A. 无线传感器网络定位算法如何仿真如何对已有算法进行改进实际工作中,研究无线传感器需要哪些知识
数学,优化用的,具体什么忘了,以前老师讲过
另外误差本身也不单单是受到算法的影响,应该说是一个系统工程
我本来也想做定位算法优化的,后来又不想搞了,手头还有几本WSN的书,可以低价转让呵
还有几篇paper
这么说吧,思路是这样的,先早几篇这方面的论文,拿来反复阅读,然后根据这些论文对于的reference你能大概了解这个领域(某文章被引用的次数多那意义也不一般,google有个搜学术论文的可以看到引用次数)。读这些paper本身是比较吃力的,可能几天才能读懂一篇。这样大概你就能了解定位算法这块前辈们都已经做到什么程度了,然后你再搜一些新近发表的paper看看他们都是干嘛,然后你觉得还能在人家的基础上做点什么就ok了。
除非真要搞研究,否则一句话,拿文凭,早点毕业,别去淌这个水,现在社会金钱第一。
B. 无线传感器在网络中的应用设计
下面是由整理的毕业设计论文《无线传感器在网络中的应用设计》,欢迎阅读。
1引言
无线传感器网络(Wireless Sensor Networks,简称WSNs)是由部署在监测区域内大量的廉价微型传感器节点组成,通过无线通信形成一个多跳自组织网络系统,能够实时监测、感知和采集网络分布区域内监视对象的各种信息,并加以处理,完成数据采集和监测任务。WSNs综合了传感器、嵌入式计算、无线通讯、分布式信息处理等技术,具有快速构建、自配置、自调整拓扑、多跳路由、高密度、节点数可变、无统一地址、无线通信等特点,特别适用于大范围、偏远距离、危险环境等条件下的实时信息监测,可以广泛应用于军事、交通、环境监测和预报、卫生保健、空间探索等各个领域。
2节点的总体设计和器件选型
2.1节点的总体设计
WSNs微型节点应用数量比较大,更换和维护比较困难,要求其节点成本低廉和工作时间尽可能长;功能上要求WSNs中不应该存在专门的路由器节点,每个节点既是终端节点,又是路由器节点。节点间采用移动自组织网络联系起来,并采用多跳的路由机制进行通信。因此,在单个节点上,一方面硬件必须低能耗,采用无线传输方式;另一方面软件必须支持多跳的路由协议。基于这些基本思想,设计了以高档8位AVR单片机ATmega128L为核心,结合外围传感器和2.4 GHz无线收发模块CC2420的WSNs微型节点。这两款器件的体积非常小,加上外围电路,其整体体积也很小,非常适合用作WSNs节点的元件。
图1给出WSNs微型节点结构。它由数据采集单元、数据处理单元、数据传输单元和电源管理单元4部分组成。数据采集单元负责监测区域内信息的采集和数据转换,设计中包括了可燃性气体传感器和湿度传感器;数据处理单元负责控制整个节点的处理操作、路由协议、同步定位、功耗管理、任务管理等;数据传输单元负责与其他节点进行无线通信,交换控制消息和收发采集数据;电源管理单元选通所用到的传感器,节点电源由几节AA电池组成,实际工业应用中采用微型纽扣电池,以进一步减小体积。为了调试方便及可扩展性,可将数据采集单元独立出来,做成两块能相互套接的可扩展主板。
2.2处理器选型
处理器的选型要求和指标是功耗低,保证长时间不更换电源也能顺利工作,供给电压小于5 V,有较快的处理速度和能力,由于节点是需要大量安置的,所以价格也要相对便宜。选用AVR单片机,考虑到电路中I/O的个数不多,功耗低、成本低、适合与无线器件接口配合等多方面因素,综合对比后,选用Atmel公司的ATmega128L。该微型控制器拥有丰富的片上资源,包括4个定时器、4 KB SRAM、128KB Flash和4 KBEEPROM;拥有UART、SPI、I2C、JTAG接口,方便无线器件和传感器的接入;有6种电源节能模式,方便低功耗设计。
2.3无线通信器件选型 CC2420是一款符合ZigBee技术的高集成度工业用射频收发器,其MAC层和PHY层协议符合802.15.4规范,工作于2.4 GHz频段。该器件只需极少外部元件,即可确保短距离通信的有效性和可靠性。数据传输单元模块支持数据传输率高达250 Kb/s,即可实现多点对多点的快速组网,系统体积小、成本低、功耗小,适于电池长期供电,具有硬件加密、安全可靠、组网灵活、抗毁性强等特点。
2.4传感器选型
由于WSNs是用于矿下安全监测,常要检测矿下可燃气体的浓度(预防瓦斯气体浓度过高)和空气湿度,所以要选择测量气体浓度和湿度的传感器。
2.4.1 HIH-4000系列测湿传感器
HIH-4000系列测湿传感器作为一个低成本、可软焊的单个直插式组件(SIP)能提供仪表测量质量的相对湿度(RH)传感性能。RH传感器可用在二引线间有间距的配量中,它是一个热固塑料型电容传感元件,其内部具有信号处理功能。传感器的多层结构对应用环境的不利因素,诸如潮湿、灰尘、污垢、油类和环境中常见的化学品具有最佳的抗力,因此可认定它能适用矿下环境。
2.4.2 MR511热线型半导体气敏元件
MR511型气敏元件利用气体吸附在金属氧化物半导体表面而产生热传导变化及电传导变化的原理,由白金线圈电阻值变化测定气体浓度。MR511由检测元件和补偿元件配对组成电桥的两个臂,遇可燃性气体时,检测元件的电阻减小,桥路输出电压变化,该电压变化随气体浓度的增大而成比例增大,补偿元件具有温度补偿作用。MR511除具有灵敏度高、响应恢复时间短、稳定性好特点外,还具有功耗小,抗环境温湿度干扰能力强的优点。WSNs的节能和井下恶劣温湿环境要求MR5111可以满足。
3 WSNs节点设计
3.1数据采集单元
考虑到无线传感器网络节点的节能和井下恶劣的温湿环境,为了便于数据采集,系统设计采用HIH-4000-01型测湿度传感器和MR511热线型半导体气体传感器。图2、图3分别给出其电路设计图。
3.2数据处理单元
ATmega128L的外围电路设计简单,设计时注意在数字电路的电源并人多只电容滤波。ATmega128L的工作时钟源可以选取外部晶振、外部RC振荡器、内部RC振荡器、外部时钟源等方式。工作时钟源的选择通过ATmega128L的内部熔丝位来设计。熔丝位可以通过JTAG编程、ISP编程等方式设置。ATmega128L采用7.3728 MHz和32.768 kHz两个外部晶振。前者用作工作时钟,后者用作实时时钟源。
3.3数据传输单元
3.3.1 CC2420外围电路设计
图4给出数据传输单元的外围电路。CC2420只需要极少的外围元器件。其外围电路包括晶振时钟电路、射频输入/输出匹配电路和微控制器接口电路3部分。
射频输入/输出匹配电路主要用来匹配器件的输入输出阻抗,使其输入输出阻抗为50 Ω,同时为器件内部的PA及LNA提供直流偏置。射频输入/输出是高阻抗,有差别。射频端最适合的负载是115+j180 Ω。C61、C62、C71、C81、L61组成不平衡变压器,L62和L81匹配射频输入输出到50 Ω;L61和L62同时提供功率放大器和低噪声放大器的直流偏置。内部的T/R开关是为了切换低噪声放大器/功率放大器。R451偏置电阻是电流基准发生器的精密电阻。CC2420本振信号既可由外部有源晶体提供,也可由内部电路提供。若由内部电路提供时,需外加晶体振荡器和两只负载电容,电容的大小取决于晶体的频率及输入容抗等参数。设计采用16 MHz晶振时,其电容值约为22 pF。C381和C391是外部晶体振荡器的负载电容。片上电压调节器提供所有内部1.8 V电源的供应。C42是电压调节器的负载电容,用于稳定调节器。为得到最佳性能必须使用电源去耦。在应用中使用大小合适的去耦电容和功率滤波器是非常重要的。CC2420可以通过4线SPI总线(SI、SO、SCLK、CSn)设置器件的工作模式,并实现读,写缓存数据,读/写状态寄存器等。通过控制FIFO和FIFOP引脚接口的状态可设置发射/接收缓存器。
3.3.2配置IEEE 802.15.4工作模式
CC2420为IEEE 802.15.4的数据帧格式提供硬件支持。其MAC层的帧格式为:头帧+数据帧+校验帧;PHY层的帧格式为:同步帧+PHY头帧+MAC帧,帧头序列的长度可通过设置寄存器改变,采用16位CRC校验来提高数据传输的可靠性。发送或接收的数据帧被送入RAM中的128字节缓存区进行相应的帧打包和拆包操作。表1给出CC2420的四线串行SPI接口引脚功能。它是设计单片机电路的依据,充分发挥这些功能是设计无线通信产品的前提。
3.3.3 CC2420与单片机接口电路设计
图5给出CC2420与ATmega128L单片机的接口电路。CC2420通过简单的四线(SI、SO、SCLK、CSn)与SPI兼容串行接口配置,这时CC2420是受控的。ATmega128L的SPI接口工作在主机模式,它是SPI数据传输的控制方;CC2420设为从机工作方式。当ATmega128L的SPI接口设为主机工作方式时,其硬件电路不会自动控制SS引脚。因此,在SH通信时,应在SPI接口初始化,它是由程序控制SS,将其拉为低电平,此后,当把数据写入主机的SPI数据寄存器后,主机接口将自动启动时钟发生器,在硬件电路的控制下,移位传送,通过MOSI将数据移出ATmega128L,并同时从CC2420由MISO移人数据,8位数据全部移出时,两个寄存器就实现了一次数据交换。
4结语
通过对于无线传感器网络节点中传感器元件、数据处理模块、数据传输模块和电源的选择,设计了一种以CC2420和ATmega128L为主体的硬件方案。利用该方案设计的CC2420和ATmega128L的外围电路以及两者之间的接口电路。此外,还对传感器与单片机的接口电路进行设计。通过实验验证,设计的硬件节点基本上达到了项目要求,经调试能通过传感器正确真实地采集数据,并实现两个无线节点(两个电路板。AA电池供电)在30 m左右的通信、传输数据、并反映到终端设备。
C. 无线传感器网络节点硬件的模块化设计
无线传感器网络节点硬件的模块化设计
随着人们对于环境监测要求的不断提高,无线传感器网络技术以其投资成本低、架设方便、可靠性高的性能优势得到了比较广泛的应用。由于无线传感器网络节点需要实现采集、处理、通信等多个功能,因此硬件上采用模块化设计可以大大提高网络节点的稳定性和安全性。那么下面我就来讨论一下无线传感器网络节点硬件的模块化设计。
1 CC2430芯片简介
CC2430是一款工作在2.4 GHz免费频段上,支持IEEE 802.15.4标准的无线收发芯片。该芯片具有很高的集成度,体积小功耗低。单个芯片上整合了ZigBee射频(RF)前端、内存和微控制器。CC2430拥有1个8位MCU(8051),8 KB的RAM,32 KB、64 KB或128 KB的Flash,还包含模拟数字转换器(ADC),4个定时器(Timer),AESl28协处理器,看门狗定时器(Watchdog-timer),32.768 kHz晶振的休眠模式定时器,上电复位电路(Power-on-Reset),掉电检测电(Brown-out-Detection),以及21个可编程I/O接口。
CC2430芯片采用0.18μm CMOS工艺生产,工作时的电流损耗为27 mA;在接收和发射模式下,电流损耗分别为26.7 mA和26.9 mA;休眠时电流为O.5 μA。CC2430的休眠模式和转换到主动模式的超短时间的特性,特别适合那些要求电池寿命非常长的应用。
2 无线传感器网络系统结构
整个无线传感器网络由若干采集节点、1个汇聚节点、1个中转器、1个上位机控制中心组成,系统结构如图1所示。无线传感器网络采集节点完成数据采集、预处理和通信工作;汇聚节点负责网络的发起和维护,收集并上传数据,将中转器下发的命令通告采集节点;中转器负责上传收集到的数据并将控制中心发出的命令信息传递给汇聚节点;控制中心负责处理最终上传数据,并且可以由用户下达网络的操作命令。
采集节点和汇聚节点由CC2430作为控制核心,采集节点可采集并传递数据,汇聚节点负责收集所有采集节点采集到的数据。中转器采用ARM处理器作为控制核心,和汇聚节点采用串口通信,以GPRS通信方式和上位机控制中心进行交互。上位机控制中心实现人机交互,可以处理、显示上传的数据并且可以直接由客户下达网络动作执行命令。
3 节点模块化设计
汇聚节点和采集节点在硬件配置上基本相同,采用模块化设计使得设计通用性更好。
每个节点主要由控制模块、无线模块、采集模块、电源模块4部分构成。
3.1 控制模块
控制模块主要由CC2430及其外围电路构成,完成对采集数据的处理、存储以及收发工作,并对电源模块进行管理。芯片CC2430包括21个可编程I/0口,其中8路A/D接口,可满足多路传感器的采集、处理需求。CC2430自带了一个复位接口,外接一个复位按键可以实现硬件初始化系统。32 MHz晶振提供系统时钟,32.768 kHz晶振供系统休眠时使用。
节点选用芯片FM25L256作为存储设备,这是一款256 Kb铁电存储器,其SPI接口频率高达25 MHz,低功耗运行以及10年的数据保持力保证了节点数据存储的低成本以及可靠性。
3.2 无线模块
无线模块负责节点间数据和命令的传输,因此,合理设计无线模块是节点稳定、高效通信的重要保证。
TI公司提供了一个适用于CC2430的微带巴伦电路,这个设计把无线电RF引脚差分信号的阻抗转换为单端50 Ω。由于该电路直接影响节点的通信质量,在使用前必须对其进行仿真验证。设计中选用ADS仿真软件进行仿真,采用了版图和原理图的联合仿真方法。仿真电路图如图5所示,微带电路为TI提供的微带巴伦电路,分立元件均选自村田公司元件库内的模型,严格保证了仿真数据的`真实性和可靠性。巴伦电路在工作频段内(2.400~2.4835 GHz)信号传输特性高效、稳定。
3.3 采集模块
采集模块负责采集数据并调理数据信号。本设计中,监测的是土壤的温度和湿度数据,采用的传感器是PTWD-3A型土壤温度传感器以及TDR-3型土壤水分传感器。
PTWD-3A型土壤温度传感器采用精密铂电阻作为感应部件,其阻值随温度变化而变化。为了准确地进行测量,采用四线法测量电阻原理,将电阻信号调理成CC2430芯片A/D通道能采样的电压信号。由P354运算放大器、高精度精密贴片电阻以及2.5 V电源构成10 mA恒流源。10 mA的电流环流经传感器电阻R1、R2将电阻信号转换成为电压信号,由差分放大器LT1991一倍增益将信号转换为单端输出送入CC2430芯片的ADC通道进行采样。
TDR-3型土壤水分传感器输出信号即为电压信号。传感器输出信号通过P354运算放大器送入CC2430芯片的ADC通道进行采样。
3.4 电源模块
电源模块负责调理电压、分配能量,分为充电管理模块、双电源切换管理模块、电压转换模块3个模块。本设计中采用额定电压12 V、电容量3 Ah的铅酸电池供电。
作为环境监测的无线传感器网络应用,节点需要在野外无人看守的情况下进行工作,能量补给是系统持续工作的重要保证。本设计采用太阳能电池板为节点在野外工作时进行电能的补给,充电管理模块则是根据日照情况以及电池能量状态对铅酸电池进行合理、有效的充电。光电耦合器TLP521-100和场效应管Q共同构成了充电模块的开关电路,可以由CC2430芯片的I/0口很方便地进行控制。
在太阳能电池板对电池充电时,电池不能对系统进行供电,因此设计中采用了双电源供电方式,保持“一充一供”的工作状态,双电源切换管理模块负责电源的安全、快速切换。如图10所示,采用了两个开关电路对两块电源进行切换。
在电源进行切换时,总是先打开处于闲置状态的电源,再关闭正在为系统供电的电源,因此会在一段短暂的时间内同时有两个电源对系统供电,这是为了防止系统出现掉电情况。
电源模块需提供5 V、3.3 V、2.5 V等多组电源以满足节点各模块的供能需求。由于系统电源组较多,电压转换模块采用了开关型降压稳压器以及低压差线性稳压器等多种电压转换芯片来对电源进行电压转换,同时要确保电源模块供能的高效性。
结语
节点的设计对整个无线传感器网络系统至关重要。本设计采用了功能强大的射频芯片CC2430作为核心管理芯片,能较好地完成数据采集、分析、传输等多个功能。硬件的模块化设计大大加强了节点的稳定性、可靠性和通用性,在野外无人值守的情况下无线传感器网络系统可以长期、稳定地进行环境方面的监测。
;D. 无线传感网络(本科毕业设计)
你给我留个邮箱,我直接发给你吧,是一些别人做过的专业文献资料,你可以参考参考
E. 无线网络(Wi-Fi) 毕业设计
相关范文:
无线传感器网络自身定位算法开题报告
1.概述:
无线传感器网络(WSNs)是由许多传感器节点通过自组织的形式组成的一种特殊的Ad-hoc网络,每一个传感器节点由数据采集模块、数据处理和控制模块、通信模块和供电模块等组成,此外还可能包括与应用相关的其他部分,比如定位系统、动力系统等。借助于内置多样的传感器,可以测量温度、湿度、气压、化学等我们感兴趣的物理现象。
2.研究动机:
传感器节点的自身定位是传感器网络应用的基础。例如目标监测与跟踪、基于位置信息的路由、智能交通、物流管理等许多应用都要求网络节点预先知道自身的位置,并在通信和协作过程中利用位置信息完成应用要求。若没有位置信息,传感器节点所采集的数据几乎是没有应用价值的。所以,在无线传感器网络的应用中,节点的定位成为关键的问题。
3.研究意义:
最早期的基于无线网络的室内定位系统,都采用了额外的硬件和设备,如AT&T Cambridge的Active Bat系统,采用了超声波测距技术,定位的物体携带由控制逻辑、无线收发器和超声波换能器组成的称为Bat的设备,发出的信号由安装在房间天花板上的超声波接收器接收,所有接收器通过有线网络连接;在微软的RADAR系统中,定位目标要携带具有测量RF信号强度的传感器,还要有基站定期发送RF信号,在事先实现的RF信号的数据库中查询实现定位;MIT开发了最早的松散耦合定位系统Cricket,锚节点(预先部署位置的节点)随机地同时发射RF和超声波信号,RF信号中包括该锚节点的位置,未知节点接收这些信号,然后使用TDOA技术测量与锚节点的距离来实现定位。
以上系统都需要事先的网络部署或数据生成工作,无法适用于Ad-hoc网络。现阶段研究较多的是不基于测距(Range-free)的定位算法,这样就无需增加额外的硬件,还可以减小传感器节点的体积。
4.研究目标:
(1) 较小的能耗
传感器节点所携带能源有限和不易更换的特点要求定位算法应该是低能耗的。
(2) 较高的定位精度
这是衡量定位算法的一个重要指标,一般以误差与无线射程的比值来计算,20%表示定位误差相当于节点无线射程的20%。
(3) 计算方式是分布式的
分布式的定位算法,即计算节点位置的工作在节点本地完成,分布式算法可以应用于大规模的传感器网络。
(4) 较低的锚节点密度
锚节点定位通常依赖人工部署或GPS实现。大量的人工部署不适合Ad-hoc网络,而且锚节点的成本比普通节点要高两个数量级。
(5) 较短的覆盖时间。
5.参考文献:
《无线传感器网络:体系结构与协议》作者:Edgar H. Callaway. Jr
《无线传感器网络的理论及应用》作者:王殊
《无线传感器网络节点定位算法研究》作者:端木庆敏 Publish: 2007-10-18 Hits:591
《无线传感器网络定位算法研究》作者:申屠明2007-07-11
《无线传感器网络节点自身定位算法的研究(硕士)》来自:中国文档网
《无线传感器网络DV-Hop定位算法的改进》作者:龚思来2007年07月13日
其他相关:
http://www.jianshewang.com/lunwen/cheng/txx/200811/2200.html
仅供参考,请自借鉴
希望对您有帮助
F. 无线传感器网络 毕业设计求助
基于农业环境无线传感器网络性能评估
[摘要]随着无线传感器网络应用研究的不断深入,通过实际传感器节点建立网络进行网络测试越来越受到人们的重视。综合大量无线传感器网络性能研究的技术文献和最新研究结果,提出对农业环境WSN网络性能参数。
[关键词]无线传感器网络 性能测试 部署
一、引言
近年来随着研究的深入与技术的成熟,以应用为背景,基于WSN的试验越来越多地涌现出来,WSN正处于从研究到应用的过渡阶段。对WSN网络性能的分析与评价是网络节点与部署的前提,对WSN网络性能进行分析,评价,获得网络性能的总体情况,可以评估,鉴定和验收一个现有网络;对一个新的待建设网络,其方案的论证也极大地依赖于如何分析和评价网络的性能。
原文链接:http://www.lunwenw.net/Html/tongxixue/144844137.html
基于TinyOS无线传感器网络的农业环境监测系统设计
摘要:针对传统农业环境监测系统的局限性,设计了一种基于无线传感器网络的农业环境监测系统,给出了农业环境监测系统的体系结构,重点设计了使用MSP4300和CC2420芯片的传感器节点硬件结构和基于TinyOS操作系统构架的软件流程,系统可以对目标监测区内的温度、湿度、光照度等农业环境信息进行实时监测、可靠传输。解决了传统农业环境监测中存在的问题,为无线传感器网络应用于农业环境监测做出探索性研究。
关键词:无线传感器网络;TinyOS;精准农业;环境监测
准确实时的信息供给是精准农业的必须前提,精准农业的实现首先在于认识农田内农作物生长环境和生长情况的差异,而这必须依赖于各种先进的传感器,如大气温度、大气湿度、风速、太阳辐射、作物生长情况、作物产量等各种类型传感器。如何将这些传感器采集的信息及时准确地收集,为农业专家提供决策并制定农田变量作业处方的主要数据源和参数,一直是一个难题。近年来,出现了许多采用无线公共网络和无线网络等无线通讯方式进行农、林、牧业的远程监测的研究。这些无线通信技术的优势是传输速度快、信息量大、可远距离传输,但都存在功耗高、时延长、通信费用高等因素制约,使其很难广泛地应用到农业环境监测中。
原文链接:http://www.lunwenw.net/Html/tongxixue/144720547.html
无线传感器网络在农作物环境信息监测中的应用
摘 要:传感器已经被广泛的应用于工业、军事等方面。由传感器节点构成的无线网络也已经成为现今研究的热门问题。无线传感器网络在农业中尤其是在农作物信息检测中的运用是将智能化、自动化应用于农业中的最好的手段之一,而选择良好的协议标准也将会是解决问题的关键。
关键词:协议;无线传感器网络;作物信息
1 引言
随着网络的迅猛发展,对于网络的使用范围越来越宽广,而集传感器技术、微机电系统技术、无线通信技术、嵌入式计算机技术、分布式信息处理技术和无线通信技术于一体的无线传感器网络就成为当今研究的热点。无线传感器网络是一个多学科交叉的综合性科学研究领域,对于其网络所分布的区域内的各种环境和检测对象的信息能够进行实吋的监控、感知和采集,并且将这些信息先进行处理,然后通过无线方式传输给监控主机或者需要使用这些信息的用户。正是因为这种广泛的用途,使得无线传感器网络在众多领域如农业、军事、智能家居、森林保护等方面有着实际的用途和研究价值。
原文链接:http://www.lunwenw.net/Html/tongxixue/144546725.html
G. 无线传感器网络数据链路层的研究
数据链路层:就是利用物理层提供的数据传输功能,将物理层的物理连接链路转换成逻辑连接链路,从而形成一条没有差错的链路,保证链路的可靠性。
数据链路层也向它的上层——网络层提供透明的数据传送服务,主要负责数据流多路复用、数据帧监测、媒体介入和差错控制,保证无线传感器网络内点到点以及点到多点的连接。
无线传感器网络的数据链路层研究的主要内容就是MAC和差错控制。
怎样实现无线传感器网络中无线信道的共享,即介质控制协议(MAC)的实现是无线传感器网络数据链路层研究的一个重点,MAC协议的好坏直接影响网络的性能优劣。
H. 求传感器毕业论文前言、摘要!
摘要:本文简述了无线传感器网络的定义、组成及特点,并结合其特点介绍了无线传感器网络在各行各业广泛的应用价值和未来发展前景以及目前存在的技术问题。 关键词:无线传感器网络;组成;应用;发展 科技发展的脚步越来越快,人类已经置身于信息时代。而作为信息获取最重要和最基本的技术——传感器技术,也得到了极大的发展。传感器信息获取技术已经从过去的单一化渐渐向集成化、微型化和网络化方向发展,并将会带来一场信息革命。具有感知能力、计算能力和通信能力的无线传感器网络(WSN, wireless sensor networks)综合了传感器技术、嵌人式计算技术、分布式信息处理技术和通信技术,能够协作地实时监测、感知和采集网络分布区域内的各种环境或监测对象的信息,并对这些信息进行处理,获得详尽而准确的信息,传送到需要这些信息的用户。 由于WSN的巨大应用价值,它已经引起了世界许多国家的军事部门、工业界和学术界的广泛关注,被广泛地应用于军事,工业过程控制、国家安全、环境监测等领域。 无线传感器网络综合了传感器技术、嵌入式计算技术、现代网络及无线通信技术、分布式信息处理技术等多种领域,是当前计算机网络研究的热点。 一、发展概述 早在上世纪70年代,就出现了将传统传感器采用点对点传输、连接传感控制器而构成传感器网络雏形,我们把它归之为第一代传感器网络。随着相关学科的不断发展和进步,传感器网络同时还具有了获取多种信息信号的综合处理能力,并通过与传感控制器的相联,组成了有信息综合和处理能力的传感器网络,这是第二代传感器网络。而从上世纪末开始,现场总线技术开始应用于传感器网络,人们用其组建智能化传感器网络,大量多功能传感器被运用,并使用无线技术连接,无线传感器网络逐渐形成。 无线传感器网络是新一代的传感器网络,具有非常广泛的应用前景,其发展和应用,将会给人类的生活和生产的各个领域带来深远影响。发达国家如美国,非常重视无线传感器网络的发展,IEEE正在努力推进无线传感器网络的应用和发展,波士顿大学(Boston University)还于最近创办了传感器网络协会(Sensor Network Consortium),期望能促进传感器联网技术开发。美国的《技术评论》杂志在论述未来新兴十大技术时,更是将无线传感器网络列为第一项未来新兴技术,《商业周刊》预测的未来四大新技术中,无线传感器网络也列入其中。可以预计,无线传感器网络的广泛是一种必然趋势,它的出现将会给人类社会带来极大的变革。 二、无线传感器网络的定义和特点 无线传感器网络可以看成是由数据获取网络、数据分布网络和控制管理中心三部分组成的。其主要组成部分是集成有传感器、数据处理单元和通信模块的节点,各节点通过协议自组成一个分布式网络,再将采集来的数据通过优化后经无线电波传输给信息处理中心。 无线传感器网络操作系统Tiny0S141的研制者,Jason Hill博士把WSN定义为: Sensing+CPU+Radio=Thousands of potential application 哈尔滨工业大学的李建中教授将WSN定义为:WSN是由一组传感器节点以自组织的方式构成的有线或无线网络,其目的是协作地感知、采集和处理网络覆盖的地理区域中感知对象的信息,并发布给观察者。从硬件上看,WSN节 点主要由数据采集单元、数据处理单元、无线数据收发单元以及小型电池单元组成,通常尺寸很小,具有低成本、低功耗、多功能等特点;从软件上看,它借助于节点中内置传感器有效探测所处区域的温度、湿度、光强度、压力等环境参数以及待测对象的电压、电流等物理参数,并通过无线网络将探测信息传送到数据汇聚中心 进行处理、分析和转发。
原文出自: http://www.3qlw.com/gongxue/tongxinxue/2010-07-22/1420.html
I. 无线传感器网络
无线传感器网络(wirelesssensornetwork,WSN)是综合了传感器技术、嵌入式计算机技术、分布式信息处理技术和无线通信技术,能够协作地实时监测、感知和采集网络分布区域内的各种环境或监测对象的信息,并对这些数据进行处理,获得详尽而准确的信息。传送到需要这些信息的用户。它是由部署在监测区域内大量的廉价微型传感器节点组成,通过无线通信方式形成一个多跳的自组织的网络系统。传感器、感知对象和观察者构成了传感器网络的三要素。
无线传感器网络作为当今信息领域新的研究热点,涉及到许多学科交叉的研究领域,要解决的关键技术很多,比如:网络拓扑控制、网络协议、网络安全、时间同步、定位技术、数据融合、数据管理、无线通信技术等方面,同时还要考虑传感器的电源和节能等问题。
所谓部署问题,就是在一定的区域内,通过适当的策略布置传感器节点以满足某种特定的需求。优化节点数目和节点分布形式,高效利用有限的传感器网络资源,最大程度地降低网络能耗,均是节点部署时应注意的问题。
目前的研究主要集中在网络的覆盖问题、连通问题和能耗问题3个方面。
基于节点部署方式的覆盖:1)确定性覆盖2)自组织覆盖
基于网格的覆盖:1)方形网格2)菱形网格
被监测目标状态的覆盖:1)静态目标覆盖2)动态目标覆盖
连通问题可描述为在传感器节点能量有限,感知、通信和计算能力受限的情况下,采用一定的策略(通常设计有效的算法)在目标区域中部署传感器节点,使得网络中的各个活跃节点之间能够通过一跳或多跳方式进行通信。连通问题涉及到节点通信距离和通信范围的概念。连通问题分为两类:纯连通与路由连通。
覆盖中的节能对于覆盖问题,通常采用节点集轮换机制来调度节点的活跃/休眠时间。连通中的节能针对连通问题,也可采用节点集轮换机制与调整节点通信距离的方法。而文献中涉及最多的主要是从节约网络能量和平衡节点剩余能量的角度进行路由协议的研究。