Ⅰ 无线乱码怎么处理
win7是这样的。
对中文的无线网络名称识别不好。
这种乱码的一般是UTF-8编码的汉字,简体中文win7一般默认识别GB2312编码的中文无线网络名的。
如果你觉得不爽,可以改下路由的设置(如果支持的话),有些设备支持按不同编码设置多网络名的,你要是说只是上网的话(没法改别人路由的话),也无所谓的,不影响使用。
以前也是比较纳闷的,比如说你手机能看的(手机一般支持UTF8),在Win7上就是乱码,而win7上看的正常的,手机上看就是乱码,不信你同时用手机和电脑比较下的。
Ⅱ 无线路由器WPA-PSK/WPA2-PSK,WPA/WPA2,WEP加密有什么区别
一、主体不同
1、WPA-PSK/WPA2-PSK:WEP预分配共享密钥的认证方式,在加密方式和密钥的验证方式上作了修改,使其安全性更高。
2、WPA/WPA2:Wi-Fi 联盟对采用 IEEE802.11i安全增强功能的产品的认证计划。是基于WPA的一种新的加密方式。
3、WEP:有线等效保密(WEP)协议是对在两台设备间无线传输的数据进行加密的方式。
二、加密方式不同
1、WPA-PSK/WPA2-PSK:客户的认证仍采用验正用户是否使用事先分配的正确密钥。
2、WPA/WPA2:用了更为安全的算法。CCMP取代了WPA的MIC、AES取代了WPA的TKIP。
3、WEP:使用了rsa数据安全性公司开发的rc4 ping算法。如果无线基站支持MAC过滤,推荐你连同WEP一起使用这个特性。
三、特点不同
1、WPA-PSK/WPA2-PSK:预先分配的密钥仅仅用于认证过程,而不用于数据加密过程,因此不会导致像WEP密钥那样严重的安全问题。
2、WPA/WPA2:其口令长度为 20 个以上的随机字符,或者使用 McAfee 无线安全或者 Witopia Secure MyWiFi 等托管的 RADIUS 服务。
3、WEP:WEP 系统要求钥匙得用十六进制格式指定,有些用户会选择在有限的 0-9 A-F 的十六进制字符集中可以拼成英文词的钥匙。
Ⅲ 关于笔记本无线网卡各个编码的意思(FCCID、IC、SPS、TA、WFM、BDM等等)
FCCID、IC、SPS、TA、WFM、BDM分别代表:
FCCID-无线产品
IC-集成电路
SPS-放电等离子烧结
TA-每日、电流互感器
WFM-自动化的工作流管理
BDM-调试接口、背景调试模式
有SPS码的,不一定就是拆机网卡,新卡也是有SPS码的;
厂商生产出的一系列网卡,在出厂的时候全部都是有SPS码的!
无线网卡的标注有:传输速率、网络标准、频率范围、工作信道、调制技术、灵敏度、RF功率、接口类型,但最主要的还是-天线增益!
天线增益越大越好。天线增益是指:在输入功率相等的条件下,实际天线与理想的辐射单元在空间同一点处所产生的信号的功率密度之比。它定量地描述一个天线把输入功率集中辐射的程度。增益显然与天线方向图有密切的关系,方向图主瓣越窄,副瓣越小,增益越高。
Ⅳ 无线局域网802.11标准
※有线网络里可以通过提高带宽或者改善编码方案来提高数据发送速率。但是在无线网里无法提高带宽,只能通过改变编码方案来提高。因为无线信号发出去以后,编码方案是公开的,所以大家都能收到信息并且知道信息的内容,这时候就有安全隐患问题,因此无线网络的编码还要有加密机制。即使收到信号,但是无法解析信号的意思
调频扩频FHSS
直接序列扩频DSSS
红外线IR
☆使用802.11b无线通信,在遵循这些安全制约的前提下,这时就是Wifi接口了
无线局域网不能简单地搬用CSMA/CD协议,原因为:
CSMA/CD协议要求一个站点在发送本站数据的同时还必须不间断地检测信道,但在无线局域网的设备中要实现这种功能就花费过大;即使能够实现冲突检测的功能,并且当我们在发送数据时检测到信道是空闲的,在接收端仍然有可能发生冲突
这种未能检测出媒体上已存在的信号的问题叫做隐蔽站问题
当A和C检测不到无线信号时,都以为B是空闲的,因而都向B发送数据,结果发生碰撞
而在有线网络里,任何一个站点发送的信号,在共享介质的节点上都能看到发送端发送的信号。只是由于广播延迟的影响,有的节点看到得早,有的节点看到得晚,但是不存在看不到信号的情况。而↑图就会看不到
B向A发送数据并不影响C向D发送数据,这就是暴露站问题
B向A发送数据,而C又想和D通信。C检测到媒体上有信号,于是就不敢向D发送数据
因为隐蔽站和暴露站这样的问题存在,使得冲突情况变得复杂。无线局域网不能使用CSMA/CD,而只能使用改进的CSMA协议。改进的办法是将CSMA增加一个冲突避免功能。802.11就使用CSMA/CA协议。而在使用CSMA/CA的同时还增加使用确认机制
是不是可靠性传输和传输介质没有关系。网数据传输由于可靠性传输只是加了一个可靠性保障机制。无线局域它的通信环境恶劣,本身信道的传输误码率高,差错率也高,导致传输效果比较差。这种服务如果直接被上层使用那么这个无线通信质量就会很差。但是通过可靠性保障,在无线通信层或者在MAC层向上层提供的是可靠性的数据传输的话,就屏蔽了无线通信的不稳定性对上层的影响,使得上层应用基于无线通信的效果变得更好一些
MAC层通过协调功能来确定在基本服务集BSS中的移动站在什么时间能发送数据或接收数据
• 点协调功能(无争用服务):PCF子层使用集中控制的接入算法将发送数据权轮流交给各个站从而避免了碰撞的产生
• 分布协调功能(争用服务):DCF子层在每一个节点使用CSMA机制的分布式接入算法,让每个站通过争用信道来获取发送权。因此DCF向上提供争用服务。各个站点是平等的,可以随时发送数据,会容易发生冲突
站在完成发送后,必须再等待一段很短的时间(继续监听)才能发送下一帧。这段时间的通称是帧间间隔IFS。这是为了竞争信道使用权
帧间间隔长度取决于该站欲发送的帧的类型,高优先级帧需要等待的时间较短。低优先级帧还没来得及发送而其他站的高优先级帧已发送到媒体,则低优先级帧只能再推迟发送,减少发生冲突的机会
三种IFS类型:
• SIFS 短帧间间隔,长度为28微秒
• PIFS 点协调功能帧间间距,长度为78微秒
• DIFS,分布协调功能帧间间距,长度为128微秒
待发送数据的站先检测信道。在802.11标准中规定了在物理层的空中接口进行物理层的载波监听。发送数据通过收到的相对信号强度是否超过一定的门限数值就可判定是否有其他的移动站在信道上。当源站发送它的第一个MAC数据帧时,若检测到信道空闲,则在等待一段时间DIFS后就可发送(目的:让可能存在的高优先级帧先发送)。源站发送了自己的数据帧,目的站若正确收到此帧,则经过时间间隔SIFS后,向源站发送确认帧ACK。若源站在规定时间内没有收到确认帧ACK(由重传计时器控制这段时间),就必须重传此帧,直到收到确认为止,或者经过若干次的重传失败后放弃发送。是一种可靠性传输(可靠或不可靠传输并不是数据会不会传成功或者失败,而是不管成功还是失败发送方会知道结果,这就是可靠性传输)
源站在MAC帧首部中的第二个字段将它要占用信道的时间(包括目的站发回确认帧所需的时间)通知给所有其他站,以便使其他所有站在这一段时间都停止发送数据,大大减少冲突机会
“虚拟载波监听”表示其他站并没有真正地物理监听信道,而是由于其他站收到了“源站的通知”才不发送数据
当一个站检测到正在信道中传送的MAC帧首部的“持续时间”字段时,就调整自己的网络分配向量NAV(Network Allocation Vector)。NAV指出了必须经过多少时间对方站才能完成数据帧的这次传输,才能使信道转入到空闲状态
信道从忙态变为空闲时,任何一个站要发送数据帧时,不仅都必须等待一个DIFS的间隔,而且还要进入争用窗口,并计算随机退避时间以便再次重新试图接入到信道。在信道从忙态转为空闲时,各站就要执行退避算法,这样就减少了发生碰撞的概率
802.11使用二进制指数退避算法:
第i次退避就在2 2 + i 个时隙中随机地选择一个
第1次退避是在8个时隙(而不是2个)中随机选择一个
第2次退避是在16个时隙(而不是4个)中随机选择一个
源站A在发送数据帧之前先发送一个短的控制帧,叫做请求发送RTS(Request To Send),它包括源地址,目的地址和这次通信(包括相应的确认帧)所需的持续时间
若媒体空闲,则目的站B就发送一个相应控制帧,叫做允许发送CTS(Clear To Send)。A收到CTS帧后就可发送其数据帧
同一个数据会话期间的内部帧间隔就是个短帧间隔(SIFS)
源站在等待DIFS时间以后,应该还要等一个争用窗口,这里假设争用窗口为0
覆盖城市的部分区域,网络跨度较大。对于基站的功率、网络安全性都有较高的要求
每个单元的用户数量比IEEE 802.11多。需要更高的带宽,称为宽带无线网络标准
IEEE802.16工作环境通常在室外,容易受到天气等因素的干扰
设计目标能够支持实时流应用的服务质量要求。IEEE 802.11只是提供一定程度的支持
802.11 窄带无线网络 主要应用于室内,也称为Wifi
Ⅳ 无线网络中的TKIP和AES有区别么
1、传输速度不同
AES比TKIP采用更高级的加密技术,如采用TKIP,网络的传输速度就会被限制在54Mbps以下。
2、安全性能不同
AES安全性比 TKIP 好。
TKIP在设计时考虑了当时非常苛刻的限制因素:必须在现有硬件上运行,因此不能使用计算先进的加密算法。而且在使用TKIP算法时路由器的吞吐量会下降3成至5成,大大地影响了路由器的性能。
3、适用情况不同
TKIP加密算法经常在老的无线网卡上使用,适用于802.1x无线传输协议,TKIP中密码使用的密钥长度为128位;
AES加密算法是在新无线网卡上使用,适用于802.11n无线传输协议,AES加密数据块和密钥长度可以是128比特、192比特、256比特中的任意一个。
Ⅵ 无线网络摄像机的编码标准
目前,红外网络摄像机的图像压缩编码标准主要有MPEG4、H.263、H.264、M-JPEG等。
MPEG4
所谓MPEG标准就是指由ISO的活动图像专家组制定的一系列关于音视频信号以及多媒体信号的压缩与解压缩技术的标准。到目前为止,已经制定完成并批准执行的有:1991年批准的MPEG1、MP3;1994年批准的MPEG2;1999年批准的MPEG4和MP4。正在制定的标准有:MPEG7和MEPG21.
H.263
H.263是ITU-T提出的作为H.324终端使用的视频编解码建议,H.263经过不断地完善和多次的升级已经日臻成熟,如今已经大部分代替了H.261,而且H.263由于能在低带宽上传输高质量的视频流而日益受到欢迎。
H.263是基于运动补偿的DPCM的混合编码,在运动补偿的DPCM混合编码,在运动搜索的基础上进行运动补偿,然后运用DCT变换和“之”字形扫描编码,从而得到输出码流。H.263在H.261建议的基础上,将运动矢量的搜索增加为半象素点搜索;同时又增加了无限制运动矢量、基于语法的算术编码、高级预测技术和PB帧编码等四个高级选项;从而达到了进一步降低码速率和提高编码质量的目的。
H.264 H.264是ITU-T的VCEG和ISO/IEC的MPEG的联合视频组开发的一个新的数字视频编码标准,它既是ITU-T的H.264,又是ISO/IEC的MPEG4的第十部分。
在相同的重建图像质量下,H.264能够比H.263节约50%左右的码率,比目前根据MPEG4实现的视频格式在性能方面提高33%左右。
M-JPEG
M-JPEG技术即运动静止图像压缩技术,它把运动的视频序列作为连续的静止图像来处理,这种压缩技术方式单独完整地压缩每一帧,在编辑过程中可随机存储每一帧,可进行精确到帧地编辑。但M-JPEG只对帧内地空间冗余进行压缩,不对帧间的时间冗余进行压缩,故压缩效率不高。
无线网络摄像机关键特点:集摄像机模块、网络编码模块和网卡于一体,即插即用; 支持Web浏览,直接通过IE浏览器即可进行影像浏览; 强大的网络客户端功能,可根据需要选择单机版客户端或分布式网络视频集中监控管理系统进行远程管理; 支持动态IP,不受网络环境限制; 带SD闪存卡插槽,可以插SD卡(SanDisk)进行本地录像; 带报警接口,可管理连接报警设备。
Ⅶ 求 无线网络 的联合信道网络编码或网络编码方面的仿真代码
pi*f*t)
所以,程序可以这样写:
f=1;
A=1;
t=0:0.1:10;
m=A*cos(2*pi*f*t)