㈠ 人工智能三大学派,除了符号学派、连接学派,另外一个是什么 A:大脑学派 B:行动学派
C:行为学派
反对意见。他们认为任何思维和认知功能都不是少数神经元决定的,而是通过大量突触
相互动态联系着的众多神经元协同作用来完成的。 行为主义又称进化主义(Evolutionism)或控制论学派(Cyberneticsism),是一种基于“感知——行动”的行为智能模拟方法。
基本内容
行为主义最早来源于20世纪初的一个心理学流派,认为行为是有机体用以适应环境变化的各种身体反应的组合,它的理论目标在于预见和控制行为。维纳和麦洛克等人提出的控制论和自组织系统以及钱学森等人提出的工程控制论和生物控制论,影响了许多领域。控制论把神经系统的工作原理与信息理论、控制理论、逻辑以及计算机联系起来。早期的研究工作重点是模拟人在控制过程中的智能行为和作用,对自寻优、自适应、自校正、自镇定、自组织和自学习等控制论系统的研究,并进行“控制动物”的研制。到60、70年代,上述这些控制论系统的研究取得一定进展,并在80年代诞生了智能控制和智能机器人系统。
㈡ 人工神经网络是哪个流派的基础
“纯意念控制”人工神经康复机器人系统2014年6月14日在天津大学和天津市人民医院共同举办的发表会上,由双方共同研制的人工神经康复机器人“神工一号”正式亮相。
中文名
“纯意念控制”人工神经康复机器人系统
发布时间
2014年6月14日
快速
导航
产品特色发展历史
功能配置
“纯意念控制”人工神经康复机器人系统在复合想象动作信息解析与处理、异步脑——机接口训练与识别、皮层——肌肉活动同步耦合优化、中风后抑郁脑电非线性特征提取与筛查等关键技术上取得了重大突破。
“纯意念控制”人工神经康复机器人系统包括无创脑电传感模块、想象动作特征检测模块、运动意图识别模块、指令编码接口模块、刺激信息调理模块、刺激电流输出模块6部分。
产品特色
“纯意念控制”人工神经康复机器人系统最新研究成果将让不少中风、瘫痪人士燃起重新独立生活的希望。现已拥有包括23项授权国家发明专利、1项软件着作权在内的自主知识产权集群,是全球首台适用于全肢体中风康复的“纯意念控制”人工神经机器人系统。[1]
脑控机械外骨骼是利用被动机械牵引,非肌肉主动收缩激活。而“神工一号”则利用神经肌肉电刺激,模拟神经冲动的电刺激引起肌肉产生主动收缩,带动骨骼和关节产生自主动作,与人体自主运动原理一致。
体验者需要把装有电极的脑电探测器戴在头部,并在患病肢体的肌肉上安装电极,借助“神工一号”的连接,就可以用“意念”来“控制”自己本来无法行动的肢体了。[2]
发展历史
“纯意念控制”人工神经康复机器人系统技术历时10年,是国家“863计划“、“十二五”国家科技支撑计划和国家优秀青年科学基金重点支持项目。
人工神经网络(Artificial Neural Network,即ANN ),是20世纪80 年代以来人工智能领域兴起的研究热点。它从信息处理角度对人脑神经元网络进行抽象, 建立某种简单模型,按不同的连接方式组成不同的网络。在工程与学术界也常直接简称为神经网络或类神经网络。神经网络是一种运算模型,由大量的节点(或称神经元)之间相互联接构成。每个节点代表一种特定的输出函数,称为激励函数(activation function)。每两个节点间的连接都代表一个对于通过该连接信号的加权值,称之为权重,这相当于人工神经网络的记忆。网络的输出则依网络的连接方式,权重值和激励函数的不同而不同。而网络自身通常都是对自然界某种算法或者函数的逼近,也可能是对一种逻辑策略的表达。
最近十多年来,人工神经网络的研究工作不断深入,已经取得了很大的进展,其在模式识别、智能机器人、自动控制、预测估计、生物、医学、经济等领域已成功地解决了许多现代计算机难以解决的实际问题,表现出了良好的智能特性。
中文名
人工神经网络
外文名
artificial neural network
别称
ANN
应用学科
人工智能
适用领域范围
模式分类
精品荐读
“蠢萌”的神经网络
作者:牛油果进化论
快速
导航
基本特征发展历史网络模型学习类型分析方法特点优点研究方向发展趋势应用分析
神经元
如图所示
a1~an为输入向量的各个分量
w1~wn为神经元各个突触的权值
b为偏置
f为传递函数,通常为非线性函数。以下默认为hardlim()
t为神经元输出
数学表示 t=f(WA'+b)
W为权向量
A为输入向量,A'为A向量的转置
b为偏置
f为传递函数
可见,一个神经元的功能是求得输入向量与权向量的内积后,经一个非线性传递函数得到一个标量结果。
单个神经元的作用:把一个n维向量空间用一个超平面分割成两部分(称之为判断边界),给定一个输入向量,神经元可以判断出这个向量位于超平面的哪一边。
该超平面的方程: Wp+b=0
W权向量
b偏置
p超平面上的向量
基本特征
人工神经网络是由大量处理单元互联组成的非线性、自适应信息处理系统。它是在现代神经科学研究成果的基础上提出的,试图通过模拟大脑神经网络处理、记忆信息的方式进行信息处理。人工神经网络具有四个基本特征:
(1)非线性 非线性关系是自然界的普遍特性。大脑的智慧就是一种非线性现象。人工神经元处于激活或抑制二种不同的状态,这种行为在数学上表现为一种非线性关系。具有阈值的神经元构成的网络具有更好的性能,可以提高容错性和存储容量。
人工神经网络
(2)非局限性 一个神经网络通常由多个神经元广泛连接而成。一个系统的整体行为不仅取决于单个神经元的特征,而且可能主要由单元之间的相互作用、相互连接所决定。通过单元之间的大量连接模拟大脑的非局限性。联想记忆是非局限性的典型例子。
(3)非常定性 人工神经网络具有自适应、自组织、自学习能力。神经网络不但处理的信息可以有各种变化,而且在处理信息的同时,非线性动力系统本身也在不断变化。经常采用迭代过程描写动力系统的演化过程。
(4)非凸性 一个系统的演化方向,在一定条件下将取决于某个特定的状态函数。例如能量函数,它的极值相应于系统比较稳定的状态。非凸性是指这种函数有多个极值,故系统具有多个较稳定的平衡态,这将导致系统演化的多样性。
人工神经网络中,神经元处理单元可表示不同的对象,例如特征、字母、概念,或者一些有意义的抽象模式。网络中处理单元的类型分为三类:输入单元、输出单元和隐单元。输入单元接受外部世界的信号与数据;输出单元实现系统处理结果的输出;隐单元是处在输入和输出单元之间,不能由系统外部观察的单元。神经元间的连接权值反映了单元间的连接强度,信息的表示和处理体现在网络处理单元的连接关系中。人工神经网络是一种非程序化、适应性、大脑风格的信息处理 ,其本质是通过网络的变换和动力学行为得到一种并行分布式的信息处理功能,并在不同程度和层次上模仿人脑神经系统的信息处理功能。它是涉及神经科学、思维科学、人工智能、计算机科学等多个领域的交叉学科。
人工神经网络
人工神经网络是并行分布式系统,采用了与传统人工智能和信息处理技术完全不同的机理,克服了传统的基于逻辑符号的人工智能在处理直觉、非结构化信息方面的缺陷,具有自适应、自组织和实时学习的特点。[1]
发展历史
1943年,心理学家W.S.McCulloch和数理逻辑学家W.Pitts建立了神经网络和数学模型,称为MP模型。他们通过MP模型提出了神经元的形式化数学描述和网络结构方法,证明了单个神经元能执行逻辑功能,从而开创了人工神经网络研究的时代。1949年,心理学家提出了突触联系强度可变的设想。60年代,人工神经网络得到了进一步发展,更完善的神经网络模型被提出,其中包括感知器和自适应线性元件等。M.Minsky等仔细分析了以感知器为代表的神经网络系统的功能及局限后,于1969年出版了《Perceptron》一书,指出感知器不能解决高阶谓词问题。他们的论点极大地影响了神经网络的研究,加之当时串行计算机和人工智能所取得的成就,掩盖了发展新型计算机和人工智能新途径的必要性和迫切性,使人工神经网络的研究处于低潮。在此期间,一些人工神经网络的研究者仍然致力于这一研究,提出了适应谐振理论(ART网)、自组织映射、认知机网络,同时进行了神经网络数学理论的研究。以上研究为神经网络的研究和发展奠定了基础。1982年,美国加州工学院物理学家J.J.Hopfield提出了Hopfield神经网格模型,引入了“计算能量”概念,给出了网络稳定性判断。 1984年,他又提出了连续时间Hopfield神经网络模型,为神经计算机的研究做了开拓性的工作,开创了神经网络用于联想记忆和优化计算的新途径,有力地推动了神经网络的研究,1985年,又有学者提出了波耳兹曼模型,在学习中采用统计热力学模拟退火技术,保证整个系统趋于全局稳定点。1986年进行认知微观结构地研究,提出了并行分布处理的理论。1986年,Rumelhart, Hinton, Williams发展了BP算法。Rumelhart和McClelland出版了《Parallel distribution processing: explorations in the microstructures of cognition》。迄今,BP算法已被用于解决大量实际问题。1988年,Linsker对感知机网络提出了新的自组织理论,并在Shanon信息论的基础上形成了最大互信息理论,从而点燃了基于NN的信息应用理论的光芒。1988年,Broomhead和Lowe用径向基函数(Radial basis function, RBF)提出分层网络的设计方法,从而将NN的设计与数值分析和线性适应滤波相挂钩。90年代初,Vapnik等提出了支持向量机(Support vector machines, SVM)和VC(Vapnik-Chervonenkis)维数的概念。人工神经网络的研究受到了各个发达国家的重视,美国国会通过决议将1990年1月5日开始的十年定为“脑的十年”,国际研究组织号召它的成员国将“脑的十年”变为全球行为。在日本的“真实世界计算(RWC)”项目中,人工智能的研究成了一个重要的组成部分。
人工神经网络
网络模型
人工神经网络模型主要考虑网络连接的拓扑结构、神经元的特征、学习规则等。目前,已有近40种神经网络模型,其中有反传网络、感知器、自组织映射、Hopfield网络、波耳兹曼机、适应谐振理论等。根据连接的拓扑结构,神经网络模型可以分为:[1]
人工神经网络
前向网络
网络中各个神经元接受前一级的输入,并输出到下一级,网络中没有反馈,可以用一个有向无环路图表示。这种网络实现信号从输入空间到输出空间的变换,它的信息处理能力来自于简单非线性函数的多次复合。网络结构简单,易于实现。反传网络是一种典型的前向网络。[2]
反馈网络
网络内神经元间有反馈,可以用一个无向的完备图表示。这种神经网络的信息处理是状态的变换,可以用动力学系统理论处理。系统的稳定性与联想记忆功能有密切关系。Hopfield网络、波耳兹曼机均属于这种类型。
学习类型
学习是神经网络研究的一个重要内容,它的适应性是通过学习实现的。根据环境的变化,对权值进行调整,改善系统的行为。由Hebb提出的Hebb学习规则为神经网络的学习算法奠定了基础。Hebb规则认为学习过程最终发生在神经元之间的突触部位,突触的联系强度随着突触前后神经元的活动而变化。在此基础上,人们提出了各种学习规则和算法,以适应不同网络模型的需要。有效的学习算法,使得神经网络能够通过连接权值的调整,构造客观世界的内在表示,形成具有特色的信息处理方法,信息存储和处理体现在网络的连接中。
人工神经网络
分类
根据学习环境不同,神经网络的学习方式可分为监督学习和非监督学习。在监督学习中,将训练样本的数据加到网络输入端,同时将相应的期望输出与网络输出相比较,得到误差信号,以此控制权值连接强度的调整,经多次训练后收敛到一个确定的权值。当样本情况发生变化时,经学习可以修改权值以适应新的环境。使用监督学习的神经网络模型有反传网络、感知器等。非监督学习时,事先不给定标准样本,直接将网络置于环境之中,学习阶段与工作阶段成为一体。此时,学习规律的变化服从连接权值的演变方程。非监督学习最简单的例子是Hebb学习规则。竞争学习规则是一个更复杂的非监督学习的例子,它是根据已建立的聚类进行权值调整。自组织映射、适应谐振理论网络等都是与竞争学习有关的典型模型。
分析方法
研究神经网络的非线性动力学性质,主要采用动力学系统理论、非线性规划理论和统计理论,来分析神经网络的演化过程和吸引子的性质,探索神经网络的协同行为和集体计算功能,了解神经信息处理机制。为了探讨神经网络在整体性和模糊性方面处理信息的可能,混沌理论的概念和方法将会发挥作用。混沌是一个相当难以精确定义的数学概念。一般而言,“混沌”是指由确定性方程描述的动力学系统中表现出的非确定性行为,或称之为确定的随机性。“确定性”是因为它由内在的原因而不是外来的噪声或干扰所产生,而“随机性”是指其不规则的、不能预测的行为,只可能用统计的方法描述。
㈢ 关于人工智能
“人工智能”(Artificial Intelligence)简称AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。
人工智能研究如何用计算机去模拟、延伸和扩展人的智能;如何把计算机用得更聪明;如何设计和建造具有高智能水平的计算机应用系统;如何设计和制造更聪明的计算机以及智能水平更高的智能计算机等。
人工智能是计算机科学的一个分支,人工智能是计算机科学技术的前沿科技领域。
人工智能与计算机软件有密切的关系。一方面,各种人工智能应用系统都要用计算机软件去实现,另一方面,许多聪明的计算机软件也应用了人工智能的理论方法和技术。例如,专家系统软件,机器博弈软件等。但是,人工智能不等于软件,除了软件以外,还有硬件及其他自动化和通信设备。
人工智能虽然是计算机科学的一个分支,但它的研究却不仅涉及到计算机科学,而且还涉及到脑科学、神经生理学、心理学、语言学、逻辑学、认知(思维)科学、行为科学和数学以及信息论、控制论和系统论等许多学科领域。因此,人工智能实际上是一门综合性的交叉学科和边缘学科。
人工智能主要研究用人工的方法和技术,模仿、延伸和扩展人的智能,实现机器智能。有人把人工智能分成两大类:一类是符号智能,一类是计算智能。符号智能是以知识为基础,通过推理进行问题求解。也即所谓的传统人工智能。计算智能是以数据为基础,通过训练建立联系,进行问题求解。人工神经网络、遗传算法、模糊系统、进化程序设计、人工生命等都可以包括在计算智能。
传统人工智能主要运用知识进行问题求解。从实用观点看,人工智能是一门知识工程学:以知识为对象,研究知识的表示方法、知识的运用和知识获取。
人工智能从1956年提出以来取得了很大的进展和成功。1976年Newell 和Simon提出了物理符号系统假设,认为物理符号系统是表现智能行为必要和充分的条件。这样,可以把任何信息加工系统看成是一个具体的物理系统,如人的神经系统、计算机的构造系统等。80年代Newell 等又致力于SOAR系统的研究。SOAR系统是以知识块(Chunking)理论为基础,利用基于规则的记忆,获取搜索控制知识和操作符,实现通用问题求解。Minsky从心理学的研究出发,认为人们在他们日常的认识活动中,使用了大批从以前的经验中获取并经过整理的知识。该知识是以一种类似框架的结构记存在人脑中。因此,在70年代他提出了框架知识表示方法。到80年代,Minsky认为人的智能,根本不存在统一的理论。1985年,他发表了一本着名的书《Society of Mind(思维社会)》。书中指出思维社会是由大量具有某种思维能力的单元组成的复杂社会。以McCarthy和Nilsson等为代表,主张用逻辑来研究人工智能,即用形式化的方法描述客观世界。逻辑学派在人工智能研究中,强调的是概念化知识表示、模型论语义、演绎推理等。 McCarthy主张任何事物都可以用统一的逻辑框架来表示,在常识推理中以非单调逻辑为中心。传统的人工智能研究思路是“自上而下”式的,它的目标是让机器模仿人,认为人脑的思维活动可以通过一些公式和规则来定义,因此希望通过把人类的思维方式翻译成程序语言输入机器,来使机器有朝一日产生像人类一样的思维能力。这一理论指导了早期人工智能的研究。
近年来神经生理学和脑科学的研究成果表明,脑的感知部分,包括视觉、听觉、运动等脑皮层区不仅具有输入/输出通道的功能,而且具有直接参与思维的功能。智能不仅是运用知识,通过推理解决问题,智能也处于感知通道。
1990年史忠植提出了人类思维的层次模型,表明人类思维有感知思维、形象思维、抽象思维,并构成层次关系。感知思维是简单的思维形态,它通过人的眼、耳、鼻、舌、身感知器官产生表象,形成初级的思维。感知思维中知觉的表达是关键。形象思维主要是用典型化的方法进行概括,并用形象材料来思维,可以高度并行处理。抽象思维以物理符号系统为理论基础,用语言表述抽象的概念。由于注意的作用,使其处理基本上是串行的.
㈣ 人工智能三学派分别是
符号主义;联结主义;行为主义
㈤ 人工智能专业属于哪个专业大类
人工智能的研究主要有三方面:一是纯理论性的,以强人工智能或者神经网络为研究方向,这样的话,本科可以选择神经科学,也可以选修心理学、哲学、计算机科学二是从算法层面对人工智能的优化,这也是大多数人现在对人工智能的理解,本科自然要学计算机科学了,但博弈论之类重视逻辑的小类别学科也有选修或者自学的必要。第三种就是工业应用的方面。楼主的认识很对,这样主要应该学习自动化和机械控制。在国外,人工智能的理论研究还是很有价值的。国内嘛就别想了。在国内,计算机是现在很火的专业不必多说。选机械控制专业的话就业前景非常好。楼主你说喜欢硬件方面科技产品设计,若不是机械控制,人工智能目前还主要是研究算法层面的。
㈥ 人工智能有五种学派,知道有哪些吗
如下:
智能模拟
机器视、听、触、感觉及思维方式的模拟:指纹识别,人脸识别,视网膜识别,虹膜识别,掌纹识别,专家系统,智能搜索,定理证明,逻辑推理,博弈,信息感应与辨证处理。
学科范畴
人工智能是一门边沿学科,属于自然科学、社会科学、技术科学三向交叉学科。
涉及学科
哲学和认知科学,数学,神经生理学,心理学,计算机科学,信息论,控制论,不定性论,仿生学,社会结构学与科学发展观。
研究范畴
语言的学习与处理,知识表现,智能搜索,推理,规划,机器学习,知识获取,组合调度问题,感知问题,模式识别,逻辑程序设计,软计算,不精确和不确定的管理,人工生命,神经网络,复杂系统,遗传算法人类思维方式,最关键的难题还是机器的自主创造性思维能力的塑造与提升。
应用领域
机器翻译,智能控制,专家系统,机器人学,语言和图像理解,遗传编程机器人工厂,自动程序设计,航天应用,庞大的信息处理,储存与管理,执行化合生命体无法执行的或复杂或规模庞大的任务等等。
值得一提的是,机器翻译是人工智能的重要分支和最先应用领域。不过就已有的机译成就来看,机译系统的译文质量离终极目标仍相差甚远;而机译质量是机译系统成败的关键。中国数学家、语言学家周海中教授曾在论文《机器翻译五十年》中指出:要提高机译的质量,首先要解决的是语言本身问题而不是程序设计问题;单靠若干程序来做机译系统,肯定是无法提高机译质量的;另外在人类尚未明了大脑是如何进行语言的模糊识别和逻辑判断的情况下,机译要想达到“信、达、雅”的程度是不可能的。
㈦ 人工智能有哪几大学派和主要思想
人工智能(英语:Artificial Intelligence, AI)亦称机器智能,是指由人工制造出来的系统所表现出来的智能。通常人工智能是指通过普通电脑实现的智能。该词同时也指研究这样的智能系统是否能够实现,以及如何实现的科学领域。
人工智能的研究是高度技术性和专业的,各分支领域都是深入且各不相通的。
人工智能的研究可以分为几个技术问题。其分支领域主要集中在解决具体问题,其中之一是,如何使用各种不同的工具完成特定的应用程序。AI的核心问题包括推理,知识,规划,学习,交流,感知,移动和操作物体的能力等。强人工智能目前仍然是该领域的长远目标。目前比较流行的方法包括统计方法,计算智能和传统意义的AI。目前有大量的工具应用了人工智能,其中包括搜索和数学优化,逻辑,基于概率论和经济学的方法等等。
㈧ “阿尔法狗”采用的深度学习方法属于人工智能中的什么学派
阿尔法狗使用的是深度强化学习方法,是深度学习和强化学习的结合体.
深度学习是神经网络属于连接派,强化学习属于行为派.
阿尔法狗是连接派和行为派的结合体.
除了连接派和行为派之外,人工智能的另一大门派是符号派,符号派当前的进展是知识图谱,也是人工智能目前的研究热点.
㈨ 人工智能的发展,主要经历哪几个阶段
1 孕育阶段
这个阶段主要是指1956年以前。自古以来,人们就一直试图用各种机器来代替人的部分脑力劳动,以提高人们征服自然的能力,其中对人工智能的产生、发展有重大影响的主要研究成果包括:
早在公元前384-公元前322年,伟大的哲学家亚里士多德(Aristotle)就在他的名着《工具论》中提出了形式逻辑的一些主要定律,他提出的三段论至今仍是演绎推理的基本依据。
英国哲学家培根(F. Bacon)曾系统地提出了归纳法,还提出了“知识就是力量”的警句。这对于研究人类的思维过程,以及自20世纪70年代人工智能转向以知识为中心的研究都产生了重要影响。
德国数学家和哲学家莱布尼茨(G. W. Leibniz)提出了万能符号和推理计算的思想,他认为可以建立一种通用的符号语言以及在此符号语言上进行推理的演算。这一思想不仅为数理逻辑的产生和发展奠定了基础,而且是现代机器思维设计思想的萌芽。
英国逻辑学家布尔(C. Boole)致力于使思维规律形式化和实现机械化,并创立了布尔代数。他在《思维法则》一书中首次用符号语言描述了思维活动的基本推理法则。
英国数学家图灵(A. M. Turing)在1936年提出了一种理想计算机的数学模型,即图灵机,为后来电子数字计算机的问世奠定了理论基础。
美国神经生理学家麦克洛奇(W. McCulloch)与匹兹(W. Pitts)在1943年建成了第一个神经网络模型(M-P模型),开创了微观人工智能的研究领域,为后来人工神经网络的研究奠定了基础。
美国爱荷华州立大学的阿塔纳索夫(Atanasoff)教授和他的研究生贝瑞(Berry)在1937年至1941年间开发的世界上第一台电子计算机“阿塔纳索夫-贝瑞计算机(Atanasoff-Berry Computer,ABC)”为人工智能的研究奠定了物质基础。需要说明的是:世界上第一台计算机不是许多书上所说的由美国的莫克利和埃柯特在1946年发明。这是美国历史上一桩着名的公案。
由上面的发展过程可以看出,人工智能的产生和发展绝不是偶然的,它是科学技术发展的必然产物。
2 形成阶段
这个阶段主要是指1956-1969年。1956年夏季,由当时达特茅斯大学的年轻数学助教、现任斯坦福大学教授麦卡锡(J. MeCarthy)联合哈佛大学年轻数学和神经学家、麻省理工学院教授明斯基(M. L. Minsky),IBM公司信息研究中心负责人洛切斯特(N. Rochester),贝尔实验室信息部数学研究员香农(C. E. Shannon)共同发起,邀请普林斯顿大学的莫尔(T.Moore)和IBM公司的塞缪尔(A. L. Samuel)、麻省理工学院的塞尔夫里奇(O. Selfridge)和索罗莫夫(R. Solomonff)以及兰德(RAND)公司和卡内基梅隆大学的纽厄尔(A. Newell)、西蒙(H. A. Simon)等在美国达特茅斯大学召开了一次为时两个月的学术研讨会,讨论关于机器智能的问题。会上经麦卡锡提议正式采用了“人工智能”这一术语。麦卡锡因而被称为人工智能之父。这是一次具有历史意义的重要会议,它标志着人工智能作为一门新兴学科正式诞生了。此后,美国形成了多个人工智能研究组织,如纽厄尔和西蒙的Carnegie-RAND协作组,明斯基和麦卡锡的MIT研究组,塞缪尔的IBM工程研究组等。
自这次会议之后的10多年间,人工智能的研究在机器学习、定理证明、模式识别、问题求解、专家系统及人工智能语言等方面都取得了许多引人注目的成就,例如:
在机器学习方面,1957年Rosenblatt研制成功了感知机。这是一种将神经元用于识别的系统,它的学习功能引起了广泛的兴趣,推动了连接机制的研究,但人们很快发现了感知机的局限性。
在定理证明方面,美籍华人数理逻辑学家王浩于1958年在IBM-704机器上用3~5min证明了《数学原理》中有关命题演算的全部定理(220条),并且还证明了谓词演算中150条定理的85%,1965年鲁宾逊(J. A. Robinson)提出了归结原理,为定理的机器证明作出了突破性的贡献。
在模式识别方面,1959年塞尔夫里奇推出了一个模式识别程序,1965年罗伯特(Roberts)编制出了可分辨积木构造的程序。
在问题求解方面,1960年纽厄尔等人通过心理学试验总结出了人们求解问题的思维规律,编制了通用问题求解程序(General Problem Solver,GPS),可以用来求解11种不同类型的问题。
在专家系统方面,美国斯坦福大学的费根鲍姆(E. A. Feigenbaum)领导的研究小组自1965年开始专家系统DENDRAL的研究,1968年完成并投入使用。该专家系统能根据质谱仪的实验,通过分析推理决定化合物的分子结构,其分析能力已接近甚至超过有关化学专家的水平,在美、英等国得到了实际的应用。该专家系统的研制成功不仅为人们提供了一个实用的专家系统,而且对知识表示、存储、获取、推理及利用等技术是一次非常有益的探索,为以后专家系统的建造树立了榜样,对人工智能的发展产生了深刻的影响,其意义远远超过了系统本身在实用上所创造的价值。
在人工智能语言方面,1960年麦卡锡研制出了人工智能语言(List Processing,LISP),成为建造专家系统的重要工具。
1969年成立的国际人工智能联合会议(International Joint Conferences On Artificial Intelligence,IJCAI)是人工智能发展史上一个重要的里程碑,它标志着人工智能这门新兴学科已经得到了世界的肯定和认可。1970年创刊的国际性人工智能杂志《Artificial Intelligence》对推动人工智能的发展,促进研究者们的交流起到了重要的作用。
3 发展阶段
这个阶段主要是指1970年以后。进入20世纪70年代,许多国家都开展了人工智能的研究,涌现了大量的研究成果。例如,1972年法国马赛大学的科麦瑞尔(A. Comerauer)提出并实现了逻辑程序设计语言PROLOG;斯坦福大学的肖特利夫(E. H. Shorliffe)等人从1972年开始研制用于诊断和治疗感染性疾病的专家系统MYCIN。
但是,和其他新兴学科的发展一样,人工智能的发展道路也不是平坦的。例如,机器翻译的研究没有像人们最初想象的那么容易。当时人们总以为只要一部双向词典及一些词法知识就可以实现两种语言文字间的互译。后来发现机器翻译远非这么简单。实际上,由机器翻译出来的文字有时会出现十分荒谬的错误。例如,当把“眼不见,心不烦”的英语句子“Out of sight,out of mind”。翻译成俄语变成“又瞎又疯”;当把“心有余而力不足”的英语句子“The spirit is willing but the flesh is weak”翻译成俄语,然后再翻译回来时竟变成了“The wine is good but the meat is spoiled”,即“酒是好的,但肉变质了”;当把“光阴似箭”的英语句子“Time flies like an arrow”翻译成日语,然后再翻译回来的时候,竟变成了“苍蝇喜欢箭”。由于机器翻译出现的这些问题,1960年美国政府顾问委员会的一份报告裁定:“还不存在通用的科学文本机器翻译,也没有很近的实现前景。”因此,英国、美国当时中断了对大部分机器翻译项目的资助。在其他方面,如问题求解、神经网络、机器学习等,也都遇到了困难,使人工智能的研究一时陷入了困境。
人工智能研究的先驱者们认真反思,总结前一段研究的经验和教训。1977年费根鲍姆在第五届国际人工智能联合会议上提出了“知识工程”的概念,对以知识为基础的智能系统的研究与建造起到了重要的作用。大多数人接受了费根鲍姆关于以知识为中心展开人工智能研究的观点。从此,人工智能的研究又迎来了蓬勃发展的以知识为中心的新时期。
这个时期中,专家系统的研究在多种领域中取得了重大突破,各种不同功能、不同类型的专家系统如雨后春笋般地建立起来,产生了巨大的经济效益及社会效益。例如,地矿勘探专家系统PROSPECTOR拥有15种矿藏知识,能根据岩石标本及地质勘探数据对矿藏资源进行估计和预测,能对矿床分布、储藏量、品位及开采价值进行推断,制定合理的开采方案。应用该系统成功地找到了超亿美元的钼矿。专家系统MYCIN能识别51种病菌,正确地处理23种抗菌素,可协助医生诊断、治疗细菌感染性血液病,为患者提供最佳处方。该系统成功地处理了数百个病例,并通过了严格的测试,显示出了较高的医疗水平。美国DEC公司的专家系统XCON能根据用户要求确定计算机的配置。由专家做这项工作一般需要3小时,而该系统只需要0.5分钟,速度提高了360倍。DEC公司还建立了另外一些专家系统,由此产生的净收益每年超过4000万美元。信用卡认证辅助决策专家系统American Express能够防止不应有的损失,据说每年可节省2700万美元左右。
专家系统的成功,使人们越来越清楚地认识到知识是智能的基础,对人工智能的研究必须以知识为中心来进行。对知识的表示、利用及获取等的研究取得了较大的进展,特别是对不确定性知识的表示与推理取得了突破,建立了主观Bayes理论、确定性理论、证据理论等,对人工智能中模式识别、自然语言理解等领域的发展提供了支持,解决了许多理论及技术上的问题。
人工智能在博弈中的成功应用也举世瞩目。人们对博弈的研究一直抱有极大的兴趣,早在1956年人工智能刚刚作为一门学科问世时,塞缪尔就研制出了跳棋程序。这个程序能从棋谱中学习,也能从下棋实践中提高棋艺。1959年它击败了塞缪尔本人,1962年又击败了一个州的冠军。1991年8月在悉尼举行的第12届国际人工智能联合会议上,IBM公司研制的“深思”(Deep Thought)计算机系统就与澳大利亚象棋冠军约翰森(D. Johansen)举行了一场人机对抗赛,结果以1:1平局告终。1957年西蒙曾预测10年内计算机可以击败人类的世界冠军。虽然在10年内没有实现,但40年后深蓝计算机击败国际象棋棋王卡斯帕罗夫(Kasparov),仅仅比预测迟了30年。
1996年2月10日至17日,为了纪念世界上第一台电子计算机诞生50周年,美国IBM公司出巨资邀请国际象棋棋王卡斯帕罗夫与IBM公司的深蓝计算机系统进行了六局的“人机大战”。这场比赛被人们称为“人脑与电脑的世界决战”。参赛的双方分别代表了人脑和电脑的世界最高水平。当时的深蓝是一台运算速度达每秒1亿次的超级计算机。第一盘,深蓝就给卡斯帕罗夫一个下马威,赢了这位世界冠军,给世界棋坛以极大的震动。但卡斯帕罗夫总结经验,稳扎稳打,在剩下的五盘中赢三盘,平两盘,最后以总比分4:2获胜。一年后,即1997年5月3日至11日,深蓝再次挑战卡斯帕罗夫。这时,深蓝是一台拥有32个处理器和强大并行计算能力的RS/6000SP/2的超级计算机,运算速度达每秒2亿次。计算机里存储了百余年来世界顶尖棋手的棋局,5月3日棋王卡斯帕罗夫首战击败深蓝,5月4日深蓝扳回一盘,之后双方战平三局。双方的决胜局于5月11日拉开了帷幕,卡斯帕罗夫在这盘比赛中仅仅走了19步便放弃了抵抗,比赛用时只有1小时多一点。这样,深蓝最终以3.5:2.5的总比分赢得这场举世瞩目的“人机大战”的胜利。深蓝的胜利表明了人工智能所达到的成就。尽管它的棋路还远非真正地对人类思维方式的模拟,但它已经向世人说明,电脑能够以人类远远不能企及的速度和准确性,实现属于人类思维的大量任务。深蓝精湛的残局战略使观战的国际象棋专家们大为惊讶。卡斯帕罗夫也表示:“这场比赛中有许多新的发现,其中之一就是计算机有时也可以走出人性化的棋步。在一定程度上,我不能不赞扬这台机器,因为它对盘势因素有着深刻的理解,我认为这是一项杰出的科学成就。”因为这场胜利,IBM的股票升值为180亿美元。
4 人工智能的学派
根据前面的论述,我们知道要理解人工智能就要研究如何在一般的意义上定义知识,可惜的是,准确定义知识也是个十分复杂的事情。严格来说,人们最早使用的知识定义是柏拉图在《泰阿泰德篇》中给出的,即“被证实的、真的和被相信的陈述”(Justified true belief,简称JTB条件)。
然而,这个延续了两千多年的定义在1963年被哲学家盖梯尔否定了。盖梯尔提出了一个着名的悖论(简称“盖梯尔悖论”)。该悖论说明柏拉图给出的知识定文存在严重缺陷。虽然后来人们给出了很多知识的替代定义,但直到现在仍然没有定论。
但关于知识,至少有一点是明确的,那就是知识的基本单位是概念。精通掌握任何一门知识,必须从这门知识的基本概念开始学习。而知识自身也是一个概念。因此,如何定义一个概念,对于人工智能具有非常重要的意义。给出一个定义看似简单,实际上是非常难的,因为经常会涉及自指的性质(自指:词性的转化——由谓词性转化为体词性,语义则保持不变)。一旦涉及自指,就会出现非常多的问题,很多的语义悖论都出于概念自指。
自指与转指这一对概念最早出自朱德熙先生的《自指与转指》(《方言》1983年第一期,《朱德熙文集》第三卷)。陆俭明先生在《八十年代中国语法研究》中(第98页)说:“自指和转指的区别在于,自指单纯是词性的转化-由谓词性转化为体词性,语义则保持不变;转指则不仅词性转化,语义也发生变化,尤指行为动作或性质本身转化为指与行为动作或性质相关的事物。”
举例:
①教书的来了(“教书的”是转指,转指教书的“人”);教书的时候要认真(“教书的”语义没变,是自指)。
②Unplug一词的原意为“不使用(电源)插座”,是自指;常用来转指为不使用电子乐器的唱歌。
③colored在表示having colour(着色)时是自指。colored在表示有色人种时,就是转指。
④rich,富有的,是自指。the rich,富人,是转指。
知识本身也是一个概念。据此,人工智能的问题就变成了如下三个问题:一、如何定义(或者表示)一个概念、如何学习一个概念、如何应用一个概念。因此对概念进行深人研究就非常必要了。
那么,如何定义一个概念呢?简单起见,这里先讨论最为简单的经典概念。经典概念的定义由三部分组成:第一部分是概念的符号表示,即概念的名称,说明这个概念叫什么,简称概念名;第二部分是概念的内涵表示,由命题来表示,命题就是能判断真假的陈述句。第三部分是概念的外延表示,由经典集合来表示,用来说明与概念对应的实际对象是哪些。
举一个常见经典概念的例子——素数(prime number),其内涵表示是一个命题,即只能够被1和自身整除的自然数。
概念有什么作用呢?或者说概念定义的各个组成部分有什么作用呢?经典概念定义的三部分各有作用,且彼此不能互相代替。具体来说,概念有三个作用或功能,要掌握一个概念,必须清楚其三个功能。
第一个功能是概念的指物功能,即指向客观世界的对象,表示客观世界的对象的可观测性。对象的可观测性是指对象对于人或者仪器的知觉感知特性,不依赖于人的主观感受。举一个《阿Q正传》里的例子:那赵家的狗,何以看我两眼呢?句子中“赵家的狗”应该是指现实世界当中的一条真正的狗。但概念的指物功能有时不一定能够实现,有些概念其设想存在的对象在现实世界并不存在,例如“鬼”。
第二个功能是指心功能,即指向人心智世界里的对象,代表心智世界里的对象表示。鲁迅有一篇着名的文章《论丧家的资本家的乏走狗》,显然,这个“狗”不是现实世界的狗,只是他心智世界中的狗,即心里的狗(在客观世界,梁实秋先生显然无论如何不是狗)。概念的指心功能一定存在。如果对于某一个人,一个概念的指心功能没有实现,则该词对于该人不可见,简单地说,该人不理解该概念。
最后一个功能是指名功能,即指向认知世界或者符号世界表示对象的符号名称,这些符号名称组成各种语言。最着名的例子是乔姆斯基的“colorless green ideas sleep furiously”,这句话翻译过来是“无色的绿色思想在狂怒地休息”。这句话没有什么意思,但是完全符合语法,纯粹是在语义符号世界里,即仅仅指向符号世界而已。当然也有另外,“鸳鸯两字怎生书”指的就是“鸳鸯”这两个字组成的名字。一般情形下,概念的指名功能依赖于不同的语言系统或者符号系统,由人类所创造,属于认知世界。同一个概念在不同的符号系统里,概念名不一定相同,如汉语称“雨”,英语称“rain”。
根据波普尔的三个世界理论,认知世界、物理世界与心理世界虽然相关,但各不相同。因此,一个概念的三个功能虽然彼此相关,也各不相同。更重要的是,人类文明发展至今,这三个功能不断发展,彼此都越来越复杂,但概念的三个功能并没有改变。
在现实生活中,如果你要了解一个概念,就需要知道这个概念的三个功能:要知道概念的名字,也要知道概念所指的对象(可能是物理世界)。更要在自己的心智世界里具有该概念的形象(或者图像)。如果只有一个,那是不行的。
知道了概念的三个功能之后,就可以理解人工智能的三个学派以及各学派之间的关系。
人工智能也是一个概念,而要使一个概念成为现实,自然要实现概念的三个功能。人工智能的三个学派关注于如何才能让机器具有人工智能,并根据概念的不同功能给出了不同的研究路线。专注于实现AI指名功能的人工智能学派成为符号主义,专注于实现AI指心功能的人工智能学派称为连接主义,专注于实现AI指物功能的人工智能学派成为行为主义。
1. 符号主义
符号主义的代表人物是Simon与Newell,他们提出了物理符号系统假设,即只要在符号计算上实现了相应的功能,那么在现实世界就实现了对应的功能,这是智能的充分必要条件。因此,符号主义认为,只要在机器上是正确的,现实世界就是正确的。说得更通俗一点,指名对了,指物自然正确。
在哲学上,关于物理符号系统假设也有一个着名的思想实验——本章1.1.3节中提到的图灵测试。图灵测试要解决的问题就是如何判断一台机器是否具有智能。
图灵测试将智能的表现完全限定在指名功能里。但马少平教授的故事已经说明,只在指名功能里实现了概念的功能,并不能说明一定实现了概念的指物功能。实际上,根据指名与指物的不同,哲学家约翰·塞尔勒专门设计了一个思想实验用来批判图灵测试,这就是着名的中文屋实验。
中文屋实验明确说明,即使符号主义成功了,这全是符号的计算跟现实世界也不一定搭界,即完全实现指名功能也不见得具有智能。这是哲学上对符号主义的一个正式批评,明确指出了按照符号主义实现的人工智能不等同于人的智能。
虽然如此,符号主义在人工智能研究中依然扮演了重要角色,其早期工作的主要成就体现在机器证明和知识表示上。在机器证明方面,早期Simon与Newell做出了重要的贡献,王浩、吴文俊等华人也得出了很重要的结果。机器证明以后,符号主义最重要的成就是专家系统和知识工程,最着名的学者就是Feigenbaum。如果认为沿着这条路就可以实现全部智能,显然存在问题。日本第五代智能机就是沿着知识工程这条路走的,其后来的失败在现在看来是完全合乎逻辑的。
实现符号主义面临的观实挑成主要有三个。第一个是概念的组合爆炸问题。每个人掌握的基本概念大约有5万个,其形成的组合概念却是无穷的。因为常识难以穷尽,推理步骤可以无穷。第二个是命题的组合悖论问题。两个都是合理的命题,合起来就变成了没法判断真假的句子了,比如着名的柯里悖论(Curry’s Paradox)(1942)。第三个也是最难的问题,即经典概念在实际生活当中是很难得到的,知识也难以提取。上述三个问题成了符号主义发展的瓶颈。
2. 连接主义
连接主义认为大脑是一切智能的基础,主要关注于大脑神经元及其连接机制,试图发现大脑的结构及其处理信息的机制、揭示人类智能的本质机理,进而在机器上实现相应的模拟。前面已经指出知识是智能的基础,而概念是知识的基本单元,因此连接主义实际上主要关注于概念的心智表示以及如何在计算机上实现其心智表示,这对应着概念的指心功能。2016年发表在Nature上的一篇学术论文揭示了大脑语义地图的存在性,文章指出概念都可以在每个脑区找到对应的表示区,确确实实概念的心智表示是存在的。因此,连接主义也有其坚实的物理基础。
连接主义学派的早期代表人物有麦克洛克、皮茨、霍普菲尔德等。按照这条路,连接主义认为可以实现完全的人工智能。对此,哲学家普特南设计了着名的“缸中之脑实验”,可以看作是对连接主义的一个哲学批判。
缸中之脑实验描述如下:一个人(可以假设是你自己)被邪恶科学家进行了手术,脑被切下来并放在存有营养液的缸中。脑的神经末梢被连接在计算机上,同时计算机按照程序向脑传递信息。对于这个人来说,人、物体、天空都存在,神经感觉等都可以输入,这个大脑还可以被输入、截取记忆,比如截取掉大脑手术的记忆,然后输入他可能经历的各种环境、日常生活,甚至可以被输入代码,“感觉”到自己正在阅读这一段有趣而荒唐的文字。
缸中之脑实验说明即使连接主义实现了,指心没有问题,但指物依然存在严重问题。因此,连接主义实现的人工智能也不等同于人的智能。
尽管如此,连接主义仍是目前最为大众所知的一条AI实现路线。在围棋上,采用了深度学习技术的AlphaGo战胜了李世石,之后又战胜了柯洁。在机器翻译上,深度学习技术已经超过了人的翻译水平。在语音识别和图像识别上,深度学习也已经达到了实用水准。客观地说,深度学习的研究成就已经取得了工业级的进展。
但是,这并不意味着连接主义就可以实现人的智能。更重要的是,即使要实现完全的连接主义,也面临极大的挑战。到现在为止,人们并不清楚人脑表示概念的机制,也不清楚人脑中概念的具体表示形式表示方式和组合方式等。现在的神经网络与深度学习实际上与人脑的真正机制距离尚远。
3. 行为主义
行为主义假设智能取决于感知和行动,不需要知识、表示和推理,只需要将智能行为表现出来就好,即只要能实现指物功能就可以认为具有智能了。这一学派的早期代表作是Brooks的六足爬行机器人。
对此,哲学家普特南也设计了一个思想实验,可以看作是对行为主义的哲学批判,这就是“完美伪装者和斯巴达人”。完美伪装者可以根据外在的需求进行完美的表演,需要哭的时候可以哭得让人撕心裂肺,需要笑的时候可以笑得让人兴高采烈,但是其内心可能始终冷静如常。斯巴达人则相反,无论其内心是激动万分还是心冷似铁,其外在总是一副泰山崩于前而色不变的表情。完美伪装者和斯巴达人的外在表现都与内心没有联系,这样的智能如何从外在行为进行测试?因此,行为主义路线实现的人工智能也不等同于人的智能。
对于行为主义路线,其面临的最大实现困难可以用莫拉维克悖论来说明。所谓莫拉维克悖论,是指对计算机来说困难的问题是简单的、简单的问题是困难的,最难以复制的反而是人类技能中那些无意识的技能。目前,模拟人类的行动技能面临很大挑战。比如,在网上看到波士顿动力公司人形机器人可以做高难度的后空翻动作,大狗机器人可以在任何地形负重前行,其行动能力似乎非常强。但是这些机器人都有一个大的缺点一能耗过高、噪音过大。大狗机器人原是美国军方订购的产品,但因为大狗机器人开动时的声音在十里之外都能听到,大大提高了其成为一个活靶子的可能性,使其在战场上几乎没有实用价值,美国军方最终放弃了采购。
㈩ 人工智能三大学派和特点
目前人工智能的主要学派有下列三家:
(1) 符号主义(symbolicism),又称为逻辑主义、心理学派或计算机学派,其原理主要为物理符号系统(即符号操作系统)假设和有限合理性原理。
(2) 连接主义(connectionism),又称为仿生学派或生理学派,其主要原理为神经网络及神经网络间的连接机制与学习算法。
(3) 行为主义(actionism),又称为进化主义或控制论学派,其原理为控制论及感知-动作型控制系统。