A. 求BP神经网络算法的C++源代码
// AnnBP.cpp: implementation of the CAnnBP class.
//
//////////////////////////////////////////////////////////////////////
#include "StdAfx.h"
#include "AnnBP.h"
#include "math.h"
//////////////////////////////////////////////////////////////////////
// Construction/Destruction
//////////////////////////////////////////////////////////////////////
CAnnBP::CAnnBP()
{
eta1=0.3;
momentum1=0.3;
}
CAnnBP::~CAnnBP()
{
}
double CAnnBP::drnd()
{
return ((double) rand() / (double) BIGRND);
}
/*** 返回-1.0到1.0之间的双精度随机数 ***/
double CAnnBP::dpn1()
{
return (double) (rand())/(32767/2)-1;
}
/*** 作用函数,目前是S型函数 ***/
double CAnnBP::squash(double x)
{
return (1.0 / (1.0 + exp(-x)));
}
/*** 申请1维双精度实数数组 ***/
double* CAnnBP::alloc_1d_dbl(int n)
{
double *new1;
new1 = (double *) malloc ((unsigned) (n * sizeof (double)));
if (new1 == NULL) {
AfxMessageBox("ALLOC_1D_DBL: Couldn't allocate array of doubles\n");
return (NULL);
}
return (new1);
}
/*** 申请2维双精度实数数组 ***/
double** CAnnBP::alloc_2d_dbl(int m, int n)
{
int i;
double **new1;
new1 = (double **) malloc ((unsigned) (m * sizeof (double *)));
if (new1 == NULL) {
AfxMessageBox("ALLOC_2D_DBL: Couldn't allocate array of dbl ptrs\n");
return (NULL);
}
for (i = 0; i < m; i++) {
new1[i] = alloc_1d_dbl(n);
}
return (new1);
}
/*** 随机初始化权值 ***/
void CAnnBP::bpnn_randomize_weights(double **w, int m, int n)
{
int i, j;
for (i = 0; i <= m; i++) {
for (j = 0; j <= n; j++) {
w[i][j] = dpn1();
}
}
}
/*** 0初始化权值 ***/
void CAnnBP::bpnn_zero_weights(double **w, int m, int n)
{
int i, j;
for (i = 0; i <= m; i++) {
for (j = 0; j <= n; j++) {
w[i][j] = 0.0;
}
}
}
/*** 设置随机数种子 ***/
void CAnnBP::bpnn_initialize(int seed)
{
CString msg,s;
msg="Random number generator seed:";
s.Format("%d",seed);
AfxMessageBox(msg+s);
srand(seed);
}
/*** 创建BP网络 ***/
BPNN* CAnnBP::bpnn_internal_create(int n_in, int n_hidden, int n_out)
{
BPNN *newnet;
newnet = (BPNN *) malloc (sizeof (BPNN));
if (newnet == NULL) {
printf("BPNN_CREATE: Couldn't allocate neural network\n");
return (NULL);
}
newnet->input_n = n_in;
newnet->hidden_n = n_hidden;
newnet->output_n = n_out;
newnet->input_units = alloc_1d_dbl(n_in + 1);
newnet->hidden_units = alloc_1d_dbl(n_hidden + 1);
newnet->output_units = alloc_1d_dbl(n_out + 1);
newnet->hidden_delta = alloc_1d_dbl(n_hidden + 1);
newnet->output_delta = alloc_1d_dbl(n_out + 1);
newnet->target = alloc_1d_dbl(n_out + 1);
newnet->input_weights = alloc_2d_dbl(n_in + 1, n_hidden + 1);
newnet->hidden_weights = alloc_2d_dbl(n_hidden + 1, n_out + 1);
newnet->input_prev_weights = alloc_2d_dbl(n_in + 1, n_hidden + 1);
newnet->hidden_prev_weights = alloc_2d_dbl(n_hidden + 1, n_out + 1);
return (newnet);
}
/* 释放BP网络所占地内存空间 */
void CAnnBP::bpnn_free(BPNN *net)
{
int n1, n2, i;
n1 = net->input_n;
n2 = net->hidden_n;
free((char *) net->input_units);
free((char *) net->hidden_units);
free((char *) net->output_units);
free((char *) net->hidden_delta);
free((char *) net->output_delta);
free((char *) net->target);
for (i = 0; i <= n1; i++) {
free((char *) net->input_weights[i]);
free((char *) net->input_prev_weights[i]);
}
free((char *) net->input_weights);
free((char *) net->input_prev_weights);
for (i = 0; i <= n2; i++) {
free((char *) net->hidden_weights[i]);
free((char *) net->hidden_prev_weights[i]);
}
free((char *) net->hidden_weights);
free((char *) net->hidden_prev_weights);
free((char *) net);
}
/*** 创建一个BP网络,并初始化权值***/
BPNN* CAnnBP::bpnn_create(int n_in, int n_hidden, int n_out)
{
BPNN *newnet;
newnet = bpnn_internal_create(n_in, n_hidden, n_out);
#ifdef INITZERO
bpnn_zero_weights(newnet->input_weights, n_in, n_hidden);
#else
bpnn_randomize_weights(newnet->input_weights, n_in, n_hidden);
#endif
bpnn_randomize_weights(newnet->hidden_weights, n_hidden, n_out);
bpnn_zero_weights(newnet->input_prev_weights, n_in, n_hidden);
bpnn_zero_weights(newnet->hidden_prev_weights, n_hidden, n_out);
return (newnet);
}
void CAnnBP::bpnn_layerforward(double *l1, double *l2, double **conn, int n1, int n2)
{
double sum;
int j, k;
/*** 设置阈值 ***/
l1[0] = 1.0;
/*** 对于第二层的每个神经元 ***/
for (j = 1; j <= n2; j++) {
/*** 计算输入的加权总和 ***/
sum = 0.0;
for (k = 0; k <= n1; k++) {
sum += conn[k][j] * l1[k];
}
l2[j] = squash(sum);
}
}
/* 输出误差 */
void CAnnBP::bpnn_output_error(double *delta, double *target, double *output, int nj, double *err)
{
int j;
double o, t, errsum;
errsum = 0.0;
for (j = 1; j <= nj; j++) {
o = output[j];
t = target[j];
delta[j] = o * (1.0 - o) * (t - o);
errsum += ABS(delta[j]);
}
*err = errsum;
}
/* 隐含层误差 */
void CAnnBP::bpnn_hidden_error(double *delta_h, int nh, double *delta_o, int no, double **who, double *hidden, double *err)
{
int j, k;
double h, sum, errsum;
errsum = 0.0;
for (j = 1; j <= nh; j++) {
h = hidden[j];
sum = 0.0;
for (k = 1; k <= no; k++) {
sum += delta_o[k] * who[j][k];
}
delta_h[j] = h * (1.0 - h) * sum;
errsum += ABS(delta_h[j]);
}
*err = errsum;
}
/* 调整权值 */
void CAnnBP::bpnn_adjust_weights(double *delta, int ndelta, double *ly, int nly, double **w, double **oldw, double eta, double momentum)
{
double new_dw;
int k, j;
ly[0] = 1.0;
for (j = 1; j <= ndelta; j++) {
for (k = 0; k <= nly; k++) {
new_dw = ((eta * delta[j] * ly[k]) + (momentum * oldw[k][j]));
w[k][j] += new_dw;
oldw[k][j] = new_dw;
}
}
}
/* 进行前向运算 */
void CAnnBP::bpnn_feedforward(BPNN *net)
{
int in, hid, out;
in = net->input_n;
hid = net->hidden_n;
out = net->output_n;
/*** Feed forward input activations. ***/
bpnn_layerforward(net->input_units, net->hidden_units,
net->input_weights, in, hid);
bpnn_layerforward(net->hidden_units, net->output_units,
net->hidden_weights, hid, out);
}
/* 训练BP网络 */
void CAnnBP::bpnn_train(BPNN *net, double eta, double momentum, double *eo, double *eh)
{
int in, hid, out;
double out_err, hid_err;
in = net->input_n;
hid = net->hidden_n;
out = net->output_n;
/*** 前向输入激活 ***/
bpnn_layerforward(net->input_units, net->hidden_units,
net->input_weights, in, hid);
bpnn_layerforward(net->hidden_units, net->output_units,
net->hidden_weights, hid, out);
/*** 计算隐含层和输出层误差 ***/
bpnn_output_error(net->output_delta, net->target, net->output_units,
out, &out_err);
bpnn_hidden_error(net->hidden_delta, hid, net->output_delta, out,
net->hidden_weights, net->hidden_units, &hid_err);
*eo = out_err;
*eh = hid_err;
/*** 调整输入层和隐含层权值 ***/
bpnn_adjust_weights(net->output_delta, out, net->hidden_units, hid,
net->hidden_weights, net->hidden_prev_weights, eta, momentum);
bpnn_adjust_weights(net->hidden_delta, hid, net->input_units, in,
net->input_weights, net->input_prev_weights, eta, momentum);
}
/* 保存BP网络 */
void CAnnBP::bpnn_save(BPNN *net, char *filename)
{
CFile file;
char *mem;
int n1, n2, n3, i, j, memcnt;
double dvalue, **w;
n1 = net->input_n; n2 = net->hidden_n; n3 = net->output_n;
printf("Saving %dx%dx%d network to '%s'\n", n1, n2, n3, filename);
try
{
file.Open(filename,CFile::modeWrite|CFile::modeCreate|CFile::modeNoTruncate);
}
catch(CFileException* e)
{
e->ReportError();
e->Delete();
}
file.Write(&n1,sizeof(int));
file.Write(&n2,sizeof(int));
file.Write(&n3,sizeof(int));
memcnt = 0;
w = net->input_weights;
mem = (char *) malloc ((unsigned) ((n1+1) * (n2+1) * sizeof(double)));
// mem = (char *) malloc (((n1+1) * (n2+1) * sizeof(double)));
for (i = 0; i <= n1; i++) {
for (j = 0; j <= n2; j++) {
dvalue = w[i][j];
//fast(&mem[memcnt], &dvalue, sizeof(double));
fast(&mem[memcnt], &dvalue, sizeof(double));
memcnt += sizeof(double);
}
}
file.Write(mem,sizeof(double)*(n1+1)*(n2+1));
free(mem);
memcnt = 0;
w = net->hidden_weights;
mem = (char *) malloc ((unsigned) ((n2+1) * (n3+1) * sizeof(double)));
// mem = (char *) malloc (((n2+1) * (n3+1) * sizeof(double)));
for (i = 0; i <= n2; i++) {
for (j = 0; j <= n3; j++) {
dvalue = w[i][j];
fast(&mem[memcnt], &dvalue, sizeof(double));
// fast(&mem[memcnt], &dvalue, sizeof(double));
memcnt += sizeof(double);
}
}
file.Write(mem, (n2+1) * (n3+1) * sizeof(double));
// free(mem);
file.Close();
return;
}
/* 从文件中读取BP网络 */
BPNN* CAnnBP::bpnn_read(char *filename)
{
char *mem;
BPNN *new1;
int n1, n2, n3, i, j, memcnt;
CFile file;
try
{
file.Open(filename,CFile::modeRead|CFile::modeCreate|CFile::modeNoTruncate);
}
catch(CFileException* e)
{
e->ReportError();
e->Delete();
}
// printf("Reading '%s'\n", filename);// fflush(stdout);
file.Read(&n1, sizeof(int));
file.Read(&n2, sizeof(int));
file.Read(&n3, sizeof(int));
new1 = bpnn_internal_create(n1, n2, n3);
// printf("'%s' contains a %dx%dx%d network\n", filename, n1, n2, n3);
// printf("Reading input weights..."); // fflush(stdout);
memcnt = 0;
mem = (char *) malloc (((n1+1) * (n2+1) * sizeof(double)));
file.Read(mem, ((n1+1)*(n2+1))*sizeof(double));
for (i = 0; i <= n1; i++) {
for (j = 0; j <= n2; j++) {
//fast(&(new1->input_weights[i][j]), &mem[memcnt], sizeof(double));
fast(&(new1->input_weights[i][j]), &mem[memcnt], sizeof(double));
memcnt += sizeof(double);
}
}
free(mem);
// printf("Done\nReading hidden weights..."); //fflush(stdout);
memcnt = 0;
mem = (char *) malloc (((n2+1) * (n3+1) * sizeof(double)));
file.Read(mem, (n2+1) * (n3+1) * sizeof(double));
for (i = 0; i <= n2; i++) {
for (j = 0; j <= n3; j++) {
//fast(&(new1->hidden_weights[i][j]), &mem[memcnt], sizeof(double));
fast(&(new1->hidden_weights[i][j]), &mem[memcnt], sizeof(double));
memcnt += sizeof(double);
}
}
free(mem);
file.Close();
printf("Done\n"); //fflush(stdout);
bpnn_zero_weights(new1->input_prev_weights, n1, n2);
bpnn_zero_weights(new1->hidden_prev_weights, n2, n3);
return (new1);
}
void CAnnBP::CreateBP(int n_in, int n_hidden, int n_out)
{
net=bpnn_create(n_in,n_hidden,n_out);
}
void CAnnBP::FreeBP()
{
bpnn_free(net);
}
void CAnnBP::Train(double *input_unit,int input_num, double *target,int target_num, double *eo, double *eh)
{
for(int i=1;i<=input_num;i++)
{
net->input_units[i]=input_unit[i-1];
}
for(int j=1;j<=target_num;j++)
{
net->target[j]=target[j-1];
}
bpnn_train(net,eta1,momentum1,eo,eh);
}
void CAnnBP::Identify(double *input_unit,int input_num,double *target,int target_num)
{
for(int i=1;i<=input_num;i++)
{
net->input_units[i]=input_unit[i-1];
}
bpnn_feedforward(net);
for(int j=1;j<=target_num;j++)
{
target[j-1]=net->output_units[j];
}
}
void CAnnBP::Save(char *filename)
{
bpnn_save(net,filename);
}
void CAnnBP::Read(char *filename)
{
net=bpnn_read(filename);
}
void CAnnBP::SetBParm(double eta, double momentum)
{
eta1=eta;
momentum1=momentum;
}
void CAnnBP::Initialize(int seed)
{
bpnn_initialize(seed);
}
B. 如何用c++在mnist上实现一个简单的卷积神经网络,有哪些参考资料
SVM方面,首选的肯定是LIBSVM这个库,应该是应用最广的机器学习库了。
下面主要推荐一些DeepLearning的GitHub项目吧!
1. convnetjs - Star:2200+
实现了卷积神经网络,可以用来做分类,回归,强化学习等。
2. DeepLearn Toolbox - Star:1000+
Matlab实现中最热的库存,包括了CNN,DBN,SAE,CAE等主流模型。
3. Deep Learning(yusugomo) - Star:800+
实现了深度学习网络,从算法与实现上都比较全,提供了5种语言的实现:Python,C/C++,Java,Scala,实现的模型有DBN/CDBN/RBM/CRBM/dA/SdA/LR等。
4. Neural-Networks-And-Deep-Learning - Star:500+
这是同名书的配套代码,语言是Python。
5. rbm-mnist - Star:200+
这个是hinton matlab代码的C++改写版,还实现了Rasmussen的共轭梯度Conjugate Gradient算法。
C. 如何用代码编写一个神经网络异或运算器
配置环境、安装合适的库、下载数据集……有时候学习深度学习的前期工作很让人沮丧,如果只是为了试试现在人人都谈的深度学习,做这些麻烦事似乎很不值当。但好在我们也有一些更简单的方法可以体验深度学习。近日,编程学习平台 Scrimba 联合创始人 Per Harald Borgen 在 Medium 上发文介绍了一种仅用30行 JavaScript 代码就创建出了一个神经网络的教程,而且使用的工具也只有 Node.js、Synaptic.js 和浏览器而已。另外,作者还做了一个交互式 Scrimba 教程,也许能帮你理解其中的复杂概念。
Synaptic.js:http://synaptic.juancazala.com
Node.js:http://nodejs.org
Scrimba 教程:http://scrimba.com/casts/cast-1980
Synaptic.js 让你可以使用 Node.js 和浏览器做深度学习。在这篇文章中,我将介绍如何使用 Synaptic.js 创建和训练神经网络。
//创建网络const { Layer, Network }= window.synaptic;var inputLayer = new Layer(2);var hiddenLayer = new Layer(3);var outputLayer = new Layer(1);
inputLayer.project(hiddenLayer);
hiddenLayer.project(outputLayer);var myNetwork = new Network({
input: inputLayer,
hidden:[hiddenLayer],
output: outputLayer
});//训练网络——学习异或运算var learningRate =.3;for (var i =0; i <20000; i++)
{//0,0=>0
myNetwork.activate([0,0]);
myNetwork.propagate(learningRate,[0]);//0,1=>1
myNetwork.activate([0,1]);
myNetwork.propagate(learningRate,[1]);//1,0=>1
myNetwork.activate([1,0]);
myNetwork.propagate(learningRate,[1]);//1,1=>0
myNetwork.activate([1,1]);
myNetwork.propagate(learningRate,[0]);
}//测试网络console.log(myNetwork.activate([0,0]));//[0.0]console.log(myNetwork.activate([0,1]));//[0.]console.log(myNetwork.activate([1,0]));//[0.]console.log(myNetwork.activate([1,1]));//[0.0]
我们将创建一个最简单的神经网络:一个可以执行异或运算的网络。上面就是这个网络的全部代码,但在我们深入解读这些代码之前,首先我们先了解一下神经网络的基础知识。
神经元和突触
神经网络的基本构造模块是神经元。神经元就像是一个函数,有几个输入,然后可以得到一个输出。神经元的种类有很多。我们的网络将使用 sigmoid 神经元,它可以输入任何数字并将其压缩到0 到1 之间。下图就是一个 sigmoid 神经元。它的输入是5,输出是1。箭头被称为突触,可以将该神经元与网络中的其它层连接到一起。
现在训练这个网络:
// train the network - learn XORvar learningRate =.3;for (var i =0; i <20000; i++){ //0,0=>0
myNetwork.activate([0,0]);
myNetwork.propagate(learningRate,[0]);//0,1=>1
myNetwork.activate([0,1]);
myNetwork.propagate(learningRate,[1]);//1,0=>1
myNetwork.activate([1,0]);
myNetwork.propagate(learningRate,[1]);//1,1=>0
myNetwork.activate([1,1]);
myNetwork.propagate(learningRate,[0]);
}
这里我们运行该网络20000次。每一次我们都前向和反向传播4 次,为该网络输入4 组可能的输入:[0,0][0,1][1,0][1,1]。
首先我们执行 myNetwork.activate([0,0]),其中[0,0]是我们发送给该网络的数据点。这是前向传播,也称为激活这个网络。在每次前向传播之后,我们需要执行反向传播,这时候网络会更新自己的权重和偏置。
反向传播是通过这行代码完成的:myNetwork.propagate(learningRate,[0]),其中 learningRate 是一个常数,给出了网络每次应该调整的权重的量。第二个参数0 是给定输入[0,0]对应的正确输出。
然后,该网络将自己的预测与正确的标签进行比较,从而了解自己的正确程度有多少。
然后网络使用这个比较为基础来校正自己的权重和偏置值,这样让自己的下一次猜测更加正确一点。
这个过程如此反复20000次之后,我们可以使用所有四种可能的输入来检查网络的学习情况:
->[0.0]console.log(myNetwork.activate([0,1]));
->[0.]console.log(myNetwork.activate([1,0]));
->[0.]console.log(myNetwork.activate([1,1]));
->[0.0]
如果我们将这些值四舍五入到最近的整数,我们就得到了正确的异或运算结果。
这样就完成了。尽管这仅仅只碰到了神经网络的表皮,但也足以帮助你进一步探索 Synaptic 和继续学习了。http://github.com/cazala/synaptic/wiki 这里还包含了更多好教程。
D. 如何用9行Python代码编写一个简易神经网络
学习人工智能时,我给自己定了一个目标--用Python写一个简单的神经网络。为了确保真得理解它,我要求自己不使用任何神经网络库,从头写起。多亏了Andrew Trask写得一篇精彩的博客,我做到了!下面贴出那九行代码:在这篇文章中,我将解释我是如何做得,以便你可以写出你自己的。我将会提供一个长点的但是更完美的源代码。
首先,神经网络是什么?人脑由几千亿由突触相互连接的细胞(神经元)组成。突触传入足够的兴奋就会引起神经元的兴奋。这个过程被称为“思考”。我们可以在计算机上写一个神经网络来模拟这个过程。不需要在生物分子水平模拟人脑,只需模拟更高层级的规则。我们使用矩阵(二维数据表格)这一数学工具,并且为了简单明了,只模拟一个有3个输入和一个输出的神经元。
我们将训练神经元解决下面的问题。前四个例子被称作训练集。你发现规律了吗?‘?’是0还是1?你可能发现了,输出总是等于输入中最左列的值。所以‘?’应该是1。
训练过程
但是如何使我们的神经元回答正确呢?赋予每个输入一个权重,可以是一个正的或负的数字。拥有较大正(或负)权重的输入将决定神经元的输出。首先设置每个权重的初始值为一个随机数字,然后开始训练过程:
取一个训练样本的输入,使用权重调整它们,通过一个特殊的公式计算神经元的输出。
计算误差,即神经元的输出与训练样本中的期待输出之间的差值。
根据误差略微地调整权重。
重复这个过程1万次。最终权重将会变为符合训练集的一个最优解。如果使用神经元考虑这种规律的一个新情形,它将会给出一个很棒的预测。
这个过程就是back propagation。
计算神经元输出的公式
你可能会想,计算神经元输出的公式是什么?首先,计算神经元输入的加权和,即接着使之规范化,结果在0,1之间。为此使用一个数学函数--Sigmoid函数:Sigmoid函数的图形是一条“S”状的曲线。把第一个方程代入第二个,计算神经元输出的最终公式为:你可能注意到了,为了简单,我们没有引入最低兴奋阈值。
调整权重的公式
我们在训练时不断调整权重。但是怎么调整呢?可以使用“Error Weighted Derivative”公式:为什么使用这个公式?首先,我们想使调整和误差的大小成比例。其次,乘以输入(0或1),如果输入是0,权重就不会调整。最后,乘以Sigmoid曲线的斜率(图4)。为了理解最后一条,考虑这些:
我们使用Sigmoid曲线计算神经元的输出
如果输出是一个大的正(或负)数,这意味着神经元采用这种(或另一种)方式
从图四可以看出,在较大数值处,Sigmoid曲线斜率小
如果神经元认为当前权重是正确的,就不会对它进行很大调整。乘以Sigmoid曲线斜率便可以实现这一点
Sigmoid曲线的斜率可以通过求导得到:把第二个等式代入第一个等式里,得到调整权重的最终公式:当然有其他公式,它们可以使神经元学习得更快,但是这个公式的优点是非常简单。
构造Python代码
虽然我们没有使用神经网络库,但是将导入Python数学库numpy里的4个方法。分别是:
exp--自然指数
array--创建矩阵
dot--进行矩阵乘法
random--产生随机数
比如, 我们可以使用array()方法表示前面展示的训练集:“.T”方法用于矩阵转置(行变列)。所以,计算机这样存储数字:我觉得我们可以开始构建更优美的源代码了。给出这个源代码后,我会做一个总结。
我对每一行源代码都添加了注释来解释所有内容。注意在每次迭代时,我们同时处理所有训练集数据。所以变量都是矩阵(二维数据表格)。下面是一个用Python写地完整的示例代码。
我们做到了!我们用Python构建了一个简单的神经网络!
首先神经网络对自己赋予随机权重,然后使用训练集训练自己。接着,它考虑一种新的情形[1, 0, 0]并且预测了0.99993704。正确答案是1。非常接近!
传统计算机程序通常不会学习。而神经网络却能自己学习,适应并对新情形做出反应,这是多么神奇,就像人类一样。