❶ 深度学习网络的初始参数怎样选取
初始参数一般都是取随机值
❷ 深度学习网络参数mean_vaule是什么意思
mean_value?均值?你去跑某些demo的时候会碰到mean.binaryproto,这个是由你训练集计算出来的,训练时减去这个会加速网络收敛,提升效率。但是mnist里面好像默认是0.00390625......
❸ 深度学习论文中的网络架构表怎么看
学习GOOGLE一般从基础学习起,如果你有一定的基础了就可以进行深度学习了,主要是学习一些逻辑的东西还有一些思想的东西。
❹ 深度学习参数怎么计算所需内存大小
请问 你问题解决了吗 我也想知道怎么计算 谢谢
❺ 深度学习网络中backbone是什么意思
backbone是一种帮助开发重量级的javascript应用的框架。
Backbone用于结构化管理页面中的大量JS,建立与服务器、视图间的无缝连接,为构建复杂的应用提供基础框架。backbone主要提供了3个东西:models(模型) 、collections(集合) 、views(视图)。
Backbone的源码只有1000行左右(去注释和空行后),文件大小只有16KB,加上依赖库Underscore,也仅有29KB。Backbone可以轻松将页面中的数据、逻辑、视图解耦。
相关功能
在Backbone中内置了一套与服务器数据的交互规则(如果了解REST架构,就能够轻松地理解它们),而数据的同步工作会在Model中自动进行,前端开发人员只需对客户端数据的进行操作,Backbone会自动将操作的数据同步到服务器。
在Backbone中,可以使用on或off方法绑定和移除自定义事件。在任何地方都可以使用trigger方法触发这些绑定的事件,所有绑定过该事件的方法都会被执行。
以上内容参考:网络-Backbone
❻ 深度学习的主要分类是什么呀这些网络cnn dbn dnm rnn是怎样的关系
简单来说:
1)深度学习(Deep Learning)只是机器学习(Machine Learning)的一种类别,一个子领域。机器学习 > 深度学习
2)大数据(Big Data)不是具体的方法,甚至不算具体的研究学科,而只是对某一类问题,或需处理的数据的描述
具体来说:
1)机器学习(Machine Learning)是一个大的方向,里面包括了很多种 approach,比如 deep learning, GMM, SVM, HMM, dictionary learning, knn, Adaboosting...不同的方法会使用不同的模型,不同的假设,不同的解法。这些模型可以是线性,也可以是非线性的。他们可能是基于统计的,也可能是基于稀疏的....
不过他们的共同点是:都是 data-driven 的模型,都是学习一种更加 abstract 的方式来表达特定的数据,假设和模型都对特定数据广泛适用。好处是,这种学习出来的表达方式可以帮助我们更好的理解和分析数据,挖掘数据隐藏的结构和关系。
Machine Learning 的任务也可以不同,可以是预测(prediction),分类(classification),聚类(clustering),识别(recognition),重建(reconstruction),约束(regularization),甚至降噪(denoising),超分辨(super-resolution),除马赛克(Demosaicing)等等....
2)深度学习(Deep Learning)是机器学习的一个子类,一般特指学习高层数的网络结构。这个结构中通常会结合线性和非线性的关系。
Deep Learning 也会分各种不同的模型,比如 CNN, RNN, DBN...他们的解法也会不同。
Deep Learning 目前非常流行,因为他们在图像,视觉,语音等各种应用中表现出了很好的 empirical performance。并且利用 gpu 的并行运算,在模型相当复杂,数据特别大量的情况下,依然可以达到很理想的学习速度。
因为 Deep Learning 往往会构建多层数,多节点,多复杂度的模型,人们依然缺乏多里面学习的结构模型的理解。很多时候,Deep Learning 甚至会被认为拥有类似于人类神经网络的结构,并且这种类似性被当做 deep learning 居然更大 potential 的依据。但答主个人认为,其实这略有些牵强...听起来更像是先有了这种 network 的结构,再找一个类似性。当然,这仅仅是个人观点...(私货私货)
3)大数据(Big Data,我们也叫他逼格数据....)是对数据和问题的描述。通常被广泛接受的定义是 3 个 V 上的“大”:Volume(数据量), Velocity(数据速度)还有 variety(数据类别)。大数据问题(Big-data problem)可以指那种在这三个 V 上因为大而带来的挑战。
Volume 很好理解。一般也可以认为是 Large-scale data(其实学术上用这个更准确,只是我们出去吹逼的时候就都叫 big data 了...)。“大”可以是数据的维度,也可以是数据的 size。一般 claim 自己是 big-data 的算法会比较 scalable,复杂度上对这两个不敏感。算法和系统上,人们喜欢选择并行(Parallel),分布(distributed)等属性的方法来增加 capability。
ITjob----采集
❼ 训练深度学习网络时候,出现Nan是什么原因,怎么才能避免
度学习的概念源于人工神经网络的研究。含多隐层的多层感知器就是一种深度学习结构,通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。深度学习的概念由Hinton等人于2006年提出,基于深信度网(DBN)提出非监督贪心逐层训练算法,为解决深层结构相关的优化难题带来希望,随后提出多层自动编码器深层结构。深度学习是机器学习研究中的一个新的领域,其动机在于建立、模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,例如图像,声音和文本。
系统地论述了神经网络的基本原理、方法、技术和应用,主要内容包括:神经信息处理的基本原理、感知器、反向传播网络、自组织网络、递归网络、径向基函数网络、核函数方法、神经网络集成、模糊神经网络、概率神经网络、脉冲耦合神经网络、神经场理论、神经元集群以及神经计算机。每章末附有习题,书末附有详细的参考文献。神经网络是通过对人脑或生物神经网络的抽象和建模,研究非程序的、适应性的、大脑风格的信息处理的本质和能力。它以脑科学和认知神经科学的研究成果为基础,拓展智能信息处理的方法,为解决复杂问题和智能控制提供有效的途径,是智能科学和计算智能的重要部分。
❽ 深度学习调试 怎样调试参数才能提高精度
数控车床精度主要体现在:主轴跳动.刀塔精度两方面
可以用主轴千分表测量主轴精度、刀塔两项精度;跳动、圆度精度不合格的通过主轴卡头重新装配或车卡头来实现精度调整;X、Z 轴精度可通过刀塔后方电机及刀塔装配位置调整;重复定位精度不合格通过调整丝杠和丝杠母间隙或更换丝杠和轴承;
❾ tensorflow怎么构建深度学习网络
构建路线:对于任何一个深度学习库,如mxnet、tensorflow、theano、caffe等,基本上都采用同样的一个学习流程,大体流程如下:
(1)训练阶段:数据打包-》网络构建、训练-》模型保存-》可视化查看损失函数、验证精度
(2)测试阶段:模型加载-》测试图片读取-》预测显示结果
(3)移植阶段:量化、压缩加速-》微调-》C++移植打包-》上线
❿ “深度学习”和“多层神经网络”的区别
作者:杨延生
来源:知乎
"深度学习"是为了让层数较多的多层神经网络可以训练,能够work而演化出来的一系列的 新的结构和新的方法。
新的网络结构中最着名的就是CNN,它解决了传统较深的网络参数太多,很难训练的问题,使用了“局部感受野”和“权植共享”的概念,大大减少了网络参数的数量。关键是这种结构确实很符合视觉类任务在人脑上的工作原理。
新的结构还包括了:LSTM,ResNet等。
新的方法就多了:新的激活函数:ReLU,新的权重初始化方法(逐层初始化,XAVIER等),新的损失函数,新的防止过拟合方法(Dropout, BN等)。这些方面主要都是为了解决传统的多层神经网络的一些不足:梯度消失,过拟合等。
---------------------- 下面是原答案 ------------------------
从广义上说深度学习的网络结构也是多层神经网络的一种。
传统意义上的多层神经网络是只有输入层、隐藏层、输出层。其中隐藏层的层数根据需要而定,没有明确的理论推导来说明到底多少层合适。
而深度学习中最着名的卷积神经网络CNN,在原来多层神经网络的基础上,加入了特征学习部分,这部分是模仿人脑对信号处理上的分级的。具体操作就是在原来的全连接的层前面加入了部分连接的卷积层与降维层,而且加入的是一个层级。
输入层 - 卷积层 -降维层 -卷积层 - 降维层 -- .... -- 隐藏层 -输出层
简单来说,原来多层神经网络做的步骤是:特征映射到值。特征是人工挑选。
深度学习做的步骤是 信号->特征->值。 特征是由网络自己选择。