,因此就会造成失真现象。

(2)信噪比
噪声存在于所有的电子设备和通信信道中。由于噪声是随机产生的,因此它的瞬时值有时会很大,所以噪声会使接收端对码元的判决产生错误。但是噪声的影响是相对的,当信号较强时,噪声的影响就相对较小。所以我们就要了解到 信噪比 的概念。信噪比就是指信号的平均功率和噪声的平均功率之比,单位是分贝:

W是带宽,S是信道内所传信号的平均功率,N为信道内高斯噪声的功率。香农公式指出:信道的带宽或者信噪比越大,则信息的极限传输速率就越高。

传输媒体也称传输介质或传输媒介。传输媒体大致可以分为两大类: 导引型传输媒体和非导引型传输媒体 。下面来具体介绍。

双绞线就是指将两根互相绝缘的铜导线并排放在一起,然后用规则的方法绞合起来。绞合可以减少对相邻导线的电磁干扰。电话系统是使用双绞线最多的地方,从用户电话机到交换机的双绞线称为 用户线

模拟传输和数字传输都会用到双绞线,其通信距离一般是为几到几十公里。

为了提高双绞线的对抗电磁干扰能力,可以在双绞线外面再加一层用金属丝编织而成的屏蔽层,这就是屏蔽双绞线。,简称为 STP

同轴电缆内由导体铜质芯线、绝缘层、网状编织的外导体屏蔽层以及保护塑料外层组成。由于其特有的构造,所以同轴电缆有着良好的抗干扰特性,被广泛用于传输较高速率的数据。目前同轴电缆主要用在有线电视网的信号传输当中。它的带宽是取决于它的质量的。

光纤是光缆通信的传输媒体,由于可见光的频率非常之高,因此一个光纤通信系统的传输带宽远远大于目前其他各种传输媒体的带宽。

当光纤从高折射率的传输媒体到低折射率的传输媒体时,其折射角就会大于入射角。因此如果当入射角足够大时,就会产生全反射,光也就能沿着光纤传输下去。

正是由于上面的原理,所以只要将入射角的角度把握好,就能够产生全反射来进行传输,这也就是光纤传输的原理。

光纤不仅具有通信容量大的特点,还有其他的一些特点:
1.传输损耗小。
2.抗雷电和电磁干扰性能好。
3.无串音干扰,保密性很高。
4.体积小,重量轻。

我们将自由空间称为非导引型传输媒体,简单来说就是指无线传输。无线传输可以使用的频段很广,人们已经利用了好几个波段来进行通信,但是紫外线以及更高的波段现在暂时还是不能用于通信。

短波通信(高频通信)主要是靠电离层的反射来进行传输。但是短波信道的通信质量较差,传输速率较低。

无线电微波通信在数据通信中占有重要的地位。微波在空间中主要是以直线传播。传统的微波通信主要有两种方式,即 地面微波接力通信和卫星通信

要使用某一段无线电频谱进行通信,通常必须得到本国政府有关无线电频谱管理机构的许可证。但是也有一些无线电频段是可以自由使用的。例如ISM,各国的ISM标准可能略有差异。

复用是通信中的基本概念,它是指允许用户使用一个共享信道来进行通信,达到降低成本,提高利用率的效果。

先来介绍 频分复用FDM ,频分复用是指将带宽分为多份,用户在分到一定的频带后,在通信过程中自始至终都占用着这一条频带,也就是说频分复用的用户是在同样的时间占用不同的带宽资源。

然后是 时分复用TDM ,它是指将时间划分为一段段等长的时分复用帧(TDM帧)。每一个时分复用的用户在每一个TDM帧中占用固定序号的时隙。而每一个用户所占用的时隙是周期性地出现(其周期就是TDM帧的长度)。时分复用的所有用户是在不同的时间占用同样的频带宽度。

最后是 统计时分复用STDM ,它是有一点类似于TDM的,只是STDM帧不是固定分配时隙,而是按需动态的分配时隙。因此统计时分复用可以提高线路的利用率。

波分复用WDM 就是光的频分复用,也就是使用一根光纤来同时传输多个光载波信号。

码分复用CDM 是另一种共享信道的方法。而人们更常使用码分多址CDMA来称呼它。这种复用方式的具体做法是可以让每一个用户在同样的时间使用同样的频带进行通信,由于各个用户使用经过特殊的不同码型,因此各用户之间不会造成干扰。而且通过这种方式发送的信号具有很强的抗干扰能力,其频谱类似于白噪声,不容易被他人发现。

码分复用的工作原理是将每一个比特时间再划分为m个短的间隔,称之为码片。一般情况下m的值是64或128。

使用CDMA的每一个站被指派一个唯一的m bit码片序列。一个站如果要发送比特1,则发送它自己的m bit码片序列。如果要发送比特0,则发送该码片序列的二进制反码。举例来说:

有时为了方便起见,我们会将码片中的0写为-1,1写为+1。

现假定S站要发送信息的数据率为b bits/s,由于每一个比特要转换成m个比特的码片,因此S站实际上发送的数据率提高到mb bit/s,同时S站所占用的频带宽度也提高到原来数值的m倍。这种方式就是 扩频 的一种。扩频通信通常有两大类,一种是直接序列扩频DSSS,另一种是跳频扩频FHSS。

CDMA系统的重要特点是每个站分配的码片序列不仅必须各不相同,并且还必须互相正交,并且在实用的系统中是使用伪随机码序列。

在早期的电话网当中,从电话局到用户电话机的用户线采用最廉价的双绞线电缆,而长途干线采用的是频分复用FDM的模拟传输方式。由于数字通信与模拟通信相比,无论数传输质量上还是从经济上都有明显的优势,所以现在长途干线大都采用时分复用PCM的数字传输方式。

但是早期的数字传输系统有着许多的缺点,其中最主要的是以下两个:
(1)速率标准不统一: 由于历史的原因,多路复用的速率体系有两个互不兼容的国际标准。所以国际范围的基于光纤高速数据传输就很难实现。
(2)不是同步传输: 在过去各国的数字网主要是采用准同步的方式,所以当数据传输速率很高时,收发双方的时钟同步就成为很大的问题。

所以为了解决这些问题,美国推出了一个数字传输标准,叫做同步光纤网SONET。整个的同步网络的各级时钟都来自一个非常精确的主时钟。同时,SONET为光纤传输系统定义了同步传输的线路速率等级结构:

宽带的接入技术主要包括有线宽带接入和无线宽带接入。在这里先来介绍有线宽带接入。

ADSL技术的全称是非对称数字用户线技术,具体指的是用数字技术对现有的模拟电话用户线进行改造,使它能够承载宽带数字业务。具体来说ADSL技术就是把0-4 kHZ这一段低端频谱留给传统电话使用,而把原来没有被利用的高端频谱留给用户上网使用。

ADSL的 传输距离 取决于数据率和用户线的线径(用户线越细,信号传输时的衰减就越大)。而ADSL所能得到的最高数据传输速率还与实际的用户线上的信噪比密切相关。

ADSL在 数据率 方面由于用户在线的具体条件相差较大,因此ADSL采用自适应调制技术使用户线能够传送尽可能高的数据率。当ADSL启动时,用户线两端的ADSL调制解调器就测试可用的频率、各子信道受到干扰的情况以及在每一个频率上测试信号的传输质量。但是ADSL不能保证固定的数据率,所以对于用户线很差的甚至无法开通ADSL。

基于ADSL的接入网由以下三大部分组成:数字用户线接入复用器,用户线和用户家中的一些设施。

ADSL技术也在发展,现在已经有了更高速率的ADSL标准,称之为 第二代ADSL ,第二代ADSL改进的地方主要是:
1. 通过提高调制效率得到了更高的数据率。
2. 采用了无缝速率自适应技术SRA,可在运营中不中断通信和不产生误码的情况下,自适应的调整数据率。
3. 改善了线路质量评测和故障定位功能。

HFC网是目前覆盖面很广的有线电视网CATV的基础上开发的一种居民宽带接入网,除了可以传送CATV外,还能提供电话、数据和其他宽带交互型业务。

为了提高传输的质量,HFC网将原有线电视网中的同轴电缆主干部分改换为光纤,而光纤从头端连接到光纤结点,在光纤结点光信号被转换为电信号,最后信号被送到每一个用户的家庭。

FTTx是一种实现宽带居民接入网的方案,代表多种宽带接入的方式。这里的x代表不同的光纤接入地点,例如FTTH光纤到户,FTTB光纤到大楼等等。

现在的长距离信号传输大都是采用光纤传输,只有在到了临近用户家中时,才将光纤转换为铜缆。但是一个用户是远用不了一根光纤的通信容量,因此我们在光纤干线和用户之间安装一种转换装置即 光配线网 ,使得许多用户能够共享一根光纤的通信容量。由于光配线网无需使用电源,因此我们将其称为无源光网络。

② 我们平时所用到的wifi协议是属于TCP/IP体系结构中的物理层对吗

1、应用层

是直接为应用进程提供服务的。对不同种类的应用程序它们会根据自己的需要来使用应用层的不同协议;定义数据格式并按照对应的格式解读数据,加密、解密、格式化数据;应用层可以建立或解除与其他节点的联系,这样可以充分节省网络资源。

2、运输层

作为TCP/IP协议的第二层,运输层在整个TCP/IP协议中起到了中流砥柱的功能。且在运输层中,TCP和UDP也同样起到了中流砥柱的作用。主要功能是定义端口,标识应用程序身份,实现端口到端口的通信,TCP协议可以保证数据传输的可靠性。

3、网络层

网络层在TCP/IP协议中的位于第三层。在TCP/IP协议中网络层可以进行网络连接的建立和终止以及IP地址的寻找等功能。网络层的主要功能是定义网络地址、区分网段、子网内MAC寻址、对于不同子网的数据包进行路由。

4、网络接口层

在TCP/IP协议中,网络接口层位于第四层。由于网络接口层兼并了物理层和数据链路层,所以网络接口层既是传输数据的物理媒介,也可以为网络层提供一条准确无误的线路。

③ 物理层的作用是什么

物理层主要功能:为数据端设备提供传送数据通路、传输数据。

1、为数据端设备提供传送数据的通路,数据通路可以是一个物理媒体,也可以是多个物理媒体连接而成。一次完整的数据传输,包括激活物理连接,传送数据,终止物理连接。所谓激活,就是不管有多少物理媒体参与,都要在通信的两个数据终端设备间连接起来,形成一条通路。

2、传输数据,物理层要形成适合数据传输需要的实体,为数据传送服务。一是要保证数据能在其上正确通过,二是要提供足够的带宽(带宽是指每秒钟内能通过的比特(BIT)数),以减少信道上的拥塞。传输数据的方式能满足点到点,一点到多点,串行或并行,半双工或全双工,同步或异步传输的需要。

3、完成物理层的一些管理工作。

物理层定义了通过连接网络节点的物理数据链路传输原始比特的方式。的比特流可以被分组为码字或符号,并转换为一个物理信号是在发送的传输介质。物理层为传输介质提供电气、机械和程序接口。电连接器的形状和属性、广播频率、使用的线路代码和类似的低级参数,由物理层指定。

组成部分

物理层的媒体包括架空明线、平衡电缆、光纤、无线信道等。通信用的互连设备指DTE和DCE间的互连设备。DTE即数据终端设备,又称物理设备,如计算机、终端等都包括在内。而DCE则是数据通信设备或电路连接设备,如调制解调器等。

数据传输通常是经过DTE──DCE,再经过DCE──DTE的路径。互连设备指将DTE、DCE连接起来的装置,如各种插头、插座。LAN中的各种粗、细同轴电缆、T型接、插头,接收器,发送器,中继器等都属物理层的媒体和连接器。

物理层协议

1、 电话网络modems-V.92

2、 IRDA物理层

3、 USB物理层

4、 EIARS-232,EIA-422,EIA-423,RS-449,RS-485

5、 Ethernet physical layerIncluding10BASE-T,10BASE2;

10BASE5,100BASE-TX,100BASE-FX,100BASE-T,1000BASE-T,1000BASE-SX还有其他类型。

6、 Varieties of802.11Wi-Fi物理层

7、 DSL

8、 ISDN

9、 T1 and otherT-carrierlinks, and E1 and otherE-carrierlinks

10、 SONET/SDH

11、 Optical Transport Network(OTN)

12、 GSMUm air interface物理层

13、 Bluetooth物理层

14、 ITURecommendations: seeITU-T

15、 IEEE 1394 interface

16、 TransferJet物理层

17、 Etherloop

18、 ARINC 818航空电子数字视频总线

19、 G.hn/G.9960物理层

20、 CAN bus(controller area network)物理层

以上内容参考网络-物理层

④ 无线传感器网络物理层有哪些关键技术,并简要说明

无线传感器网络物理层基本就是实现各功能的模块,传感器模块、处理模块、无线收发模块、能量供应模块等,具体的技术解答可咨询信立科技的专业技术人员,他们专门负责这一块的,可以考虑咨询。

⑤ 无线局域网的物理层主要有哪几种

802.11家族谱,蓝牙新贵,家庭网络的homeRF

⑥ 笔记本电脑无线上网的原理是什么

无线网卡的工作原理是微波射频技术,笔记本目前有WIFI、GPRS、CDMA等几种无线数据传输模式来上网,后两者由中国电信和中国联通来实现,前者电信或网通有所参与,但不多主要是自己拥有接入互联网的WIFI基站(其实就是WIFI路由器等)和笔记本用的WIFI网卡。要说基本概念是差不多的,通过无线形式进行数据传输。无线上网遵循802.1q标准,通过无线传输,有无线接入点发出信号,用无线网卡接受和发送数据。

按照IEEE802.11协议,无线局域网卡分为媒体访问控制(MAC)层和物理层(PHY Layer)在两者之间,还定义了一个媒体访问控制-物理(MAC-PHY)子层(Sublayers)。MAC层提供主机与物理层之间的接口,并管理外部存储器,它与无线网卡硬件的NIC单元相对应。

物理层具体实现无线电信号的接收与发射,它与无线网卡硬件中的扩频通信机相对应。物理层提供空闲信道估计CCA信息给MAC层,以便决定是否可以发送信号,通过MAC层的控制来实现无线网络的CCSMA/CA协议,而MAC-PHY子层主要实现数据的打包与拆包,把必要的控制信息放在数据包的前面。

IEEE802.11协议指出,物理层必须有至少一种提供空闲信道估计CCA信号的方法。无线网卡的工作原理如下:当物理层接收到信号并确认无错后提交给MAC-PHY子层,经过拆包后把数据上交MAC层,然后判断是否是发给本网卡的数据,若是,则上交,否则,丢弃。

如果物理层接收到的发给本网卡的信号有错,则需要通知发送端重发此包信息。当网卡有数据需要发送时,首先要判断信道是否空闲。若空,随机退避一段时间后发送,否则,暂不发送。由于网卡为时分双工工作,所以,发送时不能接收,接收时不能发。

⑦ 物理层功能和作用

物理层作用:

1、物理层要尽可能地屏蔽掉物理设备和传输媒体,通信手段的不同,使数据链路层感觉不到这些差异,只考虑完成本层的协议和服务。

2、给其服务用户(数据链路层)在一条物理的传输媒体上传送和接收比特流(一般为串行按顺序传输的比特流)的能力,为此,物理层应该解决物理连接的建立、维持和释放问题。

3、在两个相邻系统之间唯一地标识数据电路。

物理层主要功能:

1、为数据端设备提供传送数据的通路,数据通路可以是一个物理媒体,也可以是多个物理媒体连接而成。一次完整的数据传输,包括激活物理连接,传送数据,终止物理连接。所谓激活,就是不管有多少物理媒体参与,都要在通信的两个数据终端设备间连接起来,形成一条通路。

2、传输数据,物理层要形成适合数据传输需要的实体,为数据传送服务。一是要保证数据能在其上正确通过,二是要提供足够的带宽(带宽是指每秒钟内能通过的比特(BIT)数),以减少信道上的拥塞。

传输数据的方式能满足点到点,一点到多点,串行或并行,半双工或全双工,同步或异步传输的需要。

3、完成物理层的一些管理工作。

(7)请简述无线网络的物理层扩展阅读:

物理层的主要特点:

由于在OSI之前,许多物理规程或协议已经制定出来了,而且在数据通信领域中,这些物理规程已被许多商品化的设备所采用。

加之,物理层协议涉及的范围广泛,所以至今没有按OSI的抽象模型制定一套新的物理层协议,而是沿用已存在的物理规程,将物理层确定为描述与传输媒体接口的机械,电气,功能和规程特性。

由于物理连接的方式很多,传输媒体的种类也很多,因此,具体的物理协议相当复杂。[2]

信号的传输离不开传输介质,而传输介质两端必然有接口用于发送和接收信号。因此,既然物理层主要关心如何传输信号,物理层的主要任务就是规定各种传输介质和接口与传输信号相关的一些特性。

信号的传输离不开传输介质,而传输介质两端必然有接口用于发送和接收信号。因此,既然物理层主要关心如何传输信号,物理层的主要任务就是规定各种传输介质和接口与传输信号相关的一些特性。

机械特性

也叫物理特性,指明通信实体间硬件连接接口的机械特点,如接口所用接线器的形状和尺寸、引线数目和排列、固定和锁定装置等。这很像平时常见的各种规格的电源插头,其尺寸都有严格的规定。

已被ISO 标准化了的DCE接口的几何尺寸及插孔芯数和排列方式。

DTE(Data Terminal Equipment,数据终端设备,用于发送和接收数据的设备,例如用户的计算机)的连接器常用插针形式,其几何尺寸与。

DCE(Data Circuit-terminating Equipment,数据电路终接设备,用来连接DTE与数据通信网络的设备,例如Modem调制解调器)连接器相配合,插针芯数和排列方式与DCE连接器成镜像对称。

电气特性

规定了在物理连接上,导线的电气连接及有关电路的特性,一般包括:接收器和发送器电路特性的说明、信号的识别、最大传输速率的说明、与互连电缆相关的规则、发送器的输出阻抗、接收器的输入阻抗等电气参数等。

功能特性

指明物理接口各条信号线的用途(用法),包括:接口线功能的规定方法,接口信号线的功能分类--数据信号线、控制信号线、定时信号线和接地线4类。

规程特性

指明利用接口传输比特流的全过程及各项用于传输的事件发生的合法顺序,包括事件的执行顺序和数据传输方式,即在物理连接建立、维持和交换信息时,DTE/DCE双方在各自电路上的动作序列。

以上4个特性实现了物理层在传输数据时,对于信号、接口和传输介质的规定。

参考资料来源:网络-物理层

⑧ 无线网卡的工作原理是怎么一回事,信号如何接受

1.无线网卡的作用、功能跟普通电脑网卡一样,是用来连接到局域网上的。它只是一个信号收发的设备,只有在找到上互联网的出口时才能实现与互联网的连接,所有无线网卡只能局限在已布有无线局域网的范围内。


2.补充:
无线网卡就是不通过有线连接,采用无线信号进行连接的网卡。无线网卡根据接口不同,主要有PCMCIA无线网卡、PCI无线网卡、MiniPCI无线网卡、USB无线网卡、CF/SD无线网卡几类产品。

3.从速度来看,无线上网卡现在主流的速率为54M和108M,该性能和环境有很大的关系。
54Mbps:其WLAN传输速度一般在16-30Mbps之间,换算成MB也就是每秒传输速度在2MB-4MB左右。取其中间值3MB,这样的速度要传输100MB的文件需要35秒左右,要传输1GB的文件,则需要至少4分钟以上。
108Mbps:其WLAN传输速度一般在24-50Mbps之间,换算成MB也就是每秒传输速度在3MB-6MB左右。取其中间值4.5MB,这样的速度要传输100MB的文件需要25秒左右,要传输1GB的文件,则需要至少2分半钟以上。


使用方法如下:

1.把无线网卡插入USB接口后,红色指示灯会亮起,这时计算机会自动识别该无线网卡,如果无线网卡没有质量问题,计算机会在右下角显示“新硬件已安装并可以使用”。

阅读全文

与请简述无线网络的物理层相关的资料

热点内容
为什么联通的wifi网络信号差 浏览:120
网络盒子wifi放大器 浏览:654
网络不好怎样设置可以省电 浏览:817
王十五网络营销模式 浏览:242
有线网络转移wifi设备 浏览:559
无线网络切换到ap模式 浏览:912
江西网络企业品牌策划电话多少 浏览:912
怎么判断有网络 浏览:925
广西网络电视怎么登录 浏览:986
计算机网络技术专业好创业吗 浏览:392
企业网络宣传代理多少钱 浏览:777
内网安装路由器多有影响网络吗 浏览:126
企业如何命名网络 浏览:109
low货是什么意思网络用语 浏览:730
如何自制电脑网络插件 浏览:558
手机提示危险网络是什么意思 浏览:207
中国移动网络代理服务器 浏览:632
tenda路由器连接上网络但不能用 浏览:71
如何使网络数据信号变好 浏览:116
怎么样才能不需要网络安全 浏览:520

友情链接