1. 简述无线传感器网络路由协议的考虑因素
能耗:WSN节点通常使用电池或其他有限的能源供电,因此路由协议需要考虑尽量减少节点的能耗消耗,延长节点寿命。
通信质量:WSN节点通常通过无线信道进行通信,信道质量受到多种因素的影响,如信道噪声、信道干扰等。路由协议需要考虑如何利用有效的路由路径,最大限度地提高通信质量。
数据传输延迟:WSN通常用于实时监测和控制,路由协议需要保证数据在尽可能短的时间内传输到目标节点,以满足实时性的要求。
网络拓扑结构:WSN的节点通常分布在广泛的区域中,需要考虑网络的拓扑结构,如节点之间的距离、闭桐节点分布的密度、节点之间的关系等。
网络安全性:WSN的节点通常分布在开放环境中,可能会受到各种攻击,因此路由协议需要考虑网络安全性,防止节点被攻击,保护数据的安全。
路由协议的复杂度:WSN通常包含大量的节点,路由协议需要尽可能简单,易于实现和维护。
总之,WSN路由协议需要综合考虑以上多个因素,以满足不同应用场景档让下的要求,并保证网络的高效、稳定、安全轿蠢坦和可靠性。
2. 物联网感知层面临的安全威胁有哪些如何应对这些安全威胁
感知层安全威胁
物联网感知层面临的安全威胁主要如下:
T1 物理攻击:攻击者实施物理破坏使物联网终端无法正常工作,或者盗窃终端设备并通过破解获取用户敏感信息。
T2 传感设备替换威胁:攻击者非法更换传感器设备,导致数据感知异常,破坏业务正常开展。
T3 假冒传感节点威胁:攻击者假冒终端节点加入感知网络,上报虚假感知信息,发布虚假指令或者从感知网络中合法终端节点骗取用户信息,影响业务正常开展。
T4 拦截、篡改、伪造、重放:攻击者对网络中传输的数据和信令进行拦截、篡改、伪造、重放,从而获取用户敏感信息或者导致信息传输错误,业务无法正常开展。
T5 耗尽攻击:攻击者向物联网终端泛洪发送垃圾信息,耗尽终端电量,使其无法继续工作。
T6 卡滥用威胁:攻击者将物联网终端的(U)SIM卡拔出并插入其他终端设备滥用(如打电话、发短信等),对网络运营商业务造成不利影响。
感知层由具有感知、识别、控制和执行等能力的多种设备组成,采集物品和周围环境的数据,完成对现实物理世界的认知和识别。感知层感知物理世界信息的两大关键技术是射频识别(Radio Frequency Identification,RFID)技术和无线传感器网络(Wireless Sensor Networ
k,WSN)技术。因此,探讨物联网感知层的数据信息安全,重点在于解决RFID系统和WSN系统的安全问题。
RFID技术是一种通过射频通信实现的非接触式自动识别技术。基于RFID技术的物联网感知层结构如图1所示:每个RFID系统作为一个独立的网络节点通过网关接入到网络层。因此,该系统架构下的信息安全依赖于在于单个RFID系统的信息安全。
3. 无线传感器网络上的安全问题几解决方案
无线传感器网络WSN(WirelessSensorNetwork)是一种自组织网络,通过大量低成本、资源受限的传感节点设备协同工作实现某一特定任务。
它是信息感知和采集技术的一场革命,是21世纪最重要的技术之一。它在气候监测,周边环境中的温度、灯光、湿度等情况的探测,大气污染程度的监测,建筑的结构完整性监控,家庭环境的异常情况,机场或体育馆的化学、生物威胁的检测与预报等方面,WSN将会是一个经济的替代方案,有着广泛的应用前景。
传感器网络为在复杂的环境中部署大规模的网络,进行实时数据采集与处理带来了希望。但同时WSN通常部署在无人维护、不可控制的环境中,除了具有一般无线网络所面临的信息泄露、信息篡改、重放攻击、拒绝服务等多种威胁外,WSN还面临传感节点容易被攻击者物理操纵,并获取存储在传感节点中的所有信息,从而控制部分网络的威胁。用户不可能接受并部署一个没有解决好安全和隐私问题的传感网络,因此在进行WSN协议和软件设计时,必须充分考虑WSN可能面临的安全问题,并把安全机制集成到系统设计中去。只有这样,才能促进传感网络的广泛应用,否则,传感网络只能部署在有限、受控的环境中,这和传感网络的最终目标——实现普遍性计算并成为人们生活中的一种重要方式是相违背的。
一种好的安全机制设计是建立在胡空对其所面临的威胁、网络特点等的深刻分析基础之上的,传感网络也不例外,本文将深入分析无线传感器网络特点以及其所可能面临的安全威胁,并对其相应的安全对策进行了研究和探讨。
2.传感器网络特点分析
WSN是一种大规模的分布式网络,常部署于无人维护、条件恶劣的环境当中,且大多数情况下传感节点都是一次性使用,从而决定了传感节点是价格低廉、资源极度受限的无线通信设备[2],它的特点主要体现在以下几个方面:(1)能量有限:能量是限制传感节点能力、寿命的最主要的约束性条件,现有的传感节点都是通过标准的AAA或AA电池进行供电,并且不能重新充电。(2)计算能力有限:传感节点CPU一般只具有8bit、4MHz~8MHz的处理能力。(3)存储能力有限:传感节点一般包括三种形式的存储器即RAM、程序存储器、工作存储器。RAM用于存放工作时的临时数据,一般不超过2k字节;程序存储器誉渗用于存储操作系统、应用程序以及安全函数等,工作存储器用于存放获取的传感信息,这两种存储器一般也只有几十k字节。(4)通信范围有限:为了节约信号传输时的能量消耗,传感节点的RF模块的传输能量一般为10mW到100mW之间,传输的范围也局限于100米到1公里之内。(5)防篡改性:传感节点是一种价格低廉、结构松散、开放的网络设备,攻击者一旦获取传感节点就很容易获得和修改存储在传感节点中的密钥信息以及程序代码等。
另外,大多数传感器网络在进行部署前,其网络拓扑是无法预知的,同时部署后,整个网络拓扑、传感节点在网络中的角色也是经常变化的,因而不像有线网、大部分无线网络那样对网络设备进行完全配置,对传感节点进行预配置的范围是有限的,很多网络参数、密钥等都是传感节点在部署后进行协商后形成的。
根据以上无线传感器特点分析可知,无线传感器网络易于遭受传感节点的物理操纵、传感信息的窃听、拒绝服务攻击、私有信息的泄露等多种威胁和攻击。下面将根据WSN的特点,对WSN所面临的潜在安全威胁进行分类描述与对策探讨。
3.威胁分析与对策
3.1传感节点的物理操纵
未来的传感器网络一般有成百上千个传感节点,很难对每个节点进行监控和保护,因而每个节点都是一个潜在的攻击点,都能被攻击者进行物理和逻辑攻击。另外,传感器通常部署在无人维护的环境当中,这更加方便了攻击者捕获传裤虚瞎感节点。当捕获了传感节点后,攻击者就可以通过编程接口(JTAG接口),修改或获取传感节点中的信息或代码,根据文献[3]分析,攻击者可利用简单的工具(计算机、UISP自由软件)在不到一分钟的时间内就可以把EEPROM、Flash和SRAM中的所有信息传输到计算机中,通过汇编软件,可很方便地把获取的信息转换成汇编文件格式,从而分析出传感节点所存储的程序代码、路由协议及密钥等机密信息,同时还可以修改程序代码,并加载到传感节点中。
很显然,目前通用的传感节点具有很大的安全漏洞,攻击者通过此漏洞,可方便地获取传感节点中的机密信息、修改传感节点中的程序代码,如使得传感节点具有多个身份ID,从而以多个身份在传感器网络中进行通信,另外,攻击还可以通过获取存储在传感节点中的密钥、代码等信息进行,从而伪造或伪装成合法节点加入到传感网络中。一旦控制了传感器网络中的一部分节点后,攻击者就可以发动很多种攻击,如监听传感器网络中传输的信息,向传感器网络中发布假的路由信息或传送假的传感信息、进行拒绝服务攻击等。
对策:由于传感节点容易被物理操纵是传感器网络不可回避的安全问题,必须通过其它的技术方案来提高传感器网络的安全性能。如在通信前进行节点与节点的身份认证;设计新的密钥协商方案,使得即使有一小部分节点被操纵后,攻击者也不能或很难从获取的节点信息推导出其它节点的密钥信息等。另外,还可以通过对传感节点软件的合法性进行认证等措施来提高节点本身的安全性能。
4. 无线传感器知识大全,看完请收藏!
物联网是在现有互联网的基础上发展起来的,物联网除了融合网络、信息技术、RFID技术之外,还引入了无线传感器技术,使得物联网有了更深的发展,而且无线传感器技术还与嵌入式系统技术、现代网络以及无线通信技术进行结合,所以无线传感器本身也是一个炙手可热的研究领域。
传感器技术
无线传感器网络结构介绍
无线传感器网络系统通常包括汇聚节点(Sinknode)、传感器节点(Sensornode)与管理节点。
大量传感器节点随机部署在监测区域附近或者内部,传感器节点检测的数据沿着其他的传感器节点逐条地进行传输,在传输的过程中检测数据可能会被多个节点进行处理,经过跳后路由到汇聚的节点,然后通过卫星或者互联网传输到达管理节点,而用户通过对节点的管理对传感器网络进行管理、发布监测数据和管理。
传感器整体部署
无线传感器网络特点介绍
规模大
为了能够获取精确信息,在监测区域通常部署大量传感器节点,一般情况下会达到上万个甚至更多,传感器网络的大规模性主要包括了两个方面的含义:一方面是传感器节点的部署非常密集,在面积狭小的空间内密集的部署了大量的传感器节点。另一方面,是传感器节点分布在区域很大的范围内,比如在原始的大森林中采用传感器网络进行森林防火的安全环境监测,这种在区域宽广的范围内需要部署大量的传感器节点。
可靠性
无线传感器节点非常适合部署在自然环境恶劣或者人类不宜居住的区域,这些节点可能工作在环境较恶劣的地方,遭受风吹、雨淋、日晒,还甚至遭到人或者动物的破坏,而这些传感器节点往往采用随机进行部署,部署的方式是利用飞机散播,或炮弹发射到指定的区域进行部署,所以这些节点要非常坚固,不容易被损坏,可靠性很强。
自组织
在传感器网络应用中,通常情况下传感器节点会被放置在没有基础结构的地方,其实传感器节点的相隔距离、精确位置不能预先确定。你可以想象,通过飞机散播或者炮弹发射大量传感器节点到面积广阔的森林、山谷之中,这样就必须要求传感器节点本身具有自组织的能力,能够进行自我管理和配置,通过网络协议和拓扑控制机制自动形成转发监测数据的多跳无线网络系统。
动态性
传感器网络的拓扑结构有可能会因为下列因素而发生改变:①环境的变化可能会造成无线通信链路带宽产生变化,有时甚至会时断时通;②电力资源出现故障或耗尽导致的传感器节点故障或者失效;③传感器网络的感知对象、传感器与观察者这三要素都可能具有移动性;④有新节点加入,通常这种情况就必须要求传感器网络系统要能适应这种变化,具有动态系统可重构性。
无线传感器网络有哪些安全问题
安全路由
一般在无线传感器网络中,大量的传感器节点都密集分布在一个区域内,信息传输可能要经过很多节点才能到达目的地,而且传感器网络具有多跳结构和动态性,因此,需要去每个节点都应具备路由功能,
由于每个节点都是潜在的路由节点,因此更易受到攻击,这样就可能使网络不怎么安全,安全的路由算法会直接影响无线传感器的可用性和安全性,安全路由协议一般是采用认证和链路层加密,身份认证、多路径路由、双向连接认证和认证广播等机制,非常有效的提高了网络抵御外部攻击的能力,从而增强路由的安全性。
5. 无线传感器网络安全目标是要解决网络的哪些问题
无线通信和低功耗嵌入式技术的飞速发展,孕育出无线传感器网络(Wireless Sensor Networks, WSN),并以其低功耗、低成本、分布式和自组织的特点带来了信息感知的一场变革,无线传感器网络是由部署在监测区域内大量的廉价微型传感器节点,通过无线通信方式形成的一个多跳自组织网络。
信息安全
很显然,现有的传感节点具有很大的安全漏洞,攻击者通过此漏洞,可方便地获取传感节点中的机密信息、修改传感节点中的程序代码,如使得传感节点具有多个身份ID,从而以多个身份在传感器网络中进行通信,另外,攻击还可以通过获取存储在传感节点中的密钥、代码等信息进行,从而伪造或伪装成合法节点加入到传感网络中。一旦控制了传感器网络中的一部分节点后,攻击者就可以发动很多种攻击,如监听传感器网络中传输的信息,向传感器网络中发布假的路由信息或传送假的传感信息、进行拒绝服务攻击等。
对策:由于传感节点容易被物理操纵是传感器网络不可回避的安全问题,必须通过其它的技术方案来提高传感器网络的安全性能。如在通信前进行节点与节点的身份认证;设计新的密钥协商方案,使得即使有一小部分节点被操纵后,攻击者也不能或很难从获取的节点信息推导出其它节点的密钥信息等。另外,还可以通过对传感节点的合法性进行认证等措施来提高节点本身的安全性能。
根据无线传播和网络部署特点,攻击者很容易通过节点间的传输而获得敏感或者私有的信息,如:在使用WSN监控室内温度和灯光的场景中,部署在室外的无线接收器可以获取室内传感器发送过来的温度和灯光信息;同样攻击者通过监听室内和室外节点间信息的传输,也可以获知室内信息,从而非法获取出房屋主人的生活习惯等私密信息。[6]
对策:对传输信息加密可以解决窃听问题,但需要一个灵活、强健的密钥交换和管理方案,密钥管理方案必须容易部署而且适合传感节点资源有限的特点,另外,密钥管理方案还必须保证当部分节点被操纵后(这样,攻击者就可以获取存储在这个节点中的生成会话密钥的信息),不会破坏整个网络的安全性。由于传感节点的内存资源有限,使得在传感器网络中实现大多数节点间端到端安全不切实际。然而在传感器网络中可以实现跳-跳之间的信息的加密,这样传感节点只要与邻居节点共享密钥就可以了。在这种情况下,即使攻击者捕获了一个通信节点,也只是影响相邻节点间的安全。但当攻击者通过操纵节点发送虚假路由消息,就会影响整个网络的路由拓扑。解决这种问题的办法是具有鲁棒性的路由协议,另外一种方法是多路径路由,通过多个路径传输部分信息,并在目的地进行重组。
传感器网络是用于收集信息作为主要目的的,攻击者可以通过窃听、加入伪造的非法节点等方式获取这些敏感信息,如果攻击者知道怎样从多路信息中获取有限信息的相关算法,那么攻击者就可以通过大量获取的信息导出有效信息。一般传感器中的私有性问题,并不是通过传感器网络去获取不大可能收集到的信息,而是攻击者通过远程监听WSN,从而获得大量的信息,并根据特定算法分析出其中的私有性问题。因此攻击者并不需要物理接触传感节点,是一种低风险、的获得私有信息方式。远程监听还可以使单个攻击者同时获取多个节点的传输的信息。
对策:保证网络中的传感信息只有可信实体才可以访问是保证私有性问题的最好方法,这可通过数据加密和访问控制来实现;另外一种方法是限制网络所发送信息的粒度,因为信息越详细,越有可能泄露私有性,比如,一个簇节点可以通过对从相邻节点接收到的大量信息进行汇集处理,并只传送处理结果,从而达到数据化。
拒绝服务攻击(DoS)
专门的拓扑维护技术研究还比较少,但相关研究结果表明优化的拓扑维护能有效地节省能量并延长网络生命周期,同时保持网络的基本属性覆盖或连通。本节中,根据拓扑维护决策器所选维护策略
在无线传感器网络的研究中,能效问题一直是热点问题。当前的处理器以及无线传输装置依然存在向微型化发展的空间,但在无线网络中需要数量更多的传感器,种类也要求多样化,将它们进行链接,这样会导致耗电量的加大。如何提高网络性能,延长其使用寿命,将不准确性误差控制在最小将是下一步研究的问题。
采集与管理数据
在今后,无线传感器网络接收的数据量将会越来越大,但是当前的使用模式对于数量庞大的数据的管理和使用能力有限。如何进一步加快其时空数据处理和管理的能力,开发出新的模式将是非常有必要的。
无线通讯的标准问题
标准的不统一会给无线传感器网络的发展带来障碍,在接下来的发展中,要开发出无线通讯标准。
6. 关于无线传感器网络的安全,你认为未来面临的攻击主要包 含哪些
根据网络层次的不同,可以将无线传感器网络容易受到的威胁分为四类:
1、物理层:主要的攻击方法为拥塞攻击和物理破坏。
2、链路层:主要的攻击方法为碰撞攻击、耗尽攻击和非公平竞争。
3、网络层:主要的攻击方法为丢弃和贪婪破坏、方向误导攻击、黑洞攻击和汇聚节点攻击。
4、传输层:主要的攻击方法为泛洪攻击和同步破坏攻击。
安全需求
由于WSN使用无线通信,其通信链路不像有线网络一样可以做到私密可控。所以在设计传感器网络时,更要充分考虑信息安全问题。
手机SIM卡等智能卡,利用公钥基础设施(Public Key Infrastructure,PKI)机制,基本满足了电信等行业对信息安全的需求。同样,亦可使用PKI来满足WSN在信息安全方面的需求。
1、数据机密性
数据机密性是重要的网络安全需求,要求所有敏感信息在存储和传输过程中都要保证其机密性,不得向任何非授权用户泄露信息的内容。
2、数据完整性
有了机密性保证,攻击者可能无法获取信息的真实内容,但接收者并不能保证其收到的数据是正确的,因为恶意的中间节点可以截获、篡改和干扰信息的传输过程。通过数据完整性鉴别,可以确保数据传输过程中没有任何改变。
3、数据新鲜性
数据新鲜性问题是强调每次接收的数据都是发送方最新发送的数据,以此杜绝接收重复的信息。保证数据新鲜性的主要目的是防止重放(Replay)攻击。
4、可用性
可用性要求传感器网络能够随时按预先设定的工作方式向系统的合法用户提供信息访问服务,但攻击者可以通过伪造和信号干扰等方式使传感器网络处于部分或全部瘫痪状态,破坏系统的可用性,如拒绝服务(Denial of Service,DoS)攻击。
5、鲁棒性
无线传感器网络具有很强的动态性和不确定性,包括网络拓扑的变化、节点的消失或加入、面临各种威胁等,因此,无线传感器网络对各种安全攻击应具有较强的适应性,即使某次攻击行为得逞,该性能也能保障其影响最小化。
6、访问控制
访问控制要求能够对访问无线传感器网络的用户身份进行确认,确保其合法性。
7. 无线传感器网络的特点及关键技术
无线传感器网络的特点及关键技术
无线传感器网络被普遍认为是二十一世纪最重要的技术之一,是目前计算机网络、无线通信和微电子技术等领域的研究热点。下面我为大家搜索整理了关于无线传感器网络的特点及关键技术,欢迎参考阅读!
一、无线传感器网络的特点
与其他类型的无线网络相比,传感器网络有着鲜明的特征。其主要特点可以归纳如下:
(一)传感器节点能量有限。当前传感器通常由内置的电池提供能量,由于体积受限,因而其携带的能量非常有限。如何使传感器节点有限的能量得到高效的利用,延长网络生存周期,这是传感器网络面临的首要挑战。
(二)通信能力有限。无线通信消耗的能量与通信距离的关系为E=kdn。其中,参数n的取值为2≤n≤4,n的取值与许多因素有关。但是不管n具体的取值,n的取值范围一旦确定,就表明,无线通信的能耗是随着距离的增加而更加急剧地增加的。因此,在满足网络连通性的要求下,应尽量采用多跳通信,减少单跳通信的距离。通常,传感器节点的通信范围在100m内。
(三)计算、存储和有限。一方面为了满足部署的要求,传感器节点往往体积小;另一方面出于成本控制的目的`,节点的价格低廉。这些因素限制了节点的硬件资源,从而影响到它的计算、存储和通信能力。
(四)节点数量多,密度高,覆盖面积广。为了能够全面准确的监测目标,往往会将成千上万的传感器节点部署在地理面积很大的区域内,而且节点密度会比较大,甚至在一些小范围内采用密集部署的方式。这样的部署方式,可以让网络获得全面的数据,提高信息的可靠性和准确性。
(五)自组织。传感器网络部署的区域往往没有基础设施,需要依靠传感器节点协同工作,以自组织的方式进行网络的配置和管理。
(六)拓扑结构动态变化。传感器网络的拓扑结构通常是动态变化的,例如部分节点故障或电量耗尽退出网络,有新的节点被部署并加入网络,为节约能量节点在工作和休眠状态间进行切换,周围环境的改变造成了无线通信链路的变化,以及传感器节点的移动等都会导致传感器网络拓扑结构发生变化。
(七)感知数据量巨大。传感器网络节点部署范围大、数量多,且网络中的每个传感器通常都产生较大的流式数据并具有实时性,因此网络中往往存在数量巨大的实时数据流。受传感器节点计算、存储和带宽等资源的限制,需要有效的分布式数据流管理、查询、分析和挖掘方法来对这些数据流进行处理。
(八)以数据为中心。对于传感器网络的用户而言,他们感兴趣的是获取关于特定监测目标的真实可靠的数据。在使用传感器网络时,用户直接使用其关注的事件作为任务提交给网络,而不是去访问具有某个或某些地址标识的节点。传感器网络中的查询、感知、传输都是以数据为中心展开的。
(九)传感器节点容易失效。由于传感器网络应用环境的特殊性以及能量等资源受限的原因,传感器节点失效(如电池能量耗尽等)的概率远大于传统无线网络节点。因此,需要研究如何提高数据的生存能力、增强网络的健壮性和容错性以保证部分传感器节点的损坏不会影响到全局任务的完成。此外,对于部署在事故和自然灾害易发区域的无线传感器网络,还需要进一步研究当事故和灾害导致大部分传感器节点失效时如何最大限度地将网络中的数据保存下来,以提供给灾害救援和事故原因分析等使用。
二、关键技术
无线传感器网络作为当今信息领域的研究热点,设计多学科交叉的研究领域,有非常多的关键技术有待研究和发现,下面列举若干。
(一)网络拓扑控制。通过拓扑控制自动生成良好的拓扑结构,能够提高路由协议和MAC协议的效率,可为数据融合、时间同步和目标定位等多方面奠定基础,有利于节省能量,延长网络生存周期。所以拓扑控制是无线传感器网络研究的核心技术之一。目前,拓扑控制主要研究的问题是在满足网络连通度的前提下,通过功率控制或骨干网节点的选择,剔除节点之间不必要的通信链路,生成一个高效的数据转发网络拓扑结构。
(二)介质访问控制(MAC)协议。在无线传感器网络中,MAC协议决定无线信道的使用方式,在传感器节点之间分配有限的无线通信资源,用来构建传感器网络系统的底层基础结构。MAC协议处于传感器网络协议的底层部分,对传感器网络的性能有较大影响,是保证无线传感器网络高效通信的关键网络协议之一。传感器网络的强大功能是由众多节点协作实现的。多点通信在局部范围需要MAC协议协调其间的无线信道分配,在整个网络范围内需要路由协议选择通信路径。
在设计MAC协议时,需要着重考虑以下几个方面:
(1)节省能量。传感器网络的节点一般是以干电池、纽扣电池等提供能量,能量有限。
(2)可扩展性。无线传感器网络的拓扑结构具有动态性。所以MAC协议也应具有可扩展性,以适应这种动态变化的拓扑结构。
(3)网络效率。网络效率包括网络的公平性、实时性、网络吞吐量以及带宽利用率等。
(三)路由协议。传感器网络路由协议的主要任务是在传感器节点和Sink节点之间建立路由以可靠地传递数据。由于传感器网络与具体应用之间存在较高的相关性,要设计一种通用的、能满足各种应用需求的路由协议是困难的,因而人们研究并提出了许多路由方案。
(四)定位技术。位置信息是传感器节点采集数据中不可或缺的一部分,没有位置信息的监测消息可能毫无意义。节点定位是确定传感器的每个节点的相对位置或绝对位置。节点定位分为集中定位方式和分布定位方式。定位机制也必须要满足自组织性,鲁棒性,能量高效和分布式计算等要求。
(五)数据融合。传感器网络为了有效的节省能量,可以在传感器节点收集数据的过程中,利用本地计算和存储能力将数据进行融合,取出冗余信息,从而达到节省能量的目的。
(六)安全技术。安全问题是无线传感器网络的重要问题。由于采用的是无线传输信道,网络存在偷听、恶意路由、消息篡改等安全问题。同时,网络的有限能量和有限处理、存储能力两个特点使安全问题的解决更加复杂化了。
;8. 无线传感器网络的优缺点
一、优点
(1) 数据机密性
数据机密性是重要的网络安全需求,要求所有敏感信息在存储和传输过程中都要保证其机密性,不得向任何非授权用户泄露信息的内容。
(2)数据完整性
有了机密性保证,攻击者可能无法获取信息的真实内容,但接收者并不能保证其收到的数据是正确的,因为恶意的中间节点可以截获、篡改和干扰信息的传输过程。通过数据完整性鉴别,可以确保数据传输过程中没有任何改变。
(3) 数据新鲜性
数据新鲜性问题是强调每次接收的数据都是发送方最新发送的数据,以此杜绝接收重复的信息。保证数据新鲜性的主要目的是防止重放(Replay)攻击。
二、缺点
根据网络层次的不同,无线传感器网络容易受到的威胁:
(1)物理层:主要的攻击方法为拥塞攻击和物理破坏。
(2)链路层:主要的攻击方法为碰撞攻击、耗尽攻击和非公平竞争。
(3)网络层:主要的攻击方法为丢弃和贪婪破坏、方向误导攻击、黑洞攻击和汇聚节点攻击。
(4)传输层:主要的攻击方法为泛洪攻击和同步破坏攻击。
(8)无线传感器网络层的安全策略扩展阅读:
一、相关特点
(1)组建方式自由。
无线网络传感器的组建不受任何外界条件的限制,组建者无论在何时何地,都可以快速地组建起一个功能完善的无线网络传感器网络,组建成功之后的维护管理工作也完全在网络内部进行。
(2)网络拓扑结构的不确定性。
从网络层次的方向来看,无线传感器的网络拓扑结构是变化不定的,例如构成网络拓扑结构的传感器节点可以随时增加或者减少,网络拓扑结构图可以随时被分开或者合并。
(3)控制方式不集中。
虽然无线传感器网络把基站和传感器的节点集中控制了起来,但是各个传感器节点之间的控制方式还是分散式的,路由和主机的功能由网络的终端实现各个主机独立运行,互不干涉,因此无线传感器网络的强度很高,很难被破坏。
(4)安全性不高。
无线传感器网络采用无线方式传递信息,因此传感器节点在传递信息的过程中很容易被外界入侵,从而导致信息的泄露和无线传感器网络的损坏,大部分无线传感器网络的节点都是暴露在外的,这大大降低了无线传感器网络的安全性。
二、组成结构
无线传感器网络主要由三大部分组成,包括节点、传感网络和用户这3部分。其中,节点一般是通过一定方式将节点覆盖在一定的范围,整个范围按照一定要求能够满足监测的范围。
传感网络是最主要的部分,它是将所有的节点信息通过固定的渠道进行收集,然后对这些节点信息进行一定的分析计算,将分析后的结果汇总到一个基站,最后通过卫星通信传输到指定的用户端,从而实现无线传感的要求。
9. 无线传感器网络
无线传感器网络(wirelesssensornetwork,WSN)是综合了传感器技术、嵌入式计算机技术、分布式信息处理技术和无线通信技术,能够协作地实时监测、感知和采集网络分布区域内的各种环境或监测对象的信息,并对这些数据进行处理,获得详尽而准确的信息。传送到需要这些信息的用户。它是由部署在监测区域内大量的廉价微型传感器节点组成,通过无线通信方式形成一个多跳的自组织的网络系统。传感器、感知对象和观察者构成了传感器网络的三要素。
无线传感器网络作为当今信息领域新的研究热点,涉及到许多学科交叉的研究领域,要解决的关键技术很多,比如:网络拓扑控制、网络协议、网络安全、时间同步、定位技术、数据融合、数据管理、无线通信技术等方面,同时还要考虑传感器的电源和节能等问题。
所谓部署问题,就是在一定的区域内,通过适当的策略布置传感器节点以满足某种特定的需求。优化节点数目和节点分布形式,高效利用有限的传感器网络资源,最大程度地降低网络能耗,均是节点部署时应注意的问题。
目前的研究主要集中在网络的覆盖问题、连通问题和能耗问题3个方面。
基于节点部署方式的覆盖:1)确定性覆盖2)自组织覆盖
基于网格的覆盖:1)方形网格2)菱形网格
被监测目标状态的覆盖:1)静态目标覆盖2)动态目标覆盖
连通问题可描述为在传感器节点能量有限,感知、通信和计算能力受限的情况下,采用一定的策略(通常设计有效的算法)在目标区域中部署传感器节点,使得网络中的各个活跃节点之间能够通过一跳或多跳方式进行通信。连通问题涉及到节点通信距离和通信范围的概念。连通问题分为两类:纯连通与路由连通。
覆盖中的节能对于覆盖问题,通常采用节点集轮换机制来调度节点的活跃/休眠时间。连通中的节能针对连通问题,也可采用节点集轮换机制与调整节点通信距离的方法。而文献中涉及最多的主要是从节约网络能量和平衡节点剩余能量的角度进行路由协议的研究。
10. 有关无线传感器网络中时间同步机制有哪些方法和策略
1 时间同步技术的重要性
传感器节点的时钟并不完美,会在时间上发生漂移,所以观察到的时间对于网络中的节点来说是不同的。但很多网络协议的应用,都需要一个共同的时间以使得网路中的节点全部或部分在瞬间是同步的。
第一,传感器节点需要彼此之间并行操作和协作去完成复杂的传感任务。如果在收集信息过程中,传感器节点缺乏统一的时间戳(即没有同步),估计将是不准确的。
第二,许多节能方案是利用时间同步来实现的。例如,传感器可以在适当的时候休眠(通过关闭传感器和收发器进入节能模式),在需要的时候再唤醒。在应用这种节能模式的时候,节点应该在同等的时间休眠和唤醒,也就是说当数据到来时,节点的接收器可以接收,这个需要传感器节点间精确的定时。
2 时间同步技术所关注的主要性能参数
时间同步技术的根本目的是为网络中节点的本地时钟提供共同的时间戳。对无线传感器
网络WSN(Wireless Sensor Networks)[1]
的时间同步应主要应考虑以下几个方面的问题:
(1)能量效率。同步的时间越长,消耗的能量越多,效率就越低。设计WSN的时间同步算法需以考虑传感器节点有效的能量资源为前提。
(2) 可扩展性和健壮性。时间同步机制应该支持网络中节点的数目或者密度的有效扩展,并保障一旦有节点失效时,余下网络有效且功能健全。
(3)精确度。针对不同的应用和目的,精确度的需求有所不用。
(4)同步期限。节点需要保持时间同步的时间长度可以是瞬时的,也可以和网络的寿命一样长。
(5)有效同步范围。可以给网络内所有节点提供时间,也可以给局部区域的节点提供时间。
(6)成本和尺寸。同步可能需要特定的硬件,另外,体积的大小也影响同步机制的实现。 (7)最大误差。一组传感器节点之间的最大时间差,或相对外部标准时间的最大差。 3 现有主要时间同步方法研究
时间同步技术是研究WSN的重要问题,许多具体应用都需要传感器节点本地时钟的同步,要求各种程度的同步精度。WSN具有自组织性、多跳性、动态拓扑性和资源受限性,尤其是节点的能量资源、计算能力、通信带宽、存储容量有限等特点,使时间同步方案有其特
殊的需求,也使得传统的时间同步算法不适合于这些网络[2]
。因此越来越多的研究集中在设
计适合WSN的时间同步算法[3]
。针对WSN,目前已经从不同角度提出了许多新的时间同步算法[4]
。
3.1 成对(pair-wise)同步的双向同步模式
代表算法是传感器网络时间同步协议TPSN(Timing-Sync Protocol for Sensor
Networks)[5~6]
。目的是提供WSN整个网络范围内节点间的时间同步。
该算法分两步:分级和同步。第一步的目的是建立分级的拓扑网络,每个节点有个级别。只有一个节点与外界通信获取外界时间,将其定为零级,叫做根节点,作为整个网络系统的时间源。在第二步,每个i级节点与i-1(上一级)级节点同步,最终所有的节点都与根节点同步,从而达到整个网络的时间同步。详细的时间同步过程如图 1 所示。
图1 TPSN 同步过程
设R为上层节点,S为下层节点,传播时间为d,两节点的时间偏差为θ。同步过程由节点R广播开始同步信息,节点S接收到信息以后,就开始准备时间同步过程。在T1时刻,节点S发送同步信息包,包含信息(T1),节点R在T2接收到同步信息,并记录下接收时间T2,这里满足关系:21TTd
节点R在T3时刻发送回复信息包,包含信息(T1,T2,T3)。在T4时刻S接收到同步信息包,满足关系:43TTd
最后,节点S利用上述2个时间表达式可计算出的值:(21)(43)2
TTTT
TPSN由于采用了在MAC层给同步包标记时间戳的方式,降低了发送端的不确定性,消除了访问时间带来的时间同步误差,使得同步效果更加有效。并且,TPSN算法对任意节点的同步误差取决于它距离根节点的跳数,而与网络中节点总数无关,使TPSN同步精度不会随节点数目增加而降级,从而使TPSN具有较好的扩展性。TPSN算法的缺点是一旦根节点失效,就要重新选择根节点,并重新进行分级和同步阶段的处理,增加了计算和能量开销,并随着跳数的增加,同步误差呈线性增长,准确性较低。另外,TPSN算法没有对时钟的频差进行估计,这使得它需要频繁同步,完成一次同步能量消耗较大。
3.2 接收方-接收方(Receiver-Receiver)模式
代表算法是参考广播时间同步协议RBS(Reference Broadcast Synchronization)[7]
。RBS是典型的基于接收方-接收方的同步算法,是Elson等人以“第三节点”实现同步的思想而提出的。该算法中,利用无线数据链路层的广播信道特性,基本思想为:节点(作为发
送者)通过物理层广播周期性地向其邻居节点(作为接收者)发送信标消息[10]
,邻居节点记录下广播信标达到的时间,并把这个时间作为参考点与时钟的读数相比较。为了计算时钟偏移,要交换对等邻居节点间的时间戳,确定它们之间的时间偏移量,然后其中一个根据接收
到的时间差值来修改其本地的时间,从而实现时间同步[11]
。
假如该算法在网络中有n个接收节点m个参考广播包,则任意一个节点接收到m个参考包后,会拿这些参考包到达的时间与其它n-1个接收节点接收到的参考包到达的时间进行比较,然后进行信息交换。图2为RBS算法的关键路径示意图。
网络接口卡
关键路径
接收者1
发送者
接收者2
图2 RBS算法的关键路径示意图
其计算公式如下:
,,1
1,:[,]()m
jkikkinjnoffsetijTTm
其中n表示接收者的数量,m表示参考包的数量,,rbT表示接收节点r接收到参考包b时的时钟。
此算法并不是同步发送者和接收者,而是使接收者彼此同步,有效避免了发送访问时间对同步的影响,将发送方延迟的不确定性从关键路径中排除,误差的来源主要是传输时间和接收时间的不确定性,从而获得了比利用节点间双向信息交换实现同步的方法更高的精确度。这种方法的最大弊端是信息的交换次数太多,发送节点和接收节点之间、接收节点彼此之间,都要经过消息交换后才能达到同步。计算复杂度较高,网络流量开销和能耗太大,不适合能量供应有限的场合。
3.3 发送方-接收方(Sender-Receiver)模式
基于发送方-接收方机制的时间同步算法的基本原理是:发送节点发送包含本地时间戳的时间同步消息,接收节点记录本地接收时间,并将其与同步消息中的时间戳进行比较,调整本地时钟。基于这种方法提出的时间同步算法有以下两种。
3.3.1 FTSP 算法[8]
泛洪时间同步协议FTSP(Flooding Time Synchronization Protocol)由Vanderbilt大学Branislav Kusy等提出,目标是实现整个网络的时间同步且误差控制在微秒级。该算法用单个广播消息实现发送节点与接收节点之间的时间同步。
其特点为:(1)通过对收发过程的分析,把时延细分为发送中断处理时延、编码时延、传播时延、解码时延、字节对齐时延、接收中断处理时延,进一步降低时延的不确定度;(2)通过发射多个信令包,使得接收节点可以利用最小方差线性拟合技术估算自己和发送节点的频率差和初相位差;(3)设计一套根节点选举机制,针对节点失效、新节点加入、拓扑变化
等情况进行优化,适合于恶劣环境[12]
。
FTSP算法对时钟漂移进行了线性回归分析。此算法考虑到在特定时间范围内节点时钟晶振频率是稳定的,因此节点间时钟偏移量与时间成线性关系,通过发送节点周期性广播时间同步消息,接收节点取得多个数据对,构造最佳拟合直线,通过回归直线,在误差允许的时间间隔内,节点可直接通过它来计算某一时间节点间的时钟偏移量而不必发送时间同步消息进行计算,从而减少了消息的发送次数并降低了系统能量开销。
FTSP结合TPSN和RBS的优点,不仅排除了发送方延迟的影响,而且对报文传输中接收方的不确定延迟(如中断处理时间、字节对齐时间、硬件编解码时间等)做了有效的估计。多跳的FTSP协议采用层次结构,根节点为同步源,可以适应大量传感器节点,对网络拓扑结构的变化和根节点的失效有健壮性,精确度较好。该算法通过采用MAC层时间戳和线性回归偏差补偿弥补相关的错误源,通过对一个数据包打多个时戳,进而取平均和滤除抖动较大的时戳,大大降低了中断和解码时间的影响。FTSP 采用洪泛的方式向远方节点传递时间基准节点的时间信息,洪泛的时间信息可由中转节点生成,因此误差累积不可避免。另外,FTSP的功耗和带宽的开销巨大。
3.3.2 DMTS 算法[9]
延迟测量时间同步DMTS (delay measurement time synchronization) 算法的同步机制是基于发送方-接收方的同步机制。DMTS 算法的实现策略是牺牲部分时间同步精度换取较低的计算复杂度和能耗,是一种能量消耗轻的时间同步算法。
DMTS算法的基本原理为:选择一个节点作为时间主节点广播同步时间,所有接收节点通过精确地测量从发送节点到接收节点的单向时间广播消息的延迟并结合发送节点时间戳,计算出时间调整值,接收节点设置它的时间为接收到消息携带的时间加上广播消息的传输延迟,调整自己的逻辑时钟值以和基准点达成同步,这样所有得到广播消息的节点都与主节点进行时间同步。发送节点和接收节点的时间延迟dt可由21()dtnttt得出。其中,nt为发送前导码和起始字符所需的时间,n为发送的信息位个数,t为发送一位所需时间;1t为接收节点在消息到达时的本地时间;2t为接收节点在调整自己的时钟之前的那一时刻记录的本地时间,21()tt是接收处理延迟。
DMTS 算法的优点是结合链路层打时间戳和时延估计等技术,消除了发送时延和访问时延的影响,算法简单,通信开销小。但DMTS算法没有估计时钟的频率偏差,时钟保持同步的时间较短,没有对位偏移产生的时间延迟进行估计,也没有消除时钟计时精度对同步精度的影响,因此其同步精度比FTSP略有下降,不适用于定位等要求高精度同步的应用。
基于发送方-接收方单向同步机制的算法在上述三类方法中需要发送的时间同步消息数目最少。发送节点只要发送一次同步消息,因而具有较低的网络流量开销和复杂度,减少了系统能耗。
4 结论
文章介绍了WSN时间同步算法的类型以及各自具有代表性的算法,分析了各算法的设计原理和优缺点。这些协议解决了WSN中时间同步所遇到的主要问题,但对于大型网络,已有的方法或多或少存在着一些问题:扩展性差、稳定性不高、收敛速度变慢、网络通信冲突、能耗增大。今后的研究热点将集中在节能和时间同步的安全性方面。这将对算法的容错性、有效范围和可扩展性提出更高的要求。