‘壹’ 无线传感器网络故障的诊断技术
无线传感器网络故障的诊断技术
随着社会的发展与不断进步,无线传感器网络得到广泛应用,但是由于无线传感器节点的能量具有制约性,导致无线传感器网络的运用环境比较脆弱,下面我为大家搜索整理了关于无线传感器网络故障的诊断技术,欢迎参考阅读,希望对大家有所帮助!想了解更多相关信息请持续关注我们应届毕业生培训网!
无线传感器网络是由大量传感器节点组成的,因为传感器节点廉价和微型的特点,促使无线传感器网络对节点的利用率非常高,尤其是在无线传感网络的监测区域,在自组织方式的参与下,以互相协作的形式完成无线传感器的监测任务,所以其应用的前景也是非常广阔的,但是传感器节点的工作能力是有限的,难免会发生系统故障。
1 无线传感器网络故障评价指标
无线传感器网络故障诊断的性能评价指标是以无线传感器的网络特点和网络应用为基础制定的,其标准主要体现在诊断精度、特殊环境诊断精度、能效性以及诊断时间四个方面。
诊断精度。无线传感器故障诊断精度是诊断机制对故障最直接的评价方式,特别是在网络安全性较高的环境中,如果不能保障故障诊断的精确度则会导致传感器网络系统出现安全漏洞,同时意味着此故障诊断精度的失效,诊断精度主要是以一次过程为故障诊断的依据,分析被诊断的节点状态与实际节点状态的相符程度,诊断精度中故障误报率和故障识别率为评价故障的两个指标。
特殊环境诊断精度。无线传感器网络在特殊环境中的应用是有特定的诊断精度的,例如自然灾害、人为破坏等特殊环境因素,由于故障的节点在网络中的分布不均匀,可能会出现故障区域节点的过分疏散或者是节点的过分密集等现象,普通的诊断精度是不适应的,所以只能采取特殊环境的诊断精度对故障进行评价。
能效性。受无线传感器网络能量供应方面的影响,能效性成为故障诊断评价机制中需要最先考虑的问题,能效性比较强的故障诊断机制可以促进网络使用寿命的延长,以便保障传感器网络监测、计算方面能量的持续供应,与能效性有直接关系的因素有数据通信、处理和采集三方面。
诊断时间。无线传感器网络投入使用后,如需进行故障诊断需要对传感器中节点与节点之间的关系进行协作性判断,主要是因为节点呈现激活状态的数量比较多,如果节点出现联系性的故障一定会对无线传感器网络造成巨大的能耗压力,所以节点故障诊断的时间不宜过长。
2 无线传感器网络故障诊断分类
无线传感器网络故障主要来源于传感器的节点,主要表现在四个模块上,分别为能量电池供应模块、无线网络通信模块、传感处理模块和传感器模块,基于无线传感器网络的运行和使用,其组成元件、部件会出现各种各样的问题,如干扰通信、线路老化、电能耗损以及接线松动等等,引发无线传感器网络发生故障。
2.1 节点级别的故障
节点级别的故障主要是发生在传感器网络的节点处,大部分故障主要是传感器的节点本身出现了问题,其又可分为节点软故障和节点硬故障,软故障是指节点在不影响无线传感器网络运行的前提下发生故障,只有对数据进行传送和测量时,可瞬间影响通信的故障;硬故障是指对节点本身以及对传感器网络造成的直接损害,例如节点本身损坏、电源布置不合理或电源能量不足都会造成无线传感器网络故障。
2.2 网络级别的故障
网络级别的故障是指无线传感器的节点本身是正常的,但是在节点与节点之间的传输、协作方面上出现制约性问题,导致网络连接异常、通信受阻、信息丢失、IP偏差、非法入侵等等,此故障的出现是直接作用于网络的,其故障的表现极其明显,而且故障出现的速度非常快,影响范围比较广,属于无线网络传感器网络中相对较为敏感的故障。
2.3 功能级别的故障
无线传感器网络功能级别的故障对于整体网络都是存在影响的,如出现功能级别的故障会造成网络中汇集点不能正常接收和收集网络中运行的全部信息,引起功能级别故障的原因主要有传感器节点的重启、死亡和失效,链接线路故障以及路由装置故障等。
2.4 数据级别的故障
数据级别的故障是指传感器节点表现正常,但是传达了错误的数据信息,致使网络形成错误的数据感知,数据级别故障的隐蔽性比较强,只有经过精细的检测才可发现传感器节点传递了错误的感知数据,因为即使节点感知数据传递错误,但是其本身的表现形式是没有任何问题的,因此无形中降低了无限传感器网络的运行性能,而且会错误的引导网络管理员检查维修。
3 无线传感器网络故障诊断技术
无线传感器网络故障诊断主要是针对其投入使用的期间,通过对网络传递的信息进行分析,判断无线传感器网络是否发生故障,根据故障发生的状态检测导致故障发生的基本根源,无线传感器网络故障的诊断是一项复杂而又系统的工程项目,基于其所处的环境以及自身运行的特点决定了故障诊断的难度,为降低诊断的难度,一般情况在进行故障诊断时需要以传感器各个节点日常的测量数据为主,以节点数据传输的附加信息为辅,促进故障诊断的效率。
无线传感器网络故障诊断的指标为传感器高质量的服务和能量的有效保护,而故障诊断策略的衡量指标主要有错误警报率和检测率,其中错误报警率反馈的是无效警报在诊断报告总警报中的占据比例,错误报警率较低即可说明此次诊断结果具有较高的可信度;检测率反馈的是被检测出的故障在网络总故障中占据的比例,与错误报告率相反,检测率越高则说明诊断策略的有效性比较高。目前对无线传感器网络故障诊断技术的`研究主要以传感器的故障、场景类型为中心,对传感器节点的功能、读数故障进行探讨,分析无线传感器网络故障的诊断技术。
3.1 传感器节点读数故障的诊断技术
节点读数故障的诊断技术主要是针对无线传感器网络中错误的测量数据,错误数据产生的情况主要有外界环境干扰导致网络受到安全攻击、节点部件的损坏等等,针对节点读数故障提出以下诊断技术。 (1)WMFDS诊断技术。此技术主要是对传感器节点与节点之间的数据进行空间相关性的测量,越临近的节点其测量结果的相似性越大,所以只能通过正常读数的空间关系,根据此理论提出WMFDS诊断方法,主要是对两节点之间的故障率、分布密度进行分析,判断节点是否出现问题,此方法还可对相邻的节点进行加权处理,但是此方法只可以用于具有空间相关性的节点读数上。
(2)FIND诊断技术。此技术利用无线传感器节点在监控区域具有可持续性监测的特点,感知网络的突然事件,此节点的数据读取可反馈事件发生点到节点相对应的距离,传感器节点的信号强度与距离是呈现相反关系的,即相对距离越大,节点信号强度越弱,节点信号的强弱变化被称为单调变化特性,所以节点的单调特性是反馈节点出现读数故障的判断标准,比如故障节点会表现出与相对距离单调特性相反的现象。
(3)CSN诊断技术。此诊断技术是有一定局限性的,主要是以移动设备为检测对象,利用加速器得出节点的地震运动,故障节点的读数会存在阈值,此阈值与实际历史差距比较大,通过计算机分析节点比例,如出现较高阈值则说明此节点出现了一定的问题。
3.2 传感器节点网络故障的诊断技术
传感器节点网络故障主要表现在链路受环境因素的影响导致网络可靠性降低等现象,针对传感器节点网络故障提出的诊断技术主要有以下三种:
(1)网络软件调试法。在传感器的节点中采取调试代理,利用软件的调试命令,对节点处的网络状态进行分析,收集节点网络数据,确定节点网络故障的来源。
(2)特定模型推断法。特定模型推断法主要包括两种,分布式和集中式的方法。分布式的诊断技术是针对网络中的所有节点,利用从局部到整体的决策方法,分布式诊断技术的代表方法有LD2和TinyD2,最终通过节点网络的整合,得出诊断报告;集中式的诊断技术是在网络节点处植入小型探测器,以便对经过节点的应用数据进行分类、分组,但是探测器对得到信息的分析能力是非常有限的,所以需要感知系统的参与,以此为基础进行节点网络故障的细化诊断。
(3)无声故障诊断技术。此诊断技术在三种技术中是具有一定特殊性的,其可对无经验故障进行有效诊断,例如AD诊断技术,即是比较典型的代表,通过对节点各类型诊断信息之间相关性图表的变化,发现网络中存在的隐藏故障,即无声故障,此技术可提高故障诊断的准确率,同时降低了故障出现的频率。
综上所述,利用无线传感器故障诊断技术诊断无线传感器网络中出现的问题,并对其进行及时有效的处理,一方面可以提高无线传感器网络的运用效率,另一方面提高了无线传感器网络的使用率,所以无线传感器网络的正常运行在一定程度上促进我国经济效益和社会效益的发展和提高。
综上所述,无线传感器网络在世界范围内的关注度是比较高的,其渗透多项科学技术,例如无线通信技术、传感器技术以及信息处理技术等等,无线传感器的研究不论是在经济效益上还是在社会效益上,都是具有极其重要的意义的,无线传感器有效的网络故障诊断技术一方面可以提高无线传感器的利用效率,另一方面对能源节约具有一定的实际价值。
;‘贰’ 无线传感器网络的特点及关键技术
无线传感器网络的特点及关键技术
无线传感器网络被普遍认为是二十一世纪最重要的技术之一,是目前计算机网络、无线通信和微电子技术等领域的研究热点。下面我为大家搜索整理了关于无线传感器网络的特点及关键技术,欢迎参考阅读!
一、无线传感器网络的特点
与其他类型的无线网络相比,传感器网络有着鲜明的特征。其主要特点可以归纳如下:
(一)传感器节点能量有限。当前传感器通常由内置的电池提供能量,由于体积受限,因而其携带的能量非常有限。如何使传感器节点有限的能量得到高效的利用,延长网络生存周期,这是传感器网络面临的首要挑战。
(二)通信能力有限。无线通信消耗的能量与通信距离的关系为E=kdn。其中,参数n的取值为2≤n≤4,n的取值与许多因素有关。但是不管n具体的取值,n的取值范围一旦确定,就表明,无线通信的能耗是随着距离的增加而更加急剧地增加的。因此,在满足网络连通性的要求下,应尽量采用多跳通信,减少单跳通信的距离。通常,传感器节点的通信范围在100m内。
(三)计算、存储和有限。一方面为了满足部署的要求,传感器节点往往体积小;另一方面出于成本控制的目的`,节点的价格低廉。这些因素限制了节点的硬件资源,从而影响到它的计算、存储和通信能力。
(四)节点数量多,密度高,覆盖面积广。为了能够全面准确的监测目标,往往会将成千上万的传感器节点部署在地理面积很大的区域内,而且节点密度会比较大,甚至在一些小范围内采用密集部署的方式。这样的部署方式,可以让网络获得全面的数据,提高信息的可靠性和准确性。
(五)自组织。传感器网络部署的区域往往没有基础设施,需要依靠传感器节点协同工作,以自组织的方式进行网络的配置和管理。
(六)拓扑结构动态变化。传感器网络的拓扑结构通常是动态变化的,例如部分节点故障或电量耗尽退出网络,有新的节点被部署并加入网络,为节约能量节点在工作和休眠状态间进行切换,周围环境的改变造成了无线通信链路的变化,以及传感器节点的移动等都会导致传感器网络拓扑结构发生变化。
(七)感知数据量巨大。传感器网络节点部署范围大、数量多,且网络中的每个传感器通常都产生较大的流式数据并具有实时性,因此网络中往往存在数量巨大的实时数据流。受传感器节点计算、存储和带宽等资源的限制,需要有效的分布式数据流管理、查询、分析和挖掘方法来对这些数据流进行处理。
(八)以数据为中心。对于传感器网络的用户而言,他们感兴趣的是获取关于特定监测目标的真实可靠的数据。在使用传感器网络时,用户直接使用其关注的事件作为任务提交给网络,而不是去访问具有某个或某些地址标识的节点。传感器网络中的查询、感知、传输都是以数据为中心展开的。
(九)传感器节点容易失效。由于传感器网络应用环境的特殊性以及能量等资源受限的原因,传感器节点失效(如电池能量耗尽等)的概率远大于传统无线网络节点。因此,需要研究如何提高数据的生存能力、增强网络的健壮性和容错性以保证部分传感器节点的损坏不会影响到全局任务的完成。此外,对于部署在事故和自然灾害易发区域的无线传感器网络,还需要进一步研究当事故和灾害导致大部分传感器节点失效时如何最大限度地将网络中的数据保存下来,以提供给灾害救援和事故原因分析等使用。
二、关键技术
无线传感器网络作为当今信息领域的研究热点,设计多学科交叉的研究领域,有非常多的关键技术有待研究和发现,下面列举若干。
(一)网络拓扑控制。通过拓扑控制自动生成良好的拓扑结构,能够提高路由协议和MAC协议的效率,可为数据融合、时间同步和目标定位等多方面奠定基础,有利于节省能量,延长网络生存周期。所以拓扑控制是无线传感器网络研究的核心技术之一。目前,拓扑控制主要研究的问题是在满足网络连通度的前提下,通过功率控制或骨干网节点的选择,剔除节点之间不必要的通信链路,生成一个高效的数据转发网络拓扑结构。
(二)介质访问控制(MAC)协议。在无线传感器网络中,MAC协议决定无线信道的使用方式,在传感器节点之间分配有限的无线通信资源,用来构建传感器网络系统的底层基础结构。MAC协议处于传感器网络协议的底层部分,对传感器网络的性能有较大影响,是保证无线传感器网络高效通信的关键网络协议之一。传感器网络的强大功能是由众多节点协作实现的。多点通信在局部范围需要MAC协议协调其间的无线信道分配,在整个网络范围内需要路由协议选择通信路径。
在设计MAC协议时,需要着重考虑以下几个方面:
(1)节省能量。传感器网络的节点一般是以干电池、纽扣电池等提供能量,能量有限。
(2)可扩展性。无线传感器网络的拓扑结构具有动态性。所以MAC协议也应具有可扩展性,以适应这种动态变化的拓扑结构。
(3)网络效率。网络效率包括网络的公平性、实时性、网络吞吐量以及带宽利用率等。
(三)路由协议。传感器网络路由协议的主要任务是在传感器节点和Sink节点之间建立路由以可靠地传递数据。由于传感器网络与具体应用之间存在较高的相关性,要设计一种通用的、能满足各种应用需求的路由协议是困难的,因而人们研究并提出了许多路由方案。
(四)定位技术。位置信息是传感器节点采集数据中不可或缺的一部分,没有位置信息的监测消息可能毫无意义。节点定位是确定传感器的每个节点的相对位置或绝对位置。节点定位分为集中定位方式和分布定位方式。定位机制也必须要满足自组织性,鲁棒性,能量高效和分布式计算等要求。
(五)数据融合。传感器网络为了有效的节省能量,可以在传感器节点收集数据的过程中,利用本地计算和存储能力将数据进行融合,取出冗余信息,从而达到节省能量的目的。
(六)安全技术。安全问题是无线传感器网络的重要问题。由于采用的是无线传输信道,网络存在偷听、恶意路由、消息篡改等安全问题。同时,网络的有限能量和有限处理、存储能力两个特点使安全问题的解决更加复杂化了。
;‘叁’ 无线传感器网络体系结构包括哪些部分,各部分的
结构
传感器网络系统通常包括传感器节点EndDevice、汇聚节点Router和管理节点Coordinator。
大量传感器节点随机部署在监测区域内部或附近,能够通过自组织方式构成网络。传感器节点监测的数据沿着其他传感器节点逐跳地进行传输,在传输过程中监测数据可能被多个节点处理,经过多跳后路由到汇聚节点,最后通过互联网或卫星到达管理节点。用户通过管理节点对传感器网络进行配置和管理,发布监测任务以及收集监测数据。
传感器节点
处理能力、存储能力和通信能力相对较弱,通过小容量电池供电。从网络功能上看,每个传感器节点除了进行本地信息收集和数据处理外,还要对其他节点转发来的数据进行存储、管理和融合,并与其他节点协作完成一些特定任务。
汇聚节点
汇聚节点的处理能力、存储能力和通信能力相对较强,它是连接传感器网络与Internet 等外部网络的网关,实现两种协议间的转换,同时向传感器节点发布来自管理节点的监测任务,并把WSN收集到的数据转发到外部网络上。汇聚节点既可以是一个具有增强功能的传感器节点,有足够的能量供给和更多的、Flash和SRAM中的所有信息传输到计算机中,通过汇编软件,可很方便地把获取的信息转换成汇编文件格式,从而分析出传感节点所存储的程序代码、路由协议及密钥等机密信息,同时还可以修改程序代码,并加载到传感节点中。
管理节点
管理节点用于动态地管理整个无线传感器网络。传感器网络的所有者通过管理节点访问无线传感器网络的资源。
无线传感器测距
在无线传感器网络中,常用的测量节点间距离的方法主要有TOA(Time of Arrival),TDOA(Time Difference of Arrival)、超声波、RSSI(Received Sig nalStrength Indicator)和TOF(Time of Light)等。
‘肆’ 请问有无线传感器网I加权质心算法matlab代码吗
[capture-of-moving.rar] - 本文详细介绍了在视频图像的基础上用!"#$ & ’(( )*+ 实现运动目标形心捕获的具体程序"从而可以实现运动 目标的位置检测 程序运用改进的形心算法计算目标图形 的中心坐标"并使用了计时器函数实时显示坐标变化值
[codebook.rar] - 实现了基于码书的运动检测,并有与其他的检测算法做对比,例如MOG,Bayes,三帧差分等。
[xin.rar] - 无线传感器网络加权质心自定位算法中加权质心算法仿真
[qq1_2.rar] - 3种定位算法(多边:3 边及4边 最小二乘 质心)的主程序
[802.11opnet.rar] - 802.11opnet,802.11在OPNET中的仿真代码
[rssic.rar] - 无线传感器网络的加权质心算法,用matlab编程的,需要的可以参考
[Simulation1.rar] - 本程序先使用RSSI中对数常态模型来测距离,然后用三边测量法来计算未知节点的坐标。
[RSSIxin.rar] - 基于RSSI测距的无线传感器网络改进质心定位算法
[xinsuanfa2.rar] - 无线传感器网络中质心算法,并有锚节点比例和误差分析
[myDVHOP.rar] - 一种基于RSSI的DV-HOP加权算法,该算法基于节点接收信标节点位置元组时的信号强度(RSSI)对邻居节点间跳数进行加权处理,将节点间的跳数与距离相关联,仿真试验结果证明该加权算法可大大提高定位精度。
‘伍’ 无线传感器网络移动节点定位算法有哪些比较新的理论方法
大致有这几种种算法:信号强度、收信角度、收信时间和收信时间差。还有特殊一点的位置指纹算法。
1、信号强度是指距离和信号强度之间有一定的函数关系,通过接收到的信号强度可以推算出距离。这种方法受到的干扰太大,误差非常大。
2、收信角度是指两个蜂窝状接收装置可以分辨出信号的来源,做两条射线,交点即为位置。精度一般。
3、收信时间法是指从发送到接收是有时间差的,发送的时候信号中包含时间信息,接收的时候对照接收时间,做差即可。由于电磁波速度快,所以对于时间校准的要求很高。
4、收信时间差法是指移动点接收来自两个基站的不同信号,可以测量前后两次接收到信号的时间差。根据双曲线定义:到两定点距离差为定值的点在双曲线上。那么再来两个基站,所做双曲线的交点,就是所求点的距离。这种方法是上述几种精度最高的。
5、位置指纹算法。是指在待测区域内布置指纹状一层层的节点,这样在这样的网中放置一个待测节点,那么待测节点的位置可以通过插值法计算出。精度也比较高,不过需要布置比较节点。(摘自中国物联网校企联盟第二十一期线上活动)
希望有所帮助! 求采纳~
-中国物联网校企联盟技术部
‘陆’ 在无线传感器网络中,如何根据接收信号的强度来判断发送者的距离有具体的计算公式么
基于RSSI的定位
RSSI测量,一般利用信号传播的经验模型与理论模型。
对于经验模型,在实际定位前,先选取若干测试点,记录在这些点各基站收到的信号强度,建立各个点上的位置和信号强度关系的离线数据库(x,y,ss1,ss2,ss3)。在实际定位时,根据测得的信号强度(ss1′,ss2′,ss3′)和数据库中记录的信号强度进行比较,信号强度均方差最小的那个点的坐标作为节点的坐标。
对于理论模型,常采用无线电传播路径损耗模型进行分析。常用的传播路径损耗模型有:自由空间传播模型、对数距离路径损耗模型、哈它模型、对数一常态分布模型等。自由空间无线电传播路径损耗模型为:
式中,d为距信源的距离,单位为km;f为频率,单位为MHz;k为路径衰减因子。其他的模型模拟现实环境,但与现实环境还是有一定的差距。比如对数一常态分布模型,其路径损耗的计算公式为:
式中,Xσ是平均值为O的高斯分布随机变数,其标准差范围为4~10;k的范围在2~5之间。取d=1,代入式(1)可得,LOSS,即PL(d0)的值。此时各未知节点接收锚节点信号时的信号强度为:
RSSI=发射功率+天线增益一路径损耗(PL(d))
2.2 基于RSSI的三角形质心定位算法的数学模型
不论哪种模型,计算出的接收信号强度总与实际情况下有误差,因为实际环境的复杂性,换算出的锚节点到未知节点的距离d总是大于实际两节点间的距离。如图1所示,锚节点A,B,C,未知节点D,根据RSSI模型计算出的节点A和D的距离为rA;节点B和D的距离为rB;节点C和D的距离为rC。分别以A,B,C为圆心;rA,rB,rC为半径画圆,可得交叠区域。这里的三角形质心定位算法的基本思想是:计算三圆交叠区域的3个特征点的坐标,以这三个点为三角形的顶点,未知点即为三角形质心,如图2所示,特征点为E,F,G,特征点E点的计算方法为:
同理,可计算出F,G,此时未知点的坐标为由仿真得,在图2中,实际点为D;三角形质心算法出的估计点为M;三边测量法算出的估计点为N。可知,三角形质心算法的准确度更高。
3 基于RSSI的三角形质心算法过程
3.1 步骤
(1)锚节点周期性向周围广播信息,信息中包括自身节点ID及坐标。普通节点收到该信息后,对同一锚节点的RSSI取均值。
(2)当普通节点收集到一定数量的锚节点信息时,不再接收新信息。普通节点根据RSSI从强到弱对锚节点排序,并建立RSSI值与节点到锚节点距离的映射。建立3个集合。
锚节点集合:
(3)选取RSSI值大的前几个锚节点进行自身定位计算。
在B_set:中优先选择RSSI值大的信标节点组合成下面的锚节点集合,这是提高定位精度的关键。
对锚节点集合,依次根据(3)式算出3个交点的坐标,最后由质心算法,得出未知节点坐标。
(4)对求出的未知节点坐标集合取平均,得未知节点坐标。
3.2 误差定义
定义定位误差为ER,假设得到的未知节点的坐标为(xm,ym),其真实位置为(x,y),则定位误差ER为:
4 仿 真
利用Matlab仿真工具模拟三角形质心算法,考察该算法的性能。假设在100 m×100 m的正方形区域内,36个锚节点均匀分布,未知节点70个,分别用三边测量法和三角形质心定位算法进行仿真,仿真结果如图3所示。由图3可知,三角形质心算法比三边测量法,定位精度更高,当测距误差变大时,用三角形质心算法得出的平均定位误差比用三边测量法得出的小得多。
5 结 语
在此提出了将RSSI方法和三角形质心定位算法相结合的方法,通过仿真实验,将该算法和三边测量算法相比较,证明了该算法的优越性。下一步将研究在锚节点数量不同时的平均定位误差。
‘柒’ 无线传感器网络
无线传感器网络(wirelesssensornetwork,WSN)是综合了传感器技术、嵌入式计算机技术、分布式信息处理技术和无线通信技术,能够协作地实时监测、感知和采集网络分布区域内的各种环境或监测对象的信息,并对这些数据进行处理,获得详尽而准确的信息。传送到需要这些信息的用户。它是由部署在监测区域内大量的廉价微型传感器节点组成,通过无线通信方式形成一个多跳的自组织的网络系统。传感器、感知对象和观察者构成了传感器网络的三要素。
无线传感器网络作为当今信息领域新的研究热点,涉及到许多学科交叉的研究领域,要解决的关键技术很多,比如:网络拓扑控制、网络协议、网络安全、时间同步、定位技术、数据融合、数据管理、无线通信技术等方面,同时还要考虑传感器的电源和节能等问题。
所谓部署问题,就是在一定的区域内,通过适当的策略布置传感器节点以满足某种特定的需求。优化节点数目和节点分布形式,高效利用有限的传感器网络资源,最大程度地降低网络能耗,均是节点部署时应注意的问题。
目前的研究主要集中在网络的覆盖问题、连通问题和能耗问题3个方面。
基于节点部署方式的覆盖:1)确定性覆盖2)自组织覆盖
基于网格的覆盖:1)方形网格2)菱形网格
被监测目标状态的覆盖:1)静态目标覆盖2)动态目标覆盖
连通问题可描述为在传感器节点能量有限,感知、通信和计算能力受限的情况下,采用一定的策略(通常设计有效的算法)在目标区域中部署传感器节点,使得网络中的各个活跃节点之间能够通过一跳或多跳方式进行通信。连通问题涉及到节点通信距离和通信范围的概念。连通问题分为两类:纯连通与路由连通。
覆盖中的节能对于覆盖问题,通常采用节点集轮换机制来调度节点的活跃/休眠时间。连通中的节能针对连通问题,也可采用节点集轮换机制与调整节点通信距离的方法。而文献中涉及最多的主要是从节约网络能量和平衡节点剩余能量的角度进行路由协议的研究。
‘捌’ 什么是无线传感技术
早在上世纪70年代,就出现了将传统传感器采用点对点传输、连接传感控制器而构成传感网络雏形,我们把它归之为第一代传感器网络。随着相关学科的不断发展和进步,传感器网络同时还具有了获取多种信息信号的综合处理能力,并通过与传感控制的相联,组成了有信息综合和处理能力的传感器网络,这是第二代传感器网络。而从上世纪末开始,现场总线技术开始应用于传感器网络,人们用其组建智能化传感器网络,大量多功能传感器被运用,并使用无线技术连接,无线传感器网络逐渐形成。
无线传感器网络是新一代的传感器网络,具有非常上世纪70年代,其发展和应用,将会给人类的生活和生产的各个领域带来深远影响。
无线传感器网络可以看成是由数据获取网络、数据颁布网络和控制管理中心三部分组成的。其主要组成部分是集成有传感器、处理单元和通信模块的节点,各节点通过协议自组成一个分布式网络,再将采集来的数据通过优化后经无线电波传输给信息处理中心。