导航:首页 > 网络共享 > 神经网络优化算法属于哪个层

神经网络优化算法属于哪个层

发布时间:2023-06-11 15:41:57

Ⅰ 神经网络简述

机器学习中谈论的神经网络是指“神经网络学习”,或者说,是机器学习和神经网络这两个学科领域的交叉部分[1]。

在这里,神经网络更多的是指计算机科学家模拟人类大脑结构和智能行为,发明的一类算法的统称。

神经网络是众多优秀仿生算法中的一种,读书时曾接触过蚁群优化算法,曾惊讶于其强大之处,但神经网络的强大,显然蚁群优化还不能望其项背。

A、起源与第一次高潮。有人认为,神经网络的最早讨论,源于现代计算机科学的先驱——阿兰.图灵在1948年的论文中描述的“B型组织机器”[2]。二十世纪50年代出现了以感知机、Adaling为代表的一系列成功,这是神经网络发展的第一个高潮[1]。

B、第一次低谷。1969年,马文.明斯基出版《感知机》一书,书中论断直接将神经网络打入冷宫,导致神经网络十多年的“冰河期”。值得一提的是,在这期间的1974年,哈佛大学Paul Webos发明BP算法,但当时未受到应有的重视[1]。

C、第二次高潮。1983年,加州理工学院的物理学家John Hopfield利用神经网络,在旅行商问题上获得当时最好结果,引起轰动;Rumelhart等人重新发明了BP算法,BP算法迅速走红,掀起神经网络第二次高潮[1]。

D、第二次低谷。二十世纪90年代中期,统计学习理论和支持向量机兴起,较之于这些算法,神经网络的理论基础不清晰等缺点更加凸显,神经网络研究进入第二次低谷[1]。

E、深度学习的崛起。2010年前后,随着计算能力的提升和大数据的涌现,以神经网络为基础的“深度学习”崛起,科技巨头公司谷歌、Facebook、网络投入巨资研发,神经网络迎来第三次高潮[1]。2016年3月9日至15日,Google人工智能程序AlphaGo对阵韩国围棋世界冠军李世乭,以4:1大比分获胜,比众多专家预言早了十年。这次比赛,迅速在全世界经济、科研、计算机产业各领域掀起人工智能和深度学习的热烈讨论。

F、展望。从几个方面讨论一下。

1)、近期在Google AlphaGo掀起的热潮中,民众的热情与期待最大,甚至有少许恐慌情绪;计算机产业和互联网产业热情也非常巨大,对未来充满期待,各大巨头公司对其投入大量资源;学术界的反应倒是比较冷静的。学术界的冷静,是因为神经网络和深度神经网络的理论基础还没有出现长足的进步,其缺点还没有根本改善。这也从另一个角度说明了深度神经网络理论进步的空间很大。

2)、"当代神经网络是基于我们上世纪六十年代掌握的脑知识。"关于人类大脑的科学与知识正在爆炸式增长。[3]世界上很多学术团队正在基于大脑机制新的认知建立新的模型[3]。我个人对此报乐观态度,从以往的仿生算法来看,经过亿万年进化的自然界对科技发展的促进从来没有停止过。

3)、还说AlphaGo,它并不是理论和算法的突破,而是基于已有算法的工程精品。AlhphaGo的工作,为深度学习的应用提供了非常广阔的想象空间。分布式技术提供了巨大而廉价的计算能力,巨量数据的积累提供了丰富的训练样本,深度学习开始腾飞,这才刚刚开始。

一直沿用至今的,是McChlloch和Pitts在1943年依据脑神经信号传输结构抽象出的简单模型,所以也被称作”M-P神经元模型“。

其中,

f函数像一般形如下图的函数,既考虑阶跃性,又考虑光滑可导性。

实际常用如下公式,因形如S,故被称作sigmoid函数。

把很多个这样的神经元按一定层次连接起来,就得到了神经网络。

两层神经元组成,输入层接收外界输入信号,输出层是M-P神经元(只有输出层是)。

感知机的数学模型和单个M-P神经元的数学模型是一样的,如因为输入层只需接收输入信号,不是M-P神经元。

感知机只有输出层神经元是B-P神经元,学习能力非常有限。对于现行可分问题,可以证明学习过程一定会收敛。而对于非线性问题,感知机是无能为力的。

BP神经网络全称叫作误差逆传播(Error Propagation)神经网络,一般是指基于误差逆传播算法的多层前馈神经网络。这里为了不占篇幅,BP神经网络将起篇另述。

BP算法是迄今最为成功的神经网络学习算法,也是最有代表性的神经网络学习算法。BP算法不仅用于多层前馈神经网络,还用于其他类型神经网络的训练。

RBF网络全程径向基函数(Radial Basis Function)网络,是一种单隐层前馈神经网络,其与BP网络最大的不同是采用径向基函数作为隐层神经元激活函数。

卷积神经网络(Convolutional neural networks,简称CNNs)是一种深度学习的前馈神经网络,在大型图片处理中取得巨大成功。卷积神经网络将起篇另述。

循环神经网络(Recurrent Neural Networks,RNNs)与传统的FNNs不同,RNNs引入定向循环,能够处理那些输入之间前后关联的问题。RNNs已经在众多自然语言处理(Natural Language Processing, NLP)中取得了巨大成功以及广泛应用[5]。RNNs将起篇另述。[5]

[1]、《机器学习》,周志华着

[2]、《模式识别(第二版)》,Richard O.Duda等着,李宏东等译

[3]、《揭秘IARPA项目:解码大脑算法或将彻底改变机器学习》,Emily Singerz着,机器之心编译出品

[4]、图片来源于互联网

[5]、 循环神经网络(RNN, Recurrent Neural Networks)介绍

Ⅱ 神经网络算法原理

一共有四种算法及原理,如下所示:

1、自适应谐振理论(ART)网络

自适应谐振理论(ART)网络具有不同的方案。一个ART-1网络含有两层一个输入层和一个输出层。这两层完全互连,该连接沿着正向(自底向上)和反馈(自顶向下)两个方向进行。

2、学习矢量量化(LVQ)网络

学习矢量量化(LVQ)网络,它由三层神经元组成,即输入转换层、隐含层和输出层。该网络在输入层与隐含层之间为完全连接,而在隐含层与输出层之间为部分连接,每个输出神经元与隐含神经元的不同组相连接。

3、Kohonen网络

Kohonen网络或自组织特征映射网络含有两层,一个输入缓冲层用于接收输入模式,另一个为输出层,输出层的神经元一般按正则二维阵列排列,每个输出神经元连接至所有输入神经元。连接权值形成与已知输出神经元相连的参考矢量的分量。

4、Hopfield网络

Hopfield网络是一种典型的递归网络,这种网络通常只接受二进制输入(0或1)以及双极输入(+1或-1)。它含有一个单层神经元,每个神经元与所有其他神经元连接,形成递归结构。

(2)神经网络优化算法属于哪个层扩展阅读:

人工神经网络算法的历史背景:

该算法系统是 20 世纪 40 年代后出现的。它是由众多的神经元可调的连接权值连接而成,具有大规模并行处理、分布式信息存储、良好的自组织自学习能力等特点。

BP算法又称为误差反向传播算法,是人工神经网络中的一种监督式的学习算法。BP 神经网络算法在理论上可以逼近任意函数,基本的结构由非线性变化单元组成,具有很强的非线性映射能力。

而且网络的中间层数、各层的处理单元数及网络的学习系数等参数可根据具体情况设定,灵活性很大,在优化、信号处理与模式识别、智能控制、故障诊断等许 多领域都有着广泛的应用前景。

Ⅲ rbf神经网络算法是什么

RBF神经网络算法是由三层结构组成,输入层至隐层为非线性的空间变换,一般选用径向基函数的高斯函数进行运算;从隐层至输出层为线性空间变换,即矩阵与矩阵之间的变换。

RBF神经网络进行数据运算时需要确认聚类中心点的位置及隐层至输出层的权重。通常,选用K-means聚类算法或最小正交二乘法对数据大量的进行训练得出聚类中心矩阵和权重矩阵。

一般情况下,最小正交二乘法聚类中心点的位置是给定的,因此比较适合分布相对规律的数据。而K-means聚类算法则会自主选取聚类中心,进行无监督分类学习,从而完成空间映射关系。

RBF网络特点

RBF网络能够逼近任意非线性的函数(因为使用的是一个局部的激活函数。在中心点附近有最大的反应;越接近中心点则反应最大,远离反应成指数递减;就相当于每个神经元都对应不同的感知域)。

可以处理系统内难以解析的规律性,具有很好的泛化能力,并且具有较快的学习速度。

有很快的学习收敛速度,已成功应用于非线性函数逼近、时间序列分析、数据分类、模式识别、信息处理、图像处理、系统建模、控制和故障诊断等。

当网络的一个或多个可调参数(权值或阈值)对任何一个输出都有影响时,这样的网络称为全局逼近网络。由于对于每次输入,网络上的每一个权值都要调整,从而导致全局逼近网络的学习速度很慢,比如BP网络。

Ⅳ 一文读懂神经网络

要说近几年最引人注目的技术,无疑的,非人工智能莫属。无论你是否身处科技互联网行业,随处可见人工智能的身影:从 AlphaGo 击败世界围棋冠军,到无人驾驶概念的兴起,再到科技巨头 All in AI,以及各大高校向社会输送海量的人工智能专业的毕业生。以至于人们开始萌生一个想法:新的革命就要来了,我们的世界将再次发生一次巨变;而后开始焦虑:我的工作是否会被机器取代?我该如何才能抓住这次革命?

人工智能背后的核心技术是深度神经网络(Deep Neural Network),大概是一年前这个时候,我正在回老家的高铁上学习 3Blue1Brown 的 Neural Network 系列视频课程,短短 4 集 60 多分钟的时间,就把神经网络从 High Level 到推导细节说得清清楚楚,当时的我除了获得新知的兴奋之外,还有一点新的认知,算是给头脑中的革命性的技术泼了盆冷水:神经网络可以解决一些复杂的、以前很难通过写程序来完成的任务——例如图像、语音识别等,但它的实现机制告诉我,神经网络依然没有达到生物级别的智能,短期内期待它来取代人也是不可能的。

一年后的今天,依然在这个春运的时间点,将我对神经网络的理解写下来,算是对这部分知识的一个学习笔记,运气好的话,还可以让不了解神经网络的同学了解起来。

维基网络这样解释 神经网络 :

这个定义比较宽泛,你甚至还可以用它来定义其它的机器学习算法,例如之前我们一起学习的逻辑回归和 GBDT 决策树。下面我们具体一点,下图是一个逻辑回归的示意图:

其中 x1 和 x2 表示输入,w1 和 w2 是模型的参数,z 是一个线性函数:

接着我们对 z 做一个 sigmod 变换(图中蓝色圆),得到输出 y:

其实,上面的逻辑回归就可以看成是一个只有 1 层 输入层 , 1 层 输出层 的神经网络,图中容纳数字的圈儿被称作 神经元 ;其中,层与层之间的连接 w1、w2 以及 b,是这个 神经网络的参数 ,层之间如果每个神经元之间都保持着连接,这样的层被称为 全连接层 (Full Connection Layer),或 稠密层 (Dense Layer);此外,sigmoid 函数又被称作 激活函数 (Activation Function),除了 sigmoid 外,常用的激活函数还有 ReLU、tanh 函数等,这些函数都起到将线性函数进行非线性变换的作用。我们还剩下一个重要的概念: 隐藏层 ,它需要把 2 个以上的逻辑回归叠加起来加以说明:

如上图所示,除输入层和输出层以外,其他的层都叫做 隐藏层 。如果我们多叠加几层,这个神经网络又可以被称作 深度神经网络 (Deep Neural Network),有同学可能会问多少层才算“深”呢?这个没有绝对的定论,个人认为 3 层以上就算吧:)

以上,便是神经网络,以及神经网络中包含的概念,可见,神经网络并不特别,广义上讲,它就是

可见,神经网络和人脑神经也没有任何关联,如果我们说起它的另一个名字—— 多层感知机(Mutilayer Perceptron) ,就更不会觉得有多么玄乎了,多层感知机创造于 80 年代,可为什么直到 30 年后的今天才爆发呢?你想得没错,因为改了个名字……开个玩笑;实际上深度学习这项技术也经历过很长一段时间的黑暗低谷期,直到人们开始利用 GPU 来极大的提升训练模型的速度,以及几个标志性的事件:如 AlphaGo战胜李世石、Google 开源 TensorFlow 框架等等,感兴趣的同学可以翻一下这里的历史。

就拿上图中的 3 个逻辑回归组成的神经网络作为例子,它和普通的逻辑回归比起来,有什么优势呢?我们先来看下单逻辑回归有什么劣势,对于某些情况来说,逻辑回归可能永远无法使其分类,如下面数据:

这 4 个样本画在坐标系中如下图所示

因为逻辑回归的决策边界(Decision Boundary)是一条直线,所以上图中的两个分类,无论你怎么做,都无法找到一条直线将它们分开,但如果借助神经网络,就可以做到这一点。

由 3 个逻辑回归组成的网络(这里先忽略 bias)如下:

观察整个网络的计算过程,在进入输出层之前,该网络所做的计算实际上是:

即把输入先做了一次线性变换(Linear Transformation),得到 [z1, z2] ,再把 [z1, z2] 做了一个非线性变换(sigmoid),得到 [x1', x2'] ,(线性变换的概念可以参考 这个视频 )。从这里开始,后面的操作就和一个普通的逻辑回归没有任何差别了,所以它们的差异在于: 我们的数据在输入到模型之前,先做了一层特征变换处理(Feature Transformation,有时又叫做特征抽取 Feature Extraction),使之前不可能被分类的数据变得可以分类了

我们继续来看下特征变换的效果,假设 为 ,带入上述公式,算出 4 个样本对应的 [x1', x2'] 如下:

再将变换后的 4 个点绘制在坐标系中:

显然,在做了特征变换之后,这两个分类就可以很容易的被一条决策边界分开了。

所以, 神经网络的优势在于,它可以帮助我们自动的完成特征变换或特征提取 ,尤其对于声音、图像等复杂问题,因为在面对这些问题时,人们很难清晰明确的告诉你,哪些特征是有用的。

在解决特征变换的同时,神经网络也引入了新的问题,就是我们需要设计各式各样的网络结构来针对性的应对不同的场景,例如使用卷积神经网络(CNN)来处理图像、使用长短期记忆网络(LSTM)来处理序列问题、使用生成式对抗网络(GAN)来写诗和作图等,就连去年自然语言处理(NLP)中取得突破性进展的 Transformer/Bert 也是一种特定的网络结构。所以, 学好神经网络,对理解其他更高级的网络结构也是有帮助的

上面说了,神经网络可以看作一个非线性函数,该函数的参数是连接神经元的所有的 Weights 和 Biases,该函数可以简写为 f(W, B) ,以手写数字识别的任务作为例子:识别 MNIST 数据集 中的数字,数据集(MNIST 数据集是深度学习中的 HelloWorld)包含上万张不同的人写的数字图片,共有 0-9 十种数字,每张图片为 28*28=784 个像素,我们设计一个这样的网络来完成该任务:

把该网络函数所具备的属性补齐:

接下来的问题是,这个函数是如何产生的?这个问题本质上问的是这些参数的值是怎么确定的。

在机器学习中,有另一个函数 c 来衡量 f 的好坏,c 的参数是一堆数据集,你输入给 c 一批 Weights 和 Biases,c 输出 Bad 或 Good,当结果是 Bad 时,你需要继续调整 f 的 Weights 和 Biases,再次输入给 c,如此往复,直到 c 给出 Good 为止,这个 c 就是损失函数 Cost Function(或 Loss Function)。在手写数字识别的列子中,c 可以描述如下:

可见,要完成手写数字识别任务,只需要调整这 12730 个参数,让损失函数输出一个足够小的值即可,推而广之,绝大部分神经网络、机器学习的问题,都可以看成是定义损失函数、以及参数调优的问题。

在手写识别任务中,我们既可以使用交叉熵(Cross Entropy)损失函数,也可以使用 MSE(Mean Squared Error)作为损失函数,接下来,就剩下如何调优参数了。

神经网络的参数调优也没有使用特别的技术,依然是大家刚接触机器学习,就学到的梯度下降算法,梯度下降解决了上面迭代过程中的遗留问题——当损失函数给出 Bad 结果时,如何调整参数,能让 Loss 减少得最快。

梯度可以理解为:

把 Loss 对应到 H,12730 个参数对应到 (x,y),则 Loss 对所有参数的梯度可以表示为下面向量,该向量的长度为 12730:
$$
abla L(w,b) = left[

frac{partial L}{partial w_1},
frac{partial L}{partial w_2},...,
frac{partial L}{partial b_{26}}

ight] ^ op
$$
所以,每次迭代过程可以概括为

用梯度来调整参数的式子如下(为了简化,这里省略了 bias):

上式中, 是学习率,意为每次朝下降最快的方向前进一小步,避免优化过头(Overshoot)。

由于神经网络参数繁多,所以需要更高效的计算梯度的算法,于是,反向传播算法(Backpropagation)呼之欲出。

在学习反向传播算法之前,我们先复习一下微积分中的链式法则(Chain Rule):设 g = u(h) , h = f(x) 是两个可导函数,x 的一个很小的变化 △x 会使 h 产生一个很小的变化 △h,从而 g 也产生一个较小的变化 △g,现要求 △g/△x,可以使用链式法则:

有了以上基础,理解反向传播算法就简单了。

假设我们的演示网络只有 2 层,输入输出都只有 2 个神经元,如下图所示:

其中 是输入, 是输出, 是样本的目标值,这里使用的损失函数 L 为 MSE;图中的上标 (1) 或 (2) 分别表示参数属于第 (1) 层或第 (2) 层,下标 1 或 2 分别表示该层的第 1 或 第 2 个神经元。

现在我们来计算 和 ,掌握了这 2 个参数的偏导数计算之后,整个梯度的计算就掌握了。

所谓反向传播算法,指的是从右向左来计算每个参数的偏导数,先计算 ,根据链式法则

对左边项用链式法则展开

又 是输出值, 可以直接通过 MSE 的导数算出:

而 ,则 就是 sigmoid 函数的导数在 处的值,即

于是 就算出来了:

再来看 这一项,因为

所以

注意:上面式子对于所有的 和 都成立,且结果非常直观,即 对 的偏导为左边的输入 的大小;同时,这里还隐含着另一层意思:需要调整哪个 来影响 ,才能使 Loss 下降得最快,从该式子可以看出,当然是先调整较大的 值所对应的 ,效果才最显着 。

于是,最后一层参数 的偏导数就算出来了

我们再来算上一层的 ,根据链式法则 :

继续展开左边这一项

你发现没有,这几乎和计算最后一层一摸一样,但需要注意的是,这里的 对 Loss 造成的影响有多条路径,于是对于只有 2 个输出的本例来说:

上式中, 都已经在最后一层算出,下面我们来看下 ,因为

于是

同理

注意:这里也引申出梯度下降的调参直觉:即要使 Loss 下降得最快,优先调整 weight 值比较大的 weight。

至此, 也算出来了

观察上式, 所谓每个参数的偏导数,通过反向传播算法,都可以转换成线性加权(Weighted Sum)计算 ,归纳如下:

式子中 n 代表分类数,(l) 表示第 l 层,i 表示第 l 层的第 i 个神经元。 既然反向传播就是一个线性加权,那整个神经网络就可以借助于 GPU 的矩阵并行计算了

最后,当你明白了神经网络的原理,是不是越发的认为,它就是在做一堆的微积分运算,当然,作为能证明一个人是否学过微积分,神经网络还是值得学一下的。Just kidding ..

本文我们通过

这四点,全面的学习了神经网络这个知识点,希望本文能给你带来帮助。

参考:

Ⅳ 神经网络浅谈

人工智能技术是当前炙手可热的话题,而基于神经网络的深度学习技术更是热点中的热点。去年谷歌的Alpha Go 以4:1大比分的优势战胜韩国的李世石九段,展现了深度学习的强大威力,后续强化版的Alpha Master和无师自通的Alpha Zero更是在表现上完全碾压前者。不论你怎么看,以深度学习为代表的人工智能技术正在塑造未来。

下图为英伟达(NVIDIA)公司近年来的股价情况, 该公司的主要产品是“图形处理器”(GPU),而GPU被证明能大大加快神经网络的训练速度,是深度学习必不可少的计算组件。英伟达公司近年来股价的飞涨足以证明当前深度学习的井喷之势。

好,话不多说,下面简要介绍神经网络的基本原理、发展脉络和优势。

神经网络是一种人类由于受到生物神经细胞结构启发而研究出的一种算法体系,是机器学习算法大类中的一种。首先让我们来看人脑神经元细胞:

一个神经元通常具有多个树突 ,主要用来接受传入信息,而轴突只有一条,轴突尾端有许多轴突末梢,可以给其他多个神经元传递信息。轴突末梢跟其他神经元的树突产生连接,从而传递信号。

下图是一个经典的神经网络(Artificial Neural Network,ANN):

乍一看跟传统互联网的拓扑图有点类似,这也是称其为网络的原因,不同的是节点之间通过有向线段连接,并且节点被分成三层。我们称图中的圆圈为神经元,左边三个神经元组成的一列为输入层,中间神经元列为隐藏层,右边神经元列为输出层,神经元之间的箭头为权重。

神经元是计算单元,相当于神经元细胞的细胞核,利用输入的数据进行计算,然后输出,一般由一个线性计算部分和一个非线性计算部分组成;输入层和输出层实现数据的输入输出,相当于细胞的树突和轴突末梢;隐藏层指既不是输入也不是输出的神经元层,一个神经网络可以有很多个隐藏层。

神经网络的关键不是圆圈代表的神经元,而是每条连接线对应的权重。每条连接线对应一个权重,也就是一个参数。权重具体的值需要通过神经网络的训练才能获得。我们实际生活中的学习体现在大脑中就是一系列神经网络回路的建立与强化,多次重复的学习能让回路变得更加粗壮,使得信号的传递速度加快,最后对外表现为“深刻”的记忆。人工神经网络的训练也借鉴于此,如果某种映射关系出现很多次,那么在训练过程中就相应调高其权重。

1943年,心理学家McCulloch和数学家Pitts参考了生物神经元的结构,发表了抽象的神经元模型MP:

符号化后的模型如下:

Sum函数计算各权重与输入乘积的线性组合,是神经元中的线性计算部分,而sgn是取符号函数,当输入大于0时,输出1,反之输出0,是神经元中的非线性部分。向量化后的公式为z=sgn(w^T a)(w^T=(w_1,w_2,w_3),a=〖(a_1,a_2,a_3)〗^T)。

但是,MP模型中,权重的值都是预先设置的,因此不能学习。该模型虽然简单,并且作用有限,但已经建立了神经网络大厦的地基

1958年,计算科学家Rosenblatt提出了由两层神经元组成(一个输入层,一个输出层)的神经网络。他给它起了一个名字–“感知器”(Perceptron)

感知器是当时首个可以学习的人工神经网络。Rosenblatt现场演示了其学习识别简单图像的过程,在当时引起了轰动,掀起了第一波神经网络的研究热潮。

但感知器只能做简单的线性分类任务。1969年,人工智能领域的巨擘Minsky指出这点,并同时指出感知器对XOR(异或,即两个输入相同时输出0,不同时输出1)这样的简单逻辑都无法解决。所以,明斯基认为神经网络是没有价值的。

随后,神经网络的研究进入低谷,又称 AI Winter 。

Minsky说过单层神经网络无法解决异或问题,但是当增加一个计算层以后,两层神经网络不仅可以解决异或问题,而且具有非常好的非线性分类效果。

下图为两层神经网络(输入层一般不算在内):

上图中,输出层的输入是上一层的输出。

向量化后的公式为:

注意:

每个神经元节点默认都有偏置变量b,加上偏置变量后的计算公式为:

同时,两层神经网络不再使用sgn函数作为激励函数,而采用平滑的sigmoid函数:

σ(z)=1/(1+e^(-z) )

其图像如下:

理论证明: 两层及以上的神经网络可以无限逼近真实的对应函数,从而模拟数据之间的真实关系 ,这是神经网络强大预测能力的根本。但两层神经网络的计算量太大,当时的计算机的计算能力完全跟不上,直到1986年,Rumelhar和Hinton等人提出了反向传播(Backpropagation,BP)算法,解决了两层神经网络所需要的复杂计算量问题,带动了业界使用两层神经网络研究的热潮。

但好景不长,算法的改进仅使得神经网络风光了几年,然而计算能力不够,局部最优解,调参等一系列问题一直困扰研究人员。90年代中期,由Vapnik等人发明的SVM(Support Vector Machines,支持向量机)算法诞生,很快就在若干个方面体现出了对比神经网络的优势:无需调参;高效;全局最优解。

由于以上原因,SVM迅速打败了神经网络算法成为主流。神经网络的研究再一次进入低谷, AI Winter again 。

多层神经网络一般指两层或两层以上的神经网络(不包括输入层),更多情况下指两层以上的神经网络。

2006年,Hinton提出使用 预训练 ”(pre-training)和“微调”(fine-tuning)技术能优化神经网络训练,大幅度减少训练多层神经网络的时间

并且,他给多层神经网络相关的学习方法赋予了一个新名词–“ 深度学习 ”,以此为起点,“深度学习”纪元开始了:)

“深度学习”一方面指神经网络的比较“深”,也就是层数较多;另一方面也可以指神经网络能学到很多深层次的东西。研究发现,在权重参数不变的情况下,增加神经网络的层数,能增强神经网络的表达能力。

但深度学习究竟有多强大呢?没人知道。2012年,Hinton与他的学生在ImageNet竞赛中,用多层的卷积神经网络成功地对包含一千类别的一百万张图片进行了训练,取得了分类错误率15%的好成绩,这个成绩比第二名高了近11个百分点,充分证明了多层神经网络识别效果的优越性。

同时,科研人员发现GPU的大规模并行矩阵运算模式完美地契合神经网络训练的需要,在同等情况下,GPU的速度要比CPU快50-200倍,这使得神经网络的训练时间大大减少,最终再一次掀起了神经网络研究的热潮,并且一直持续到现在。

2016年基于深度学习的Alpha Go在围棋比赛中以4:1的大比分优势战胜了李世石,深度学习的威力再一次震惊了世界。

神经网络的发展历史曲折荡漾,既有被捧上神坛的高潮,也有无人问津的低谷,中间经历了数次大起大落,我们姑且称之为“三起三落”吧,其背后则是算法的改进和计算能力的持续发展。

下图展示了神经网络自发明以来的发展情况及一些重大时间节点。

当然,对于神经网络我们也要保持清醒的头脑。由上图,每次神经网络研究的兴盛期持续10年左右,从最近2012年算起,或许10年后的2022年,神经网络的发展将再次遇到瓶颈。

神经网络作为机器学习的一种,其模型训练的目的,就是使得参数尽可能的与真实的模型逼近。理论证明,两层及以上的神经网络可以无限逼近真实的映射函数。因此,给定足够的训练数据和训练时间,总能通过神经网络找到无限逼近真实关系的模型。

具体做法:首先给所有权重参数赋上随机值,然后使用这些随机生成的参数值,来预测训练数据中的样本。假设样本的预测目标为yp ,真实目标为y,定义值loss,计算公式如下:

loss = (yp -y) ^2

这个值称之为 损失 (loss),我们的目标就是使对所有训练数据的损失和尽可能的小,这就转化为求loss函数极值的问题。

一个常用方法是高等数学中的求导,但由于参数不止一个,求导后计算导数等于0的运算量很大,所以常用梯度下降算法来解决这样的优化问题。梯度是一个向量,由函数的各自变量的偏导数组成。

比如对二元函数 f =(x,y),则梯度∇f=(∂f/∂x,∂f/∂y)。梯度的方向是函数值上升最快的方向。梯度下降算法每次计算参数在当前的梯度,然后让参数向着梯度的反方向前进一段距离,不断重复,直到梯度接近零时截止。一般这个时候,所有的参数恰好达到使损失函数达到一个最低值的状态。下图为梯度下降的大致运行过程:

在神经网络模型中,由于结构复杂,每次计算梯度的代价很大。因此还需要使用 反向传播 (Back Propagation)算法。反向传播算法利用了神经网络的结构进行计算,不一次计算所有参数的梯度,而是从后往前。首先计算输出层的梯度,然后是第二个参数矩阵的梯度,接着是中间层的梯度,再然后是第一个参数矩阵的梯度,最后是输入层的梯度。计算结束以后,所要的两个参数矩阵的梯度就都有了。当然,梯度下降只是其中一个优化算法,其他的还有牛顿法、RMSprop等。

确定loss函数的最小值后,我们就确定了整个神经网络的权重,完成神经网络的训练。

在神经网络中一样的参数数量,可以用更深的层次去表达。

由上图,不算上偏置参数的话,共有三层神经元,33个权重参数。

由下图,保持权重参数不变,但增加了两层神经元。

在多层神经网络中,每一层的输入是前一层的输出,相当于在前一层的基础上学习,更深层次的神经网络意味着更深入的表示特征,以及更强的函数模拟能力。更深入的表示特征可以这样理解,随着网络的层数增加,每一层对于前一层次的抽象表示更深入。

如上图,第一个隐藏层学习到“边缘”的特征,第二个隐藏层学习到“边缘”组成的“形状”的特征,第三个隐藏层学习到由“形状”组成的“图案”的特征,最后的隐藏层学习到由“图案”组成的“目标”的特征。通过抽取更抽象的特征来对事物进行区分,从而获得更好的区分与分类能力。

前面提到, 明斯基认为Rosenblatt提出的感知器模型不能处理最简单的“异或”(XOR)非线性问题,所以神经网络的研究没有前途,但当增加一层神经元后,异或问题得到了很好地解决,原因何在?原来从输入层到隐藏层,数据发生了空间变换,坐标系发生了改变,因为矩阵运算本质上就是一种空间变换。

如下图,红色和蓝色的分界线是最终的分类结果,可以看到,该分界线是一条非常平滑的曲线。

但是,改变坐标系后,分界线却表现为直线,如下图:

同时,非线性激励函数的引入使得神经网络对非线性问题的表达能力大大加强。

对于传统的朴素贝叶斯、决策树、支持向量机SVM等分类器,提取特征是一个非常重要的前置工作。在正式训练之前,需要花费大量的时间在数据的清洗上,这样分类器才能清楚地知道数据的维度,要不然基于概率和空间距离的线性分类器是没办法进行工作的。然而在神经网络中,由于巨量的线性分类器的堆叠(并行和串行)以及卷积神经网络的使用,它对噪声的忍耐能力、对多通道数据上投射出来的不同特征偏向的敏感程度会自动重视或忽略,这样我们在处理的时候,就不需要使用太多的技巧用于数据的清洗了。有趣的是,业内大佬常感叹,“你可能知道SVM等机器学习的所有细节,但是效果并不好,而神经网络更像是一个黑盒,很难知道它究竟在做什么,但工作效果却很好”。

人类对机器学习的环节干预越少,就意味着距离人工智能的方向越近。神经网络的这个特性非常有吸引力。

1) 谷歌的TensorFlow开发了一个非常有意思的神经网络 入门教程 ,用户可以非常方便地在网页上更改神经网络的参数,并且能看到实时的学习效率和结果,非常适合初学者掌握神经网络的基本概念及神经网络的原理。网页截图如下:

2) 深度学习领域大佬吴恩达不久前发布的《 神经网络和深度学习 》MOOC,现在可以在网易云课堂上免费观看了,并且还有中文字幕。

3) 《神经网络于深度学习》(Michael Nielsen着)、《白话深度学习与TensorFlow》也是不错的入门书籍。

Ⅵ 简单介绍神经网络算法

直接简单介绍神经网络算法

神经元:它是神经网络的基本单元。神经元先获得输入,然后执行某些数学运算后,再产生一个输出。

神经元内输入 经历了3步数学运算,

先将两个输入乘以 权重 :

权重 指某一因素或指标相对于某一事物的重要程度,其不同于一般的比重,体现的不仅仅是某一因素或指标所占的百分比,强调的是因素或指标的相对重要程度

x1→x1 × w1

x2→x2 × w2

把两个结果相加,加上一个 偏置 :

(x1 × w1)+(x2 × w2)+ b

最后将它们经过 激活函数 处理得到输出:

y = f(x1 × w1 + x2 × w2 + b)

激活函数 的作用是将无限制的输入转换为可预测形式的输出。一种常用的激活函数是 sigmoid函数

sigmoid函数的输出 介于0和1,我们可以理解为它把 (−∞,+∞) 范围内的数压缩到 (0, 1)以内。正值越大输出越接近1,负向数值越大输出越接近0。

神经网络: 神经网络就是把一堆神经元连接在一起

隐藏层 是夹在输入输入层和输出层之间的部分,一个神经网络可以有多个隐藏层。

前馈 是指神经元的输入向前传递获得输出的过程

训练神经网络 ,其实这就是一个优化的过程,将损失最小化

损失 是判断训练神经网络的一个标准

可用 均方误差 定义损失

均方误差 是反映 估计量 与 被估计量 之间差异程度的一种度量。设t是根据子样确定的总体参数θ的一个估计量,(θ-t)2的 数学期望 ,称为估计量t的 均方误差 。它等于σ2+b2,其中σ2与b分别是t的 方差 与 偏倚 。

预测值 是由一系列网络权重和偏置计算出来的值

反向传播 是指向后计算偏导数的系统

正向传播算法 是由前往后进行的一个算法

Ⅶ 神经网络(Neural Network)

(1)结构:许多树突(dendrite)用于输入,一个轴突 (axon)用于输出。

(2)特性:兴奋性和传导性。兴奋性是指当信号量超过某个阈值时,细胞体就会被激活,产生电脉冲。传导性是指电脉冲沿着轴突并通过突触传递到其它神经元。

(3)有两种状态的机器:激活时为“是”,不激活时为“否”。神经细胞的状态取决于从其他神经细胞接收到的信号量,以及突触的性质(抑制或加强)。

(1)神经元——不重要

① 神经元是包含权重和偏置项的 函数 :接收数据后,执行一些计算,然后使用激活函数将数据限制在一个范围内(多数情况下)。

② 单个神经元:线性可分的情况下,本质是一条直线, ,这条直线将数据划分为两类。而线性分类器本身就是一个单层神经网络。

③ 神经网络:非线性可分的情况下,神经网络通过多个隐层的方法来实现非线性的函数。

(2)权重/参数/连接(Weight)——最重要

每一个连接上都有一个权重。一个神经网络的训练算法就是让权重的值调整到最佳,以使得整个网络的预测效果最好。

(3)偏置项(Bias Units)——必须

① 如果没有偏置项,所有的函数都会经过原点。

② 正则化偏置会导致欠拟合:若对偏置正则化,会导致激活变得更加简单,偏差就会上升,学习的能力就会下降。

③ 偏置的大小度量了神经元产生激励(激活)的难易程度。

(1)定义:也称为转换函数,是一种将输入 (input) 转成输出 (output) 的函数。

(2)作用:一般直线拟合的精确度要比曲线差很多,引入激活函数能给神经网络 增加一些非线性 的特性。

(3)性质:

① 非线性:导数不是常数,否则就退化成直线。对于一些画一条直线仍然无法分开的问题,非线性可以把直线变弯,就能包罗万象;

② 可微性:当优化方法是基于梯度的时候,处处可导为后向传播算法提供了核心条件;

③ 输出范围:一般限定在[0,1],使得神经元对一些比较大的输入会比较稳定;

④ 非饱和性:饱和就是指,当输入比较大的时候输出几乎没变化,会导致梯度消失;

⑤ 单调性:导数符号不变,输出不会上蹿下跳,让神经网络训练容易收敛。

(1)线性函数 (linear function)—— purelin()

(2)符号函数 (sign function)—— hardlim() 

① 如果z值高于阈值,则激活设置为1或yes,神经元将被激活。

② 如果z值低于阈值,则激活设置为0或no,神经元不会被激活。

(3)对率函数 (sigmoid function)—— logsig()

① 优点:光滑S型曲线连续可导,函数阈值有上限。

② 缺点:❶ 函数饱和使梯度消失,两端梯度几乎为0,更新困难,做不深;

                ❷ 输出不是0中心,将影响梯度下降的运作,收敛异常慢;

                ❸ 幂运算相对来讲比较耗时

(4)双曲正切函数(hyperbolic tangent function)—— tansig()

① 优点:取值范围0中心化,防止了梯度偏差

② 缺点:梯度消失现象依然存在,但相对于sigmoid函数问题较轻

(5)整流线性单元 ReLU 函数(rectified linear unit)

① 优点:❶ 分段线性函数,它的非线性性很弱,因此网络做得很深;

                ❷ 由于它的线性、非饱和性, 对于随机梯度下降的收敛有巨大的加速作用;

② 缺点:❶ 当x<0,梯度都变成0,参数无法更新,也导致了数据多样化的丢失;

                ❷ 输出不是0中心

(6)渗漏型整流线性单元激活函数 Leaky ReLU 函数

① 优点:❶ 是为解决“ReLU死亡”问题的尝试,在计算导数时允许较小的梯度;

                ❷ 非饱和的公式,不包含指数运算,计算速度快。

② 缺点:❶ 无法避免梯度爆炸问题; (没有体现优于ReLU)

                ❷ 神经网络不学习 α 值。

(7)指数线性单元 ELU (Exponential Linear Units)

① 优点:❶ 能避免“死亡 ReLU” 问题;

                ❷ 能得到负值输出,这能帮助网络向正确的方向推动权重和偏置变化;

                ❸ 在计算梯度时能得到激活,而不是让它们等于 0。

② 缺点:❶ 由于包含指数运算,所以计算时间更长;

                ❷ 无法避免梯度爆炸问题; (没有体现优于ReLU)

                ❸ 神经网络不学习 α 值。

(8)Maxout(对 ReLU 和 Leaky ReLU的一般化归纳)

① 优点:❶ 拥有ReLU的所有优点(线性和不饱和)

                ❷ 没有ReLU的缺点(死亡的ReLU单元)

                ❸ 可以拟合任意凸函数

② 缺点 :参数数量增加了一倍。难训练,容易过拟合

(9)Swish

① 优点:❶ 在负半轴也有一定的不饱和区,参数的利用率更大

                ❷ 无上界有下界、平滑、非单调

                ❸ 在深层模型上的效果优于 ReLU

每个层都包含一定数量的单元(units)。增加层可增加神经网络输出的非线性。

(1)输入层:就是接收原始数据,然后往隐层送

(2)输出层:神经网络的决策输出

(3)隐藏层:神经网络的关键。把前一层的向量变成新的向量,让数据变得线性可分。

(1)结构:仅包含输入层和输出层,直接相连。

(2)作用:仅能表示 线性可分 函数或决策,且一定可以在有限的迭代次数中收敛。

(3)局限:可以建立与门、或门、非门等,但无法建立更为复杂的异或门(XOR),即两个输入相同时输出1,否则输出0。 (“AI winter”)

(1)目的:拟合某个函数      (两层神经网络可以逼近任意连续函数)

(2)结构:包含输入层、隐藏层和输出层 ,由于从输入到输出的过程中不存在与模型自身的反馈连接,因此被称为“前馈”。    (层与层之间全连接)

(3)作用: 非线性 分类、聚类、预测等,通过训练,可以学习到数据中隐含的知识。

(4)局限:计算复杂、计算速度慢、容易陷入局部最优解,通常要将它们与其他网络结合形成新的网络。

(5)前向传播算法(Forward Propagation)

① 方法:从左至右逐级依赖的算法模型,即网络如何根据输入X得到输出Y,最终的输出值和样本值作比较, 计算出误差 。

② 目的:完成了一次正反向传播,就完成了一次神经网络的训练迭代。通过输出层的误差,快速求解对每个ω、b的偏导,利用梯度下降法,使Loss越来越小。

② 局限:为使最终的误差达到最小,要不断修改参数值,但神经网络的每条连接线上都有不同权重参数,修改这些参数变得棘手。

(6)误差反向传播(Back Propagation)

① 原理:梯度下降法求局部极值

② 方法:从后往前,从输出层开始计算 L 对当前层的微分,获得各层的误差信号,此误差信号即作为修正单元权值的依据。计算结束以后,所要的两个参数矩阵的 梯度 就都有了。

③ 局限:如果激活函数是饱和的,带来的缺陷就是系统迭代更新变慢,系统收敛就慢,当然这是可以有办法弥补的,一种方法是使用 交叉熵函数 作为损失函数。

(1)原理:随着网络的层数增加,每一层对于前一层次的抽象表示更深入。在神经网络中,每一层神经元学习到的是前一层神经元值的更抽象的表示。通过抽取更抽象的特征来对事物进行区分,从而获得更好的区分与分类能力。

(2)方法:ReLU函数在训练多层神经网络时,更容易收敛,并且预测性能更好。

(3)优点:① 易于构建,表达能力强,基本单元便可扩展为复杂的非线性函数

                      ② 并行性号,有利于在分布是系统上应用

(4)局限:① 优化算法只能获得局部极值,性能与初始值相关

                      ② 调参理论性缺乏

                      ③ 不可解释,与实际任务关联性模糊

(1)原理:由手工设计卷积核变成自动学习卷积核

(2)卷积(Convolutional layer): 输入与卷积核相乘再累加 (内积、加权叠加)

① 公式:

② 目的:提取输入的不同特征,得到维度很大的 特征图(feature map)

③ 卷积核:需要训练的参数。一般为奇数维,有中心像素点,便于定位卷积核

④ 特点:局部感知、参数变少、权重共享、分层提取

(3)池化(Pooling Layer):用更高层的抽象表达来表示主要特征,又称“降采样”

① 分类: 最大 (出现与否)、平均(保留整体)、随机(避免过拟合)

② 目的:降维,不需要训练参数,得到新的、维度较小的特征

(4)步长(stride):若假设输入大小是n∗n,卷积核的大小是f∗f,步长是s,则最后的feature map的大小为o∗o,其中

(5)填充(zero-padding)

① Full模式:即从卷积核(fileter)和输入刚相交开始做卷积,没有元素的部分做补0操作。

② Valid模式:卷积核和输入完全相交开始做卷积,这种模式不需要补0。

③ Same模式:当卷积核的中心C和输入开始相交时做卷积。没有元素的部分做补0操作。

(7)激活函数:加入非线性特征

(8)全连接层(Fully-connected layer)

如果说卷积层、池化层和激活函数层等是将原始数据映射到隐层特征空间(决定计算速度),全连接层则起到将学到的“分布式特征表示”映射到样本标记空间的作用(决定参数个数)。

参考:

[1]  神经网络(入门最详细)_ruthy的博客-CSDN博客_神经网络算法入门

[2]  神经网络(容易被忽视的基础知识) - Evan的文章 - 知乎

[3]  人工神经网络——王的机器

[4]  如何简单形象又有趣地讲解神经网络是什么? - 舒小曼的回答 - 知乎

[5]  神经网络15分钟入门!足够通俗易懂了吧 - Mr.括号的文章 - 知乎

[6]  神经网络——最易懂最清晰的一篇文章_illikang的博客-CSDN博客_神经网络

[7]  直觉化深度学习教程——什么是前向传播——CSDN

[8]  “反向传播算法”过程及公式推导(超直观好懂的Backpropagation)_aift的专栏-CSDN

[9]  卷积、反卷积、池化、反池化——CSDN

[10]  浙大机器学习课程- bilibili.com

Ⅷ 神经网络算法

20 世纪五、六⼗年代,科学家 Frank Rosenblatt其受到 Warren McCulloch 和 Walter Pitts早期的⼯作的影响,发明了感知机(Perceptrons)。

⼀个感知器接受⼏个⼆进制输⼊, ,并产⽣⼀个⼆进制输出:

如上图所示的感知机有三个输⼊: 。通常可以有更多或更少输⼊。 我们再引⼊权重: ,衡量输入对输出的重要性。感知机的输出为0 或者 1,则由分配权重后的总和 ⼩于等于或者⼤于阈值决定。和权重⼀样,阈值(threshold)是⼀个实数,⼀个神经元的参数。⽤更精确的代数形式如下:

给三个因素设置权重来作出决定:

可以把这三个因素对应地⽤⼆进制变量 来表⽰。例如,如果天⽓好,我们把

,如果不好, 。类似地,如果你的朋友陪你去, ,否则 。 也类似。

这三个对于可能对你来说,“电影好不好看”对你来说最重要,而天气显得不是那么的重要。所以你会这样分配权值: ,然后定义阈值threshold=5。

现在,你可以使⽤感知器来给这种决策建⽴数学模型。

例如:

随着权重和阈值的变化,你可以得到不同的决策模型。很明显,感知机不是⼈做出决策使⽤的全部模型。但是这个例⼦说明了⼀个感知机如何能权衡不同的依据来决策。这看上去也可以⼤致解释⼀个感知机⽹络有时确实能够做出一些不错的决定。

现在我们队上面的结构做一点变化,令b=-threshold,即把阈值移到不等号左边,变成偏置, 那么感知器的规则可以重写为:

引⼊偏置只是我们描述感知器的⼀个很⼩的变动,但是我们后⾯会看到它引导更进⼀步的符号简化。因此,我们不再⽤阈值,⽽总是使⽤偏置。

感知机是首个可以学习的人工神经网络,它的出现引起的神经网络的第一层高潮。需要指出的是,感知机只能做简单的线性分类任务,而且Minsky在1969年出版的《Perceptron》书中,证明了感知机对XOR(异或)这样的问题都无法解决。但是感知机的提出,对神经网络的发展是具有重要意义的。

通过上面的感知机的观察我们发现一个问题,每个感知机的输出只有0和1,这就意味着有时我们只是在单个感知机上稍微修改了一点点权值w或者偏置b,就可能造成最终输出完全的反转。也就是说,感知机的输出是一个阶跃函数。如下图所示,在0附近的时候,输出的变化是非常明显的,而在远离0的地方,我们可能调整好久参数也不会发生输出的变化。

这样阶跃的跳变并不是我们想要的,我们需要的是当我们队权值w或者偏置b做出微小的调整后,输出也相应的发生微小的改变芹则禅。这同时也意味值我们的输出不再只是0和1,还可以输出小数。由此我们引入了S型神经元。

S型神经元使用 S 型函数,也叫Sigmoid function函数,我们用它作为激活函数。其表达式如下:

图像如下图所示:

利⽤实际的 σ 函数,我们得到⼀个,就像上⾯说明的,平滑的感知器。 σ 函数的平滑特性,正是关键因素,⽽不是其细部形式盯明。 σ 的平滑意味着权重和偏置的微⼩变化,即 ∆w 和 ∆b,会从神经元产⽣⼀个微⼩的输出变化 ∆output。实际上,微积分告诉我们

∆output 可以很好地近似表⽰为:

上面的式子是⼀个反映权重、偏置变化嫌尘和输出变化的线性函数。这⼀线性使得我们可以通过选择权重和偏置的微⼩变化来达到输出的微⼩变化。所以当 S 型神经元和感知器本质上是相同的,但S型神经元在计算处理如何变化权重和偏置来使输出变化的时候会更加容易。

有了对S型神经元的了解,我们就可以介绍神经网络的基本结构了。具体如下:

在⽹络中最左边的称为输⼊层,其中的神经元称为输⼊神经元。最右边的,即输出层包含有输出神经元,在图中,输出层只有⼀个神经元。中间层,既然这层中的神经元既不是输⼊也不是输出,则被称为隐藏层。

这就是神经网络的基本结构,随着后面的发展神经网络的层数也随之不断增加和复杂。

我们回顾一下神经网络发展的历程。神经网络的发展历史曲折荡漾,既有被人捧上天的时刻,也有摔落在街头无人问津的时段,中间经历了数次大起大落。

从单层神经网络(感知机)开始,到包含一个隐藏层的两层神经网络,再到多层的深度神经网络,一共有三次兴起过程。详见下图。

我们希望有⼀个算法,能让我们找到权重和偏置,以⾄于⽹络的输出 y(x) 能够拟合所有的 训练输⼊ x。为了量化我们如何实现这个⽬标,我们定义⼀个代价函数:

这⾥ w 表⽰所有的⽹络中权重的集合, b 是所有的偏置, n 是训练输⼊数据的个数,
a 是表⽰当输⼊为 x 时输出的向量,求和则是在总的训练输⼊ x 上进⾏的。当然,输出 a 取决于 x, w和 b,但是为了保持符号的简洁性,我没有明确地指出这种依赖关系。符号 ∥v∥ 是指向量 v 的模。我们把 C 称为⼆次代价函数;有时也称被称为均⽅误差或者 MSE。观察⼆次代价函数的形式我们可以看到 C(w, b) 是⾮负的,因为求和公式中的每⼀项都是⾮负的。此外,代价函数 C(w,b)的值相当⼩,即 C(w; b) ≈ 0,精确地说,是当对于所有的训练输⼊ x, y(x) 接近于输出 a 时。因

此如果我们的学习算法能找到合适的权重和偏置,使得 C(w; b) ≈ 0,它就能很好地⼯作。相反,当 C(w; b) 很⼤时就不怎么好了,那意味着对于⼤量地输⼊, y(x) 与输出 a 相差很⼤。因此我们的训练算法的⽬的,是最⼩化权重和偏置的代价函数 C(w; b)。换句话说,我们想要找到⼀系列能让代价尽可能⼩的权重和偏置。我们将采⽤称为梯度下降的算法来达到这个⽬的。

下面我们将代价函数简化为C(v)。它可以是任意的多元实值函数, 。
注意我们⽤ v 代替了 w 和 b 以强调它可能是任意的函数,我们现在先不局限于神经⽹络的环境。

为了使问题更加简单我们先考虑两个变量的情况,想象 C 是⼀个只有两个变量 和 的函数,我们的目的是找到 和 使得C最小。

如上图所示,我们的目的就是找到局部最小值。对于这样的一个问题,一种方法就是通过微积分的方法来解决,我们可以通过计算导数来求解C的极值点。但是对于神经网络来说,我们往往面对的是非常道的权值和偏置,也就是说v的维数不只是两维,有可能是亿万维的。对于一个高维的函数C(v)求导数几乎是不可能的。

在这种情况下,有人提出了一个有趣的算法。想象一下一个小球从山顶滚下山谷的过程, 我们的⽇常经验告诉我们这个球最终会滚到⾕底。我们先暂时忽略相关的物理定理, 对球体的⾁眼观察是为了激发我们的想象⽽不是束缚我们的思维。因此与其陷进物理学⾥凌乱的细节,不如我们就这样问⾃⼰:如果我们扮演⼀天的上帝,能够构造⾃⼰的物理定律,能够⽀配球体可以如何滚动,那么我们将会采取什么样的运动学定律来让球体能够总是滚落到⾕底呢?

为了更精确地描述这个问题,让我们思考⼀下,当我们在 和 ⽅向分别将球体移动⼀个很⼩的量,即 ∆ 和 ∆ 时,球体将会发⽣什么情况。微积分告诉我们 C 将会有如下变化:

也可以用向量表示为

现在我们的问题就转换为不断寻找一个小于0的∆C,使得C+∆C不断变小。

假设我们选取:

这⾥的 η 是个很⼩的正数(称为学习速率),于是

由于 ∥∇C∥2 ≥ 0,这保证了 ∆C ≤ 0,即,如果我们按照上述⽅程的规则去改变 v,那么 C
会⼀直减⼩,不会增加。

所以我们可以通过不断改变v来C的值不断下降,是小球滚到最低点。

总结⼀下,梯度下降算法⼯作的⽅式就是重复计算梯度 ∇C,然后沿着相反的⽅向移动,沿着⼭⾕“滚落”。我们可以想象它像这样:

为了使梯度下降能够正确地运⾏,我们需要选择合适的学习速率η,确保C不断减少,直到找到最小值。

知道了两个变量的函数 C 的梯度下降方法,我们可以很容易的把它推广到多维。我们假设 C 是⼀个有 m 个变量 的多元函数。 ∆C 将会变为:

其中, ∇C为

∆v为:

更新规则为:

在回到神经网络中,w和b的更新规则为:

前面提到神经⽹络如何使⽤梯度下降算法来学习他们⾃⾝的权重和偏置。但是,这⾥还留下了⼀个问题:我们并没有讨论如何计算代价函数的梯度。这里就需要用到一个非常重要的算法:反向传播算法(backpropagation)。

反向传播算法的启示是数学中的链式法则。

四个方程:

输出层误差方程:

当前层误差方程:

误差方程关于偏置的关系:

误差方程关于权值的关系

算法描述:

检视这个算法,你可以看到为何它被称作反向传播。我们从最后⼀层开始向后计算误差向量δ。这看起来有点奇怪,为何要从后⾯开始。但是如果你认真思考反向传播的证明,这种反向移动其实是代价函数是⽹络输出的函数的结果。为了理解代价随前⾯层的权重和偏置变化的规律,我们需要重复作⽤链式法则,反向地获得需要的表达式。

参考链接: http://neuralnetworksanddeeplearning.com/

阅读全文

与神经网络优化算法属于哪个层相关的资料

热点内容
手机为啥显示网络不给力 浏览:359
无线网络覆盖银行 浏览:729
网络信息是保存在哪里的 浏览:675
猫和路由器接网络电视 浏览:975
手机开放性无线网络怎样关闭 浏览:726
正版网络机顶盒能有多少个牌子 浏览:123
电脑没有网络可以安装CAD吗 浏览:90
苹果xr改双卡后网络不好 浏览:988
斐讯千兆路由器k2p没有网络 浏览:310
网络密码改网址 浏览:486
自家网络电脑手机都连不上 浏览:620
无线网络信号连接上却上不了网 浏览:471
打雷手机可以开数据网络吗 浏览:942
移动网络电视哪款好 浏览:773
安卓手机移动网络界面 浏览:412
本地移动网络在哪找 浏览:540
电信网络机顶盒怎么安装软件 浏览:331
苹果怎么碰一碰连接无线网络 浏览:856
感觉自己家网络信号有干扰 浏览:114
网络通话设置手机号 浏览:852

友情链接