‘壹’ 为什么传统网络的mac协议不适用于无线传感器网络呢
没有统一的MAC协议分类方式,但是大体依据标准分为三种,如根据网络拓扑结构方式(分布式和集中式控制);使用单一或多信道方式;采用固定分配信道还是随机访问信道方式。
已有的参考文献也将无线传感器网络MAC协议分为三类:确定性分配、竞争占用和随机访问。前两者不是传感器网络的理想选择。因为TDMA固定时隙的发送模式功耗过大,为了节省功耗,空闲状态应关闭发射机。竞争占用方案需要实时监测信道状态也不是一种合理的选择。随机介质访问模式比较适合于无线传感网络的节能要求。
下面介绍根据信道分配使用方式,将无线传感器网络MAC协议分为基于无线信道随机竞争方式和时分复用方式及哪氏基于时分和频分复用等其他混合方式三种。
1) 无线信道随机竞争接入方式(CSMA)
节点需要发送数据时采用随机方式使用无线信道,典型的如采用载波监听多路访问(CSMA)的MAC协议,需要注意隐藏终端和暴露终端问题,尽量减少节点间的干扰。
2) 无线信道时分复用无竞争接入方式(TDMA)
采用时分复用(TDMA)方式给每个节点分配了一个固定的无线信道使用时段,可以有效避免节点间的干扰。
旅兄3) 无线信道时分/频分/码分等混合复用接入方式(TDMA/FDMA/CDMA)
通过混合采用时分和频分或码分李镇散等复用方式,实现节点间的无冲突信道分配策略。
‘贰’ 无线传感器网络的认证机制有哪些
与传统网络不同,无线传感器网络通常部署在野外或者敌方区域,其网络节点成本低廉、结构较为松散、不具备抗篡改能力、且容易被攻击者俘获,无线传感网络的安全问题已经成为制约其发展的主要瓶颈之一,认证技术是安全体系中的重要组成部分,因此研究无线传感器网络的认证技术具有重要意义。本文结合无线传感器网络节点协同工作的特点,采用混淆多项式技术,着重研究适合该网络的数据认证机制,主要工作包括以下几个方面:
(1)针对无线传感器网络中已有的广播认证机制难以支持广播优化、存在延迟等不足,本文基于虚拟骨干网的思想,构建一个动态阶梯型网络,采用多项式技术,提出了一种能够识别转发节点身份的广播认证机制及其改进方案,与已有广播认证机制相比,该机制计算简单、认证延迟低、能够容忍大量的俘获节点,而且能够支持层次广播优化策略,更适用于大规模网络。
(2)针对无线传感器网络中已有的网内数据认证机制通常受到t门限值的限制,且难以支持动态路由的缺陷,本文基于虚拟证人簇的思想,采用混淆多项式技术,由云团内部多个节点协作生成认证多项式,加大了攻击难度;在此基础上提出的网内数据认证机制,能即时验证数据的有效性,并且支持动态路由。理论分析和仿真测试表明,新算法不受t门限值的限制,随着传输跳数的增加其节能效果更为明显,与已有的网内数据认证机制相比,抗俘获能力增强,更适用于可信度较低的网络,以及远距离传输场景的应用。
(3)根据上述提出的多项式数据认证机制,在OMNet++平台上,实现了基于多项式认证的仿真系统,包括定义该仿真系统的总体结构,各功能层次所实现的具体功能,以及算法的具体实现等。本文采用源节点随机发送正确的数据包和伪造的数据包的方式来测试分析所提算法的认证能力,仿真结果表明,该系统能够有效地对数据包的新鲜性、完整性和可靠性进行认证,并能识别和剔除虚假数据。http://ic.big-bit.com/
‘叁’ 无线传感器网络节能方法
李佳
19011210599
【嵌牛导读】无线传感器网络是由大量传感器构成的网络,每个传感器节点的能量都是由电池提供,由于传感器节点体积小功能全所以电池体积小容量小的特点使得每个传感器节点的能量都是有限使得传感器网络的生命周期受限。而传感器网络生命周期太短会带来很多的不方便,因为无线传感器网路大多部署在偏远地区以及环境条件极其恶劣的地方,电池能量供应有限,人员不可达等都限制其广泛部署。
【嵌牛鼻子】分簇 生命周期 节点剩余能量 簇头
【嵌牛提问】如何有效减小通信过程中的能耗
【嵌牛正文】 分簇是作为减小有用耗能的理想的方法能够能够有效减少无线通信次数减少拥塞,而选择簇头的方法能够均衡能效,在源头进行数据聚合压缩可以减少数据发送量,由于无线通信是无线传感器网络中最耗能的原因,所以用簇头来传递数据能够节约大量的能量,而且分簇的方法对于网络的扩展性也有很大改善,一旦网络需要扩展都是直接成簇扩展而不用考虑新加入的网络节点会破坏网络本来的结构,也就是分簇以后网络的稳健性也得到了很大的提升。
【分簇技术】
1、双簇头法:在节点同构时虽然初始能量一样,但是由于硬件原因或者外界因素不能保证每个节点上的能耗是一样的,所以有的簇头可能由于硬件或者外界因素而导致能量消耗过快而失效,则该簇内节点感知到的数据将会无处可传,那么这部分数据就会不能传递到基站,在节点异够能量的时候也会存在这样的问题,当只有一个簇头的时候,只要该簇头失效,则网络生命周期便大打折扣,建立主副簇头的方法能够有效改善单簇头引起的能量空洞问题
2、根据权重选择簇头 :距离权重和能量权重的加和,离汇聚节点远的节点能量相对较多以减少因长距离通信引起的网络失联。
3、根据节点剩余能量分簇:总是能够在剩余节点中找到能量最大的节点作为簇头,因为簇头在通信过程中的大能耗问题使得这样的方法得到更广泛的应用。
【 分簇协议 】
LEACH LEACH-C SEP HEED DEEC DDEEC 等一些更加先进的技术 。
无线传感器网络的节能问题并未得到根本性的改善,节能的工作任重道远。
‘肆’ 无线传感器网络
无线传感器网络(wirelesssensornetwork,WSN)是综合了传感器技术、嵌入式计算机技术、分布式信息处理技术和无线通信技术,能够协作地实时监测、感知和采集网络分布区域内的各种环境或监测对象的信息,并对这些数据进行处理,获得详尽而准确的信息。传送到需要这些信息的用户。它是由部署在监测区域内大量的廉价微型传感器节点组成,通过无线通信方式形成一个多跳的自组织的网络系统。传感器、感知对象和观察者构成了传感器网络的三要素。
无线传感器网络作为当今信息领域新的研究热点,涉及到许多学科交叉的研究领域,要解决的关键技术很多,比如:网络拓扑控制、网络协议、网络安全、时间同步、定位技术、数据融合、数据管理、无线通信技术等方面,同时还要考虑传感器的电源和节能等问题。
所谓部署问题,就是在一定的区域内,通过适当的策略布置传感器节点以满足某种特定的需求。优化节点数目和节点分布形式,高效利用有限的传感器网络资源,最大程度地降低网络能耗,均是节点部署时应注意的问题。
目前的研究主要集中在网络的覆盖问题、连通问题和能耗问题3个方面。
基于节点部署方式的覆盖:1)确定性覆盖2)自组织覆盖
基于网格的覆盖:1)方形网格2)菱形网格
被监测目标状态的覆盖:1)静态目标覆盖2)动态目标覆盖
连通问题可描述为在传感器节点能量有限,感知、通信和计算能力受限的情况下,采用一定的策略(通常设计有效的算法)在目标区域中部署传感器节点,使得网络中的各个活跃节点之间能够通过一跳或多跳方式进行通信。连通问题涉及到节点通信距离和通信范围的概念。连通问题分为两类:纯连通与路由连通。
覆盖中的节能对于覆盖问题,通常采用节点集轮换机制来调度节点的活跃/休眠时间。连通中的节能针对连通问题,也可采用节点集轮换机制与调整节点通信距离的方法。而文献中涉及最多的主要是从节约网络能量和平衡节点剩余能量的角度进行路由协议的研究。
‘伍’ 协议相比,无线传感器网络的路由协议具有哪些特点
与传统网络的路由协议相比,无线传感器网络的路由协议具有以下特点:
(1)能量优先
由于节点的能量有限,因此需要考虑节点的能量消耗以及网络能量均衡使用的问题。
(2)基于局部拓扑信息
节点只能获取局部拓扑信息且资源有限,需要实现简单高效的路由机制。
(3)以数据为中心
传感器网络通常包含多个传感器节点到少数汇聚节点的数据流,按照对感知数据的需求、数据通信模式和流向等,以数据为中心形成信息的转发路径。
(4)应用相关
传感器网络的应用环境千差万别,需要针对每一个具体应用的需求,设计与之适应的特定路由机制。
根据无线传感器网络路由的特点,现阶段WSN路由协议设计要遵从如下原则:
(1)能量利用率优先考虑
无线传感器网络路由协议以节能为目标,采用各种方式减少通信消耗,延长WSN的生存时间。
(2)数据为中心
以数据为中心的路由协议要求采用基于属性的命名机制,某个节点的故障并不会影响整个协议的运行,提高了网络的强健性。
(3)不影响传感器节点探测精度条件下的数据聚合
通过数据聚合,将多个节点的数据综合成有意义的信息,提高了感知信息的准确性,同时增强了系统的强健性。
(4)实现节点定位和目标追踪
通过节点定位,达到路由决策的目的,同时降低整个系统的能量消耗,提高系统的生存时间。
‘陆’ 无线传感网络的照明控制系统研究的意义
无线传感网络的照明控制系统研意义:
基于无线传感网络教室灯光自动控制系统的研究该系统实用性强,能根据外界光线的强弱自动控制教室电灯的开启,从而能有效提高教学效果,同时避免了过亮的灯光产生的浪费。 该课题还可以应用于路灯等其它自动控制系统中,进行科学管理,达到节能的效 果,应用前景广泛。
‘柒’ 无线传感器在网络中的应用设计
下面是由整理的毕业设计论文《无线传感器在网络中的应用设计》,欢迎阅读。
1引言
无线传感器网络(Wireless Sensor Networks,简称WSNs)是由部署在监测区域内大量的廉价微型传感器节点组成,通过无线通信形成一个多跳自组织网络系统,能够实时监测、感知和采集网络分布区域内监视对象的各种信息,并加以处理,完成数据采集和监测任务。WSNs综合了传感器、嵌入式计算、无线通讯、分布式信息处理等技术,具有快速构建、自配置、自调整拓扑、多跳路由、高密度、节点数可变、无统一地址、无线通信等特点,特别适用于大范围、偏远距离、危险环境等条件下的实时信息监测,可以广泛应用于军事、交通、环境监测和预报、卫生保健、空间探索等各个领域。
2节点的总体设计和器件选型
2.1节点的总体设计
WSNs微型节点应用数量比较大,更换和维护比较困难,要求其节点成本低廉和工作时间尽可能长;功能上要求WSNs中不应该存在专门的路由器节点,每个节点既是终端节点,又是路由器节点。节点间采用移动自组织网络联系起来,并采用多跳的路由机制进行通信。因此,在单个节点上,一方面硬件必须低能耗,采用无线传输方式;另一方面软件必须支持多跳的路由协议。基于这些基本思想,设计了以高档8位AVR单片机ATmega128L为核心,结合外围传感器和2.4 GHz无线收发模块CC2420的WSNs微型节点。这两款器件的体积非常小,加上外围电路,其整体体积也很小,非常适合用作WSNs节点的元件。
图1给出WSNs微型节点结构。它由数据采集单元、数据处理单元、数据传输单元和电源管理单元4部分组成。数据采集单元负责监测区域内信息的采集和数据转换,设计中包括了可燃性气体传感器和湿度传感器;数据处理单元负责控制整个节点的处理操作、路由协议、同步定位、功耗管理、任务管理等;数据传输单元负责与其他节点进行无线通信,交换控制消息和收发采集数据;电源管理单元选通所用到的传感器,节点电源由几节AA电池组成,实际工业应用中采用微型纽扣电池,以进一步减小体积。为了调试方便及可扩展性,可将数据采集单元独立出来,做成两块能相互套接的可扩展主板。
2.2处理器选型
处理器的选型要求和指标是功耗低,保证长时间不更换电源也能顺利工作,供给电压小于5 V,有较快的处理速度和能力,由于节点是需要大量安置的,所以价格也要相对便宜。选用AVR单片机,考虑到电路中I/O的个数不多,功耗低、成本低、适合与无线器件接口配合等多方面因素,综合对比后,选用Atmel公司的ATmega128L。该微型控制器拥有丰富的片上资源,包括4个定时器、4 KB SRAM、128KB Flash和4 KBEEPROM;拥有UART、SPI、I2C、JTAG接口,方便无线器件和传感器的接入;有6种电源节能模式,方便低功耗设计。
2.3无线通信器件选型 CC2420是一款符合ZigBee技术的高集成度工业用射频收发器,其MAC层和PHY层协议符合802.15.4规范,工作于2.4 GHz频段。该器件只需极少外部元件,即可确保短距离通信的有效性和可靠性。数据传输单元模块支持数据传输率高达250 Kb/s,即可实现多点对多点的快速组网,系统体积小、成本低、功耗小,适于电池长期供电,具有硬件加密、安全可靠、组网灵活、抗毁性强等特点。
2.4传感器选型
由于WSNs是用于矿下安全监测,常要检测矿下可燃气体的浓度(预防瓦斯气体浓度过高)和空气湿度,所以要选择测量气体浓度和湿度的传感器。
2.4.1 HIH-4000系列测湿传感器
HIH-4000系列测湿传感器作为一个低成本、可软焊的单个直插式组件(SIP)能提供仪表测量质量的相对湿度(RH)传感性能。RH传感器可用在二引线间有间距的配量中,它是一个热固塑料型电容传感元件,其内部具有信号处理功能。传感器的多层结构对应用环境的不利因素,诸如潮湿、灰尘、污垢、油类和环境中常见的化学品具有最佳的抗力,因此可认定它能适用矿下环境。
2.4.2 MR511热线型半导体气敏元件
MR511型气敏元件利用气体吸附在金属氧化物半导体表面而产生热传导变化及电传导变化的原理,由白金线圈电阻值变化测定气体浓度。MR511由检测元件和补偿元件配对组成电桥的两个臂,遇可燃性气体时,检测元件的电阻减小,桥路输出电压变化,该电压变化随气体浓度的增大而成比例增大,补偿元件具有温度补偿作用。MR511除具有灵敏度高、响应恢复时间短、稳定性好特点外,还具有功耗小,抗环境温湿度干扰能力强的优点。WSNs的节能和井下恶劣温湿环境要求MR5111可以满足。
3 WSNs节点设计
3.1数据采集单元
考虑到无线传感器网络节点的节能和井下恶劣的温湿环境,为了便于数据采集,系统设计采用HIH-4000-01型测湿度传感器和MR511热线型半导体气体传感器。图2、图3分别给出其电路设计图。
3.2数据处理单元
ATmega128L的外围电路设计简单,设计时注意在数字电路的电源并人多只电容滤波。ATmega128L的工作时钟源可以选取外部晶振、外部RC振荡器、内部RC振荡器、外部时钟源等方式。工作时钟源的选择通过ATmega128L的内部熔丝位来设计。熔丝位可以通过JTAG编程、ISP编程等方式设置。ATmega128L采用7.3728 MHz和32.768 kHz两个外部晶振。前者用作工作时钟,后者用作实时时钟源。
3.3数据传输单元
3.3.1 CC2420外围电路设计
图4给出数据传输单元的外围电路。CC2420只需要极少的外围元器件。其外围电路包括晶振时钟电路、射频输入/输出匹配电路和微控制器接口电路3部分。
射频输入/输出匹配电路主要用来匹配器件的输入输出阻抗,使其输入输出阻抗为50 Ω,同时为器件内部的PA及LNA提供直流偏置。射频输入/输出是高阻抗,有差别。射频端最适合的负载是115+j180 Ω。C61、C62、C71、C81、L61组成不平衡变压器,L62和L81匹配射频输入输出到50 Ω;L61和L62同时提供功率放大器和低噪声放大器的直流偏置。内部的T/R开关是为了切换低噪声放大器/功率放大器。R451偏置电阻是电流基准发生器的精密电阻。CC2420本振信号既可由外部有源晶体提供,也可由内部电路提供。若由内部电路提供时,需外加晶体振荡器和两只负载电容,电容的大小取决于晶体的频率及输入容抗等参数。设计采用16 MHz晶振时,其电容值约为22 pF。C381和C391是外部晶体振荡器的负载电容。片上电压调节器提供所有内部1.8 V电源的供应。C42是电压调节器的负载电容,用于稳定调节器。为得到最佳性能必须使用电源去耦。在应用中使用大小合适的去耦电容和功率滤波器是非常重要的。CC2420可以通过4线SPI总线(SI、SO、SCLK、CSn)设置器件的工作模式,并实现读,写缓存数据,读/写状态寄存器等。通过控制FIFO和FIFOP引脚接口的状态可设置发射/接收缓存器。
3.3.2配置IEEE 802.15.4工作模式
CC2420为IEEE 802.15.4的数据帧格式提供硬件支持。其MAC层的帧格式为:头帧+数据帧+校验帧;PHY层的帧格式为:同步帧+PHY头帧+MAC帧,帧头序列的长度可通过设置寄存器改变,采用16位CRC校验来提高数据传输的可靠性。发送或接收的数据帧被送入RAM中的128字节缓存区进行相应的帧打包和拆包操作。表1给出CC2420的四线串行SPI接口引脚功能。它是设计单片机电路的依据,充分发挥这些功能是设计无线通信产品的前提。
3.3.3 CC2420与单片机接口电路设计
图5给出CC2420与ATmega128L单片机的接口电路。CC2420通过简单的四线(SI、SO、SCLK、CSn)与SPI兼容串行接口配置,这时CC2420是受控的。ATmega128L的SPI接口工作在主机模式,它是SPI数据传输的控制方;CC2420设为从机工作方式。当ATmega128L的SPI接口设为主机工作方式时,其硬件电路不会自动控制SS引脚。因此,在SH通信时,应在SPI接口初始化,它是由程序控制SS,将其拉为低电平,此后,当把数据写入主机的SPI数据寄存器后,主机接口将自动启动时钟发生器,在硬件电路的控制下,移位传送,通过MOSI将数据移出ATmega128L,并同时从CC2420由MISO移人数据,8位数据全部移出时,两个寄存器就实现了一次数据交换。
4结语
通过对于无线传感器网络节点中传感器元件、数据处理模块、数据传输模块和电源的选择,设计了一种以CC2420和ATmega128L为主体的硬件方案。利用该方案设计的CC2420和ATmega128L的外围电路以及两者之间的接口电路。此外,还对传感器与单片机的接口电路进行设计。通过实验验证,设计的硬件节点基本上达到了项目要求,经调试能通过传感器正确真实地采集数据,并实现两个无线节点(两个电路板。AA电池供电)在30 m左右的通信、传输数据、并反映到终端设备。
‘捌’ 什么是无线传感技术
早在上世纪70年代,就出现了将传统传感器采用点对点传输、连接传感控制器而构成传感网络雏形,我们把它归之为第一代传感器网络。随着相关学科的不断发展和进步,传感器网络同时还具有了获取多种信息信号的综合处理能力,并通过与传感控制的相联,组成了有信息综合和处理能力的传感器网络,这是第二代传感器网络。而从上世纪末开始,现场总线技术开始应用于传感器网络,人们用其组建智能化传感器网络,大量多功能传感器被运用,并使用无线技术连接,无线传感器网络逐渐形成。
无线传感器网络是新一代的传感器网络,具有非常上世纪70年代,其发展和应用,将会给人类的生活和生产的各个领域带来深远影响。
无线传感器网络可以看成是由数据获取网络、数据颁布网络和控制管理中心三部分组成的。其主要组成部分是集成有传感器、处理单元和通信模块的节点,各节点通过协议自组成一个分布式网络,再将采集来的数据通过优化后经无线电波传输给信息处理中心。
‘玖’ 传感器网络实现时间同步的作用是什么
无线传感器网络时间同步机制的意义和作用主要体现在如下两方面:
1、传感器节点通常需要彼此协作,去完成复杂的监测和感知任务数据融合是协作操作的典型例子,不同的节点采集的数据最终融合形成了一个有意义的结果。
2、传感器网络的一些节能方案是利用时间同步来实现的。
传感器网络综合了传感器技术、嵌入式计算技术、现代网络及无线通信技术、分布式信息处理技术等,能够通过各类集成化的微型传感器协作地实时监测、感知和采集各种环境或监测对象的信息,通过嵌入式系统对信息进行处理,并通过随机自组织无线通信网络以多跳中继方式将所感知信息传送到用户终端。
(9)无线传感网络节能扩展阅读:
根据不同的依据,无线传感器网络的定位方法可以进行如下分类:
(1)根据是否依靠测量距离,分为基于测距的定位和不需要测距的定位;
(2)根据部署的场合不同,分为室内定位和室外定位;
(3)根据信息收集的方式,网络收集传感器数据称为被动定位,节点主动发出信息,用于定位称为主动定位无线传感器网络与应用。