㈠ 卷积神经网络每层提取的特征是什么样的
卷积神经网络是一个多层的神经网络,每层由多个二维平面组成,而每个平面由多个独立神经元组成。
图:卷积神经网络的概念示范:输入图像通过和三个可训练的滤波器和可加偏置进行卷积,滤波过程如图一,卷积后在C1层产生三个特征映射图,然后特征映射图中每组的四个像素再进行求和,加权值,加偏置,通过一个Sigmoid函数得到三个S2层的特征映射图。这些映射图再进过滤波得到C3层。这个层级结构再和S2一样产生S4。最终,这些像素值被光栅化,并连接成一个向量输入到传统的神经网络,得到输出。
一般地,C层为特征提取层,每个神经元的输入与前一层的局部感受野相连,并提取该局部的特征,一旦该局部特征被提取后,它与其他特征间的位置关系也随之确定下来;S层是特征映射层,网络的每个计算层由多个特征映射组成,每个特征映射为一个平面,平面上所有神经元的权值相等。特征映射结构采用影响函数核小的sigmoid函数作为卷积网络的激活函数,使得特征映射具有位移不变性。
此外,由于一个映射面上的神经元共享权值,因而减少了网络自由参数的个数,降低了网络参数选择的复杂度。卷积神经网络中的每一个特征提取层(C-层)都紧跟着一个用来求局部平均与二次提取的计算层(S-层),这种特有的两次特征提取结构使网络在识别时对输入样本有较高的畸变容忍能力。
㈡ 在caffe上怎么做到各个卷积层权值参数共享
通过设置param {name : xxx}参数,如果名字相同就共享,不相同就不共享
㈢ 卷积神经网络(Convolutional Neural Networks, CNN)——更有效率地提取特征
卷积神经网络(Convolutional Neural Networks, CNN)——更有效率地提取特征
图像识别问题本质上就是分类问题,比如我们要区分猫和狗,那么我们就需要构建一个模型,将照片丢进去后,模型能输出猫或者狗的概率有多大。在做图像识别时首要的就是要提取图片的特征,那么如何提取图片的特征呢?前面讲到了前向全连接网络,我们可以尝试用前向全连接网络提取。假设图片的像素是100*100,如果如片是彩色的,每个像素都有RGB三种颜色的数值。因此,一张图片是有一个三维向量构成的,一维是长100,一维是宽100,还有一维是R、G、B 3个通道(channels)。把这个三维向量拉直作为一个一维向量,长度就是100*100*3。
我们在区分一张图片时,我们观察的往往是图片的局部的、最重要的特征。 比如图片上是一只鸟,我们可能通过嘴巴、眼睛、爪子等就可以判断出是一只鸟了。因此,输入层的每一个神经元没有必要看图片的全局,只需要看一个局部就行了。
在两张不同的图片上,同一个特征区域可能处于不同位置。 比如鸟嘴的局部特征区域在下面这两张图上就处在不同的位置上。那么如何才能让两个不同的神经元在看到这两个不同的感受野时,能产生一致的特征值呢?
对上面的内容进行一个总结:
(1)我们设置一个局部感受野,假设感受野的大小为W*H*C,其中W表示感受野的宽度,H表示感受野的高度,C表示感受野的通道数。那么对应的神经元的参数的个数就为:W*H*C个权值加1个偏置。在卷积神经网络中,我们称这样一个神经元为一个 滤波器(filter) 。
(3)我们通过滑动的方式让感受野铺满整个图片,假设图片的尺寸是W1*H1*C,滑动步长为S,零填充的数量为P。假设感受野的个数是W2*H2,其中,
(4)我们让所有感受野的观测滤波器参数进行共享,即相当于一个滤波器通过滑动扫描的方式扫描了所有感受野。
(5)我们设置多个滤波器,假设滤波器的个数为K,这K个滤波器都通过滑动扫描的方式扫过整个图片。此时参数的个数为:(W*H*C+1)*K。
(6)由于每个滤波器每经过一个感受野都会进行一次计算输出一个值,所以输出的维度为:W2*H2*K。我们将这个输出称为特征图,所以特征图宽度为W2,高度为H2,通道数C2=K。
举个例子: 假设某个图片的大小是100*100*3,设置滤波器的大小为3*3*3,滤波器的个数为64,设置步长S=1,设置零填充的数量为P=0。那么卷积神经网络的参数为, 相比前向全连接 个参数,参数的个数缩小了几个数量级。
输出特征图的宽度和高度均为, 输出特征图的通道数为, 所以输出特征图的维度为98*98*64。
如果在上面输出的基础上再叠加一层卷积神经网络,滤波器的设置宽和高可以不变,但是通道数不再是3了,而是变成64了,因为输入特征图的通道数已经变64了。假设滤波器的大小为3*3*64,滤波器的个数为32,设置步长S=1,设置零填充的数量为P=0。可以计算出来,新的输出特征图的维度是96*96*32。
以上就是卷积神经网络(CNN)的解析。但是CNN一般不是单独用的,因为一般提取图片的特征是为了分类,还需要进一步处理,常见的形式如下图所示。
㈣ 如何理解卷积神经网络中的权值共享
所谓的权值共享就是说,给一张输入图片,用一个filter去扫这张图,filter里面的数就叫权重,这张图每个位置是被同样的filter扫的,所以权重是一样的,也就是共享。 这么说可能还不太明白,如果你能理解什么叫全连接神经网络的话,那么从一个尽量减少参数个数的角度去理解就可以了。 对于一张输入图片,大小为W*H,如果使用全连接网络,生成一张X*Y的feature map,需要W*H*X*Y个参数,如果原图长宽是10^2级别的,而且XY大小和WH差不多的话,那么这样一层网络需要的参数个数是10^8~10^12级别。 这么多参数肯定是不行的,那么我们就想办法减少参数的个数对于输出层feature map上的每一个像素,他与原图片的每一个像素都有连接,每一个链接都需要一个参数。但注意到图像一般都是局部相关的,那么如果输出层的每一个像素只和输入层图片的一个局部相连,那么需要参数的个数就会大大减少。假设输出层每个像素只与输入图片上F*F的一个小方块有连接,也就是说输出层的这个像素值,只是通过原图的这个F*F的小方形中的像素值计算而来,那么对于输出层的每个像素,需要的参数个数就从原来的W*H减小到了F*F。如果对于原图片的每一个F*F的方框都需要计算这样一个输出值,那么需要的参数只是W*H*F*F,如果原图长宽是10^2级别,而F在10以内的话,那么需要的参数的个数只有10^5~10^6级别,相比于原来的10^8~10^12小了很多很多。