㈠ 计算机网络技术 计算机网络技术(安全方向)通信技术 软件技术 大数据技术与应用 选哪个专业比较好呀
咨询记录 · 回答于2021-03-20
㈡ 大数据和网络安全在今后的发展前景哪个会更好那
应该说,两个都是都是今后发展的重点,再加上人工智能,个人觉得将会是互联网乃至工业的一次革命。
1、大数据方面。大数据范围很广,每个行业都有相应的应用,但是投入也是很大的,例如铁路系统,车辆违章监控系统,ETC系统等都应用了大数据,这些大数据将进行提炼后,用于基础分析、客户引导、智能管理等。对于提高政府职能,降低能耗,开源节流,人工辅助等都有很大很深的应用。总的来说,大数据中所有的数据都是有价值的,但是采集数据有很多的路要走,更多的需要物联网、人工智能的配合。
2、网络安全方面。这个应该是当下整个社会的一个突出问题。网络改变了人们的使用方式,推动了一系列的变革,但问题也是很突出,它是一把双刃剑,有利有弊,但总体利大于弊,正因为网络的不断发展,才推动了大数据的进步。
3、人工智能方面。人工智能应该是一个 今后发展的这个重点及亮点。人工智能主要利用语言、图像识别、传感器等设备集中进行运算,发挥其特定的作用,来执行任务。
㈢ IT中(大数据技术与应用,计算机网络技术,计算机应用技术)哪个专业
咨询记录 · 回答于2021-08-05
㈣ 专科女生在软件技术,大数据技术和物联网应用技术三个中学哪里比较好点
随着物联网的发展和进步,所有可以想象到的东西和行业都变得更加智能:智能家居和城市、智能制造机械、互联汽车、互联健康等等。无数能够收集和交换数据的事物正在形成一个全新的网络——物联网——物理对象网络,可以在云中收集数据、传输数据并完成用户的任务。
物联网和大数据正走向胜利。尽管如此,仍有一些特殊性和陷阱需要牢记,以受益于这一创新。在本文中,我们很高兴地分享我们在物联网咨询方面挖掘的知识。
如何应用物联网大数据
首先,从物联网大数据中获取好处的方法有很多种:在某些情况下,快速分析就足以获得好处,而一些有价值的结果只有在更深入的数据处理之后才能获得。
实时监控。通过连接设备收集的大数据可用于实时操作:测量家中或办公室的温度、跟踪物理活动(计数步骤、监控运动)等。实时监测在医疗保健中非常使用(例如,测量心率、测量血压、糖)。它还成功地应用于制造业(控制生产机械)、农业(监测牛和植物)和其他行业。
数据分析。处理物联网生成的大数据,有机会超越监控,从这些数据中获取有价值的见解:识别趋势和趋势,揭示看不见的模式,并找到隐藏的信息和相关性。
过程控制和优化。来自传感器的数据提供了额外的上下文,以揭示影响性能和优化流程的非平凡问题。
交通管理:跟踪不同日期和时间的交通负荷,找出旨在优化交通的建议(例如,在一定时间段增加火车和公共汽车的数量,看看是否有利可图,建议引入新的红绿灯方案,并修建新的道路,使一些街道不那么繁忙,并管理交通拥堵)。
零售:由于一些商品在购物场所几乎结束了,超市的人员被告知,例如,重新装货架的商品。
农业:根据传感器的数据,在必要时种植水厂。
预测性维护。使用连接设备收集的数据可以成为预测风险的可靠来源,从而主动识别潜在危险条件,例如:
医疗保健:监测患者状态和识别风险(例如,患者有糖尿病、心脏病的风险),及时采取措施。
制造:预测设备故障。
并非所有的物联网解决方案都需要大数据。还应指出,并非所有的物联网解决方案都需要大数据(例如,如果智能家居的所有者要在手机的帮助下关灯,则此操作可能无需大数据即可执行)。考虑减少处理动态数据的努力并避免大量存储数据非常重要,因为将来不需要这些存储。
物联网中的大数据挑战
大量的数据是完全没用的,除非他们被处理,以获得有价值的东西。此外,与数据收集、处理和存储相关的各种挑战。
数据可靠性。虽然大数据从来不是 100% 准确的,但在分析数据之前,必须确保传感器正常工作,用于分析的数据质量可靠,不会受到各种因素的影响(例如,机械运行环境不利、传感器故障)。
要存储哪些数据。连接的事物生成 TB 的数据,选择存储哪些数据以及丢弃哪些数据是一项艰巨的任务。更重要的是,一些数据的价值远未浮出水面,但您将来可能需要这些数据。如果您决定为未来存储数据,则面临的挑战是以最少的成本(只要数据存储和处理成本相当昂贵)来存储数据。
分析深度。一旦并非所有大数据都很重要,另一个挑战就会出现:何时足以通过快速分析,何时更深入的分析可以带来更多价值。
安全性。毫无疑问,各个部门的互联可以改善我们的生活,但与此同时,数据安全也非常重要。网络罪犯可以访问数据中心和设备,连接到交通系统、发电厂、工厂,从电信运营商那里窃取个人数据。物联网大数据是安全专家比较新的现象,缺乏相关经验会增加安全风险。
物联网解决方案中的大数据处理
在物联网系统中,物联网架构的数据处理组件因传入数据的特殊性、预期结果等而异。我们已经制定了处理物联网解决方案中大数据的方法。
数据来自连接到事物的传感器。一个”东西”可以字面上是任何对象:烤箱,汽车,飞机,建筑物,工业机器,康复设备。数据定期或流式传输。后者对于实时数据处理和管理至关重要。
Things 将数据发送到网关,确保初始数据过滤和预处理减少传输到下一个物联网系统块的数据量。
边缘分析。在进行深入的数据分析之前,进行数据过滤和预处理以选择某些任务所需的最相关数据是有意义的。此外,此阶段确保实时分析能够快速识别之前通过云中的深度分析发现的有用模式。
云网关对于不同数据协议之间的基本协议翻译和通信是必要的。它还支持数据压缩,并保护字段网关和中央物联网服务器之间的数据传输。
连接设备生成的数据以自然格式存储在数据湖中。原始数据来到带有”流”的数据湖。数据保存在数据湖中,直到可用于业务目的。清洁和结构化数据存储在数据仓库中。
机器学习。机器学习模块根据以前积累的历史数据生成模型。这些模型定期(例如,每月更新一次)与新的数据流。传入的数据被积累并应用于培训和创建新模型。当这些模型经过专家测试和批准时,它们可用于控制应用程序,该应用程序会针对新的传感器数据发送命令或警报。
总结一下
物联网生成了大量大数据,可用于实时监控、分析、流程优化和预测维护,仅举几例。但是,应该记住,从各种格式的海量数据中获取有价值的见解并不是一件小事:您需要确保传感器正常工作,数据安全传输并有效处理。此外,总有一个问题:哪些数据值得存储和处理(只要这两个过程都相当昂贵)。
尽管存在上述潜在问题,但应记住,物联网发展势头强劲,帮助多个行业的企业开拓新的数字机遇。
㈤ 大数据技术与应用和物联网技术哪个好
两个专业的前景发展都很不错
物联网IoT(Internet of things):可以简单地理解为物物相连的互联网,互联网的应用拓展,与其说物联网是网络,不如说物联网是业务和应用。
大数据(Dig Data):相当于人的大脑从小学到大学记忆和存储的海量知识,这些知识只有通过消化,吸收、再造才能创造出更大的价值。如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。
物联网主要通过各种设备(比如RFID,传感器,二维码等)的接口将现实世界的物体连接到互联网上,或者使它们互相连接,以实现信息的传递和处理。物联网的终极效果是万物互联,不仅仅是人机和信息的交互,还有更深入的生物功能识别读取等。如今物联网(IoT)肩负了一个至关重要的任务:资料收集
得益于大数据和云计算的支持,互联网才正在向物联网扩展,并进一步升级至体验更佳、解放生产力的人工智能时代。
㈥ 大数据和网络安全哪个方向更好
随着工业物联网(IIoT)在制造企业的全面铺开,安全专家必须准备好弄懂这些网络应有的样子与操作。同时,所有安全计划都需拥有足够的弹性,要能扛住迎面而来的各种攻击。未来十年将给网络安全带来最大影响的是什么?简单讲,这个问题的答案有两个方向:人工智能(AI)和大数据分析。
鉴于这些技术发展会给未来时光带来重大影响,未来的安全环境,将取决于AI和分析如何融入囊括了网络及物理安全的全面弹性安全计划。
网络安全-工业物联网
至于如何构建该整体安全项目,能够赋予制造商资产清单与网络可见性的网络监视技术是个不错的开始。随着公司企业越来越依赖数字环境,拥有该总体安全观也变得越来越重要了。如果十年内发生的攻击类似乌克兰两次遭遇的大断电,或挪威铝业巨头NorskHydro遭遇的勒索软件攻击,公司企业需准备备用工厂,以便在必要的时候能够手动运营以阻止攻击。
未来5~10年,物联网对工业运营的意义愈加重大,工业系统也将接入可大幅降低设备间通信延迟的5G网络,因而工业系统联网程度增加几乎已成不争的事实。物联网设备安全通常天生不怎么强,所以当物联网设备大规模部署的时候,工业系统便面临相当棘手的设备安全管理挑战了。
网络安全-工业运营
更糟的是,连接性增加意味着能尝试突破系统的黑客也增加了,更高端的黑客或许能够窥探系统,而网络安全问题也随着连接性的增长而愈加恶化。而且,很多工业系统如果以特定方式操纵可能伤及人命,所以连接性增加不仅影响到工业系统管理和保护,也影响公共政策制定。
网络安全-数字转型
工业网络安全遭受的最大影响将是数字转型的非预期结果。数字转型很好,也很有必要,但同时伴随着风险。随着我们引入越来越多的数字终端,数据流随之产生。数据流的飞速增长将超出我们的处理范围,无法现场有效分析全部数据。而且,我们将以这些数据驱动有关过程的决策,甚或驱动过程本身。最终,我们或许会开始通过人工智能/机器学习将这些分析性数据产品馈送回过程。
换句话说,过程产生数据,数据离开过程网络流向云、雾、湖、现场、外部等等地方,被分析、重用再馈送回过程。所有这些都会以我们刚刚才开始考虑的方式,往过程数据及该控制/过程网络外部相关系统,引入新的风险。
㈦ 计算机网络技术 计算机网络技术(安全方向)通信技术 软件技术 大数据技术与应用 那个专业比较好一点
摘要 软件技术更好一点,毕业之后虽然刚开始实习的那前三个月工资很低,但是你掌握了这个技术之后工资就会上万。
㈧ 网络工程和大数据技术哪个好
网络工程
网络工程是指按计划进行的以工程化的思想、方式、方法,设计、研发和解决网络系统问题的工程。培养掌握网络工程的基本理论与方法以及计算机技术和网络技术等方面的知识,能运用所学知识与技能去分析和解决相关的实际问题,可在信息产业以及其他国民经济部门从事各类网络系统和计算机通信系统研究、教学、设计、开发等工作的高级网络科技人才。
大数据,IT行业术语,是指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。
㈨ 计算机网络技术和大数据技术哪个好
大数据
实际点。但你要有这个氛围以后好进大公司,
网络技术个人感觉比较坑。标准的上学课程而已