导航:首页 > 网络共享 > 蚁群算法和神经网络哪个好

蚁群算法和神经网络哪个好

发布时间:2022-02-15 20:34:48

㈠ 蚁群算法的概念,最好能举例说明一些蚁群算法适用于哪

蚁群算法及其应用可供人工智能、计算机科学、信息科学、控制工程、管理工程、交通工程、网络工程、智能优化算法及智能自动化等领域的广大师生和科技人员学习及参考。

㈡ 关于神经网络,蚁群算法和遗传算法

  1. 神经网络并行性和自适应性很强,应用领域很广,在任何非线性问题中都可以应用,如控制、信息、预测等各领域都能应用。

  2. 蚁群算法最开始应用于TSP问题,获得了成功,后来又广泛应用于各类组合优化问题。但是该算法理论基础较薄弱,算法收敛性都没有得到证明,很多参数的设定也仅靠经验,实际效果也一般,使用中也常常早熟。

  3. 遗传算法是比较成熟的算法,它的全局寻优能力很强,能够很快地趋近较优解。主要应用于解决组合优化的NP问题。

  4. 这三种算法可以相互融合,例如GA可以优化神经网络初始权值,防止神经网络训练陷入局部极小且加快收敛速度。蚁群算法也可用于训练神经网络,但一定要使用优化后的蚁群算法,如最大-最小蚁群算法和带精英策略。

㈢ 神经网络算法 遗传算法 模糊算法 哪个

没有哪种算法更好的说法,因为每种算法都有自己的优势。只能说某种算法在处理某种问题时,效果更好更合适。

  1. 神经网络不能说是一种算法,它是一种数学网络结构,各神经元的权值、阈值是用某种训练算法计算出来的。神经网络适用于非线性系统,可用于难以用数学表达式来描述的系统。

  2. 遗传算法在全局寻优问题上效果很好,因其收敛速度较快,且不易陷入局部极小点。其中实数编码法适合与神经网络结合,例如GA-BP神经网络。

  3. 模糊算法可将一些难以量化的参数模糊处理,并且算法较简单,尤其是适用于专家经验占主要地位的系统,因为添加一条专家经验只需往规则库里添加一条语句即可。用这种算法要注意区间不能划得太宽,否则算法太不精确。

㈣ NARX神经网络一定比BP神经网络更好吗如果是,具体好在哪

这看你要解决什么问题了,narx网络是为了给bp网络增加一定的序列学习能力,如果你有序列任务需求的话可以考虑采用narx网络。
单独的说好不好并没有意义

㈤ 什么是蚁群算法,神经网络算法,遗传算法

蚁群算法又称蚂蚁算法,是一种用来在图中寻找优化路径的机率型算法。它由Marco Dorigo于1992年在他的博士论文中提出,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为。蚁群算法是一种模拟进化算法,初步的研究表明该算法具有许多优良的性质.针对PID控制器参数优化设计问题,将蚁群算法设计的结果与遗传算法设计的结果进行了比较,数值仿真结果表明,蚁群算法具有一种新的模拟进化优化方法的有效性和应用价值。

神经网络
思维学普遍认为,人类大脑的思维分为抽象(逻辑)思维、形象(直观)思维和灵感(顿悟)思维三种基本方式。
逻辑性的思维是指根据逻辑规则进行推理的过程;它先将信息化成概念,并用符号表示,然后,根据符号运算按串行模式进行逻辑推理;这一过程可以写成串行的指令,让计算机执行。然而,直观性的思维是将分布式存储的信息综合起来,结果是忽然间产生想法或解决问题的办法。这种思维方式的根本之点在于以下两点:1.信息是通过神经元上的兴奋模式分布储在网络上;2.信息处理是通过神经元之间同时相互作用的动态过程来完成的。
人工神经网络就是模拟人思维的第二种方式。这是一个非线性动力学系统,其特色在于信息的分布式存储和并行协同处理。虽然单个神经元的结构极其简单,功能有限,但大量神经元构成的网络系统所能实现的行为却是极其丰富多彩的。
神经网络的研究内容相当广泛,反映了多学科交叉技术领域的特点。目前,主要的研究工作集中在以下几个方面:
(1)生物原型研究。从生理学、心理学、解剖学、脑科学、病理学等生物科学方面研究神经细胞、神经网络、神经系统的生物原型结构及其功能机理。
(2)建立理论模型。根据生物原型的研究,建立神经元、神经网络的理论模型。其中包括概念模型、知识模型、物理化学模型、数学模型等。
(3)网络模型与算法研究。在理论模型研究的基础上构作具体的神经网络模型,以实现计算机馍拟或准备制作硬件,包括网络学习算法的研究。这方面的工作也称为技术模型研究。
(4)人工神经网络应用系统。在网络模型与算法研究的基础上,利用人工神经网络组成实际的应用系统,例如,完成某种信号处理或模式识别的功能、构作专家系统、制成机器人等等。
纵观当代新兴科学技术的发展历史,人类在征服宇宙空间、基本粒子,生命起源等科学技术领域的进程中历经了崎岖不平的道路。我们也会看到,探索人脑功能和神经网络的研究将伴随着重重困难的克服而日新月异。
遗传算法,是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法,它最初由美国Michigan大学J.Holland教授于1975年首先提出来的,并出版了颇有影响的专着《Adaptation in Natural and Artificial Systems》,GA这个名称才逐渐为人所知,J.Holland教授所提出的GA通常为简单遗传算法(SGA)。

㈥ 想问一下,蚁群算法如何优化神经网络,最好能给一个matlap程序

蚁群算法(ant colony optimization, ACO),又称蚂蚁算法,是一种用来在图中寻找优化路径的机率型算法。它由Marco Dorigo于1992年在他的博士论文中提出,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为。蚁群算法是一种模拟进化算法,初步的研究表明该算法具有许多优良的性质。针对PID控制器参数优化设计问题,将蚁群算法设计的结果与遗传算法设计的结果进行了比较,数值仿真结果表明,蚁群算法具有一种新的模拟进化优化方法的有效性和应用价值。


程序已经上传到附件,手机看不到附件请用电脑下载。可以告诉你,这个程序内部有错,但是参考价值依然很大,因为大部分代码可以重用。

我搞过蚁群算法,其实这个算法非常吃参数,如果参数不协调,效果很差。建议你换种算法。

㈦ 要学习模式识别、神经网络、遗传算法、蚁群算法等等人工智能算法需要哪些数学知识

模式识别需要非常好的概率论,数理统计;另外会用到少量矩阵代数,随机过程和高数中的一些运算,当然是比较基础的;如果要深入的话恐怕需要学泛函,但是一般情况下不需要达到这种深度。神经网络,遗传算法等智能算法在模式识别有非常重要的应用,但是一般不需要学习计算机学科的人工智能,我们控制有一个交叉学科叫做智能控制是讲这些的,智能控制不需要什么基础,有中学数学的集合和对空间有一点点的了解就足够了,模糊数学的基础是包含在这门学科里的。

㈧ 经典的网络优化算法跟智能算法,哪个跟好些譬如Dijkstra算法和蚁群算法。

Dijkstra算法和蚁群算法是有着本质不同的,属于两个范畴了,前者是确定性算法,输入一个图,必定能产生一个可行结果。而后者是属于启发式算法,有随机因素。不一定能产生好的结果,但一般情况下由于存在启发式因素和智能因素,能够产生比较好的结果,但不能保证产生全局最优解。况且前者是一个针对性很强的算法,只能用于最短路径计算,而蚁群算法可以用来解决一大类问题,比如图算法、数值优化、数据挖掘等等。

㈨ 研究神经网络算法找什么工作比较好

人工神经网络在信息领域、医学、经济领域、控制领域、交通领域、心理学领域都各个领域都有应用,理论上说,在这些领域都可以就业。但是如果要追求对口,建议还是去人工智能或软件公司就业。其实你平时研究的方向和你今后工作的方向没有直接关系,换个方向你一样能做,因为你学会的是思维方式。

现代信息处理要解决的问题是很复杂的,人工神经网络具有模仿或代替与人的思维有关的功能, 可以实现自动诊断、问题求解,解决传统方法所不能或难以解决的问题。人工神经网络系统具有很高的容错性、鲁棒性及自组织性,即使连接线遭到很高程度的破坏, 它仍能处在优化工作状态,这点在军事系统电子设备中得到广泛的应用。现有的智能信息系统有智能仪器、自动跟踪监测仪器系统、自动控制制导系统、自动故障诊断和报警系统等。

㈩ 蚁群算法与神经网络哪个更有用

蚁群算法本质上是遗传算法,神经网络本质上是非线性控制,两者各有用途,要看应用场景。

阅读全文

与蚁群算法和神经网络哪个好相关的资料

热点内容
杭州搜狗网络推广渠道有哪些 浏览:143
windows7如何换网络 浏览:593
手机没网络了怎样上网 浏览:890
软件网络安全方案 浏览:917
搬家移动网络怎么转移珠海 浏览:178
网络贷款投诉找哪里 浏览:205
电脑不可用的无线网络怎么连接 浏览:22
斐讯路由器设置网络速度 浏览:19
配对手机不可以共享网络怎么操作 浏览:372
路由器背面网络地址 浏览:14
戳爷是什么网络用语 浏览:394
移动网络联通后为什么还是2g 浏览:944
快手小店订单网络异常 浏览:242
家庭座机改无线网络 浏览:252
网络连接共享怎样删除 浏览:88
下载完软件就没网络 浏览:371
xp网络打印机怎么共享的打印机 浏览:827
天翼校园网手机蓝牙共享网络 浏览:770
网络探头如何使用 浏览:243
电脑网络空间不稳定 浏览:760

友情链接