导航:首页 > 网络共享 > 卷积神经网络可以权重共享吗

卷积神经网络可以权重共享吗

发布时间:2023-06-09 12:09:20

⑴ 卷积神经网络的 卷积层、激活层、池化层、全连接层

数据输入的是一张图片(输入层),CONV表示卷积层,RELU表示激励层,POOL表示池化层,Fc表示全连接层

全连接神经网络需要非常多的计算资源才能支撑它来做反向传播和前向传播,所以说全连接神经网络可以存储非常多的参数,如果你给它的样本如果没有达到它的量级的时候,它可以轻轻松松把你给他的样本全部都记下来,这会出现过拟合的情况。

所以我们应该把神经元和神经元之间的连接的权重个数降下来,但是降下来我们又不能保证它有较强的学习能力,所以这是一个纠结的地方,所以有一个方法就是 局部连接+权值共享 ,局部连接+权值共享不仅权重参数降下来了,而且学习能力并没有实质的降低,除此之外还有其它的好处,下来看一下,下面的这几张图片:

一个图像的不同表示方式

这几张图片描述的都是一个东西,但是有的大有的小,有的靠左边,有的靠右边,有的位置不同,但是我们构建的网络识别这些东西的时候应该是同一结果。为了能够达到这个目的,我们可以让图片的不同位置具有相同的权重(权值共享),也就是上面所有的图片,我们只需要在训练集中放一张,我们的神经网络就可以识别出上面所有的,这也是 权值共享 的好处。

而卷积神经网络就是局部连接+权值共享的神经网络。

现在我们对卷积神经网络有一个初步认识了,下面具体来讲解一下卷积神经网络,卷积神经网络依旧是层级结构,但层的功能和形式做了改变,卷积神经网络常用来处理图片数据,比如识别一辆汽车:

在图片输出到神经网络之前,常常先进行图像处理,有 三种 常见的图像的处理方式:

均值化和归一化

去相关和白化

图片有一个性质叫做局部关联性质,一个图片的像素点影响最大的是它周边的像素点,而距离这个像素点比较远的像素点二者之间关系不大。这个性质意味着每一个神经元我们不用处理全局的图片了(和上一层全连接),我们的每一个神经元只需要和上一层局部连接,相当于每一个神经元扫描一小区域,然后许多神经元(这些神经元权值共享)合起来就相当于扫描了全局,这样就构成一个特征图,n个特征图就提取了这个图片的n维特征,每个特征图是由很多神经元来完成的。

在卷积神经网络中,我们先选择一个局部区域(filter),用这个局部区域(filter)去扫描整张图片。 局部区域所圈起来的所有节点会被连接到下一层的 一个节点上 。我们拿灰度图(只有一维)来举例:

局部区域

图片是矩阵式的,将这些以矩阵排列的节点展成了向量。就能更好的看出来卷积层和输入层之间的连接,并不是全连接的,我们将上图中的红色方框称为filter,它是2*2的,这是它的尺寸,这不是固定的,我们可以指定它的尺寸。

我们可以看出来当前filter是2*2的小窗口,这个小窗口会将图片矩阵从左上角滑到右下角,每滑一次就会一下子圈起来四个,连接到下一层的一个神经元,然后产生四个权重,这四个权重(w1、w2、w3、w4)构成的矩阵就叫做卷积核。

卷积核是算法自己学习得到的,它会和上一层计算,比如,第二层的0节点的数值就是局部区域的线性组合(w1 0+w2 1+w3 4+w4 5),即被圈中节点的数值乘以对应的权重后相加。

卷积核计算

卷积操作

我们前面说过图片不用向量表示是为了保留图片平面结构的信息。 同样的,卷积后的输出若用上图的向量排列方式则丢失了平面结构信息。 所以我们依然用矩阵的方式排列它们,就得到了下图所展示的连接,每一个蓝色结点连接四个黄色的结点。

卷积层的连接方式

图片是一个矩阵然后卷积神经网络的下一层也是一个矩阵,我们用一个卷积核从图片矩阵左上角到右下角滑动,每滑动一次,当然被圈起来的神经元们就会连接下一层的一个神经元,形成参数矩阵这个就是卷积核,每次滑动虽然圈起来的神经元不同,连接下一层的神经元也不同,但是产生的参数矩阵确是一样的,这就是 权值共享

卷积核会和扫描的图片的那个局部矩阵作用产生一个值,比如第一次的时候,(w1 0+w2 1+w3 4+w4 5),所以,filter从左上到右下的这个过程中会得到一个矩阵(这就是下一层也是一个矩阵的原因),具体过程如下所示:

卷积计算过程

上图中左边是图矩阵,我们使用的filter的大小是3 3的,第一次滑动的时候,卷积核和图片矩阵作用(1 1+1 0+1 1+0 0+1 1+1 0+0 1+0 0+1 1)=4,会产生一个值,这个值就是右边矩阵的第一个值,filter滑动9次之后,会产生9个值,也就是说下一层有9个神经元,这9个神经元产生的值就构成了一个矩阵,这矩阵叫做特征图,表示image的某一维度的特征,当然具体哪一维度可能并不知道,可能是这个图像的颜色,也有可能是这个图像的轮廓等等。

单通道图片总结 :以上就是单通道的图片的卷积处理,图片是一个矩阵,我们用指定大小的卷积核从左上角到右下角来滑动,每次滑动所圈起来的结点会和下一层的一个结点相连,连接之后就会形成局部连接,每一条连接都会产生权重,这些权重就是卷积核,所以每次滑动都会产生一个卷积核,因为权值共享,所以这些卷积核都是一样的。卷积核会不断和当时卷积核所圈起来的局部矩阵作用,每次产生的值就是下一层结点的值了,这样多次产生的值组合起来就是一个特征图,表示某一维度的特征。也就是从左上滑动到右下这一过程中会形成一个特征图矩阵(共享一个卷积核),再从左上滑动到右下又会形成另一个特征图矩阵(共享另一个卷积核),这些特征图都是表示特征的某一维度。

三个通道的图片如何进行卷积操作?

至此我们应该已经知道了单通道的灰度图是如何处理的,实际上我们的图片都是RGB的图像,有三个通道,那么此时图像是如何卷积的呢?

彩色图像

filter窗口滑的时候,我们只是从width和height的角度来滑动的,并没有考虑depth,所以每滑动一次实际上是产生一个卷积核,共享这一个卷积核,而现在depth=3了,所以每滑动一次实际上产生了具有三个通道的卷积核(它们分别作用于输入图片的蓝色、绿色、红色通道),卷积核的一个通道核蓝色的矩阵作用产生一个值,另一个和绿色的矩阵作用产生一个值,最后一个和红色的矩阵作用产生一个值,然后这些值加起来就是下一层结点的值,结果也是一个矩阵,也就是一张特征图。

三通道的计算过程

要想有多张特征图的话,我们可以再用新的卷积核来进行左上到右下的滑动,这样就会形成 新的特征图

三通道图片的卷积过程

也就是说增加一个卷积核,就会产生一个特征图,总的来说就是输入图片有多少通道,我们的卷积核就需要对应多少通道,而本层中卷积核有多少个,就会产生多少个特征图。这样卷积后输出可以作为新的输入送入另一个卷积层中处理,有几个特征图那么depth就是几,那么下一层的每一个特征图就得用相应的通道的卷积核来对应处理,这个逻辑要清楚,我们需要先了解一下 基本的概念:

卷积计算的公式

4x4的图片在边缘Zero padding一圈后,再用3x3的filter卷积后,得到的Feature Map尺寸依然是4x4不变。

填充

当然也可以使用5x5的filte和2的zero padding可以保持图片的原始尺寸,3x3的filter考虑到了像素与其距离为1以内的所有其他像素的关系,而5x5则是考虑像素与其距离为2以内的所有其他像素的关系。

规律: Feature Map的尺寸等于

(input_size + 2 * padding_size − filter_size)/stride+1

我们可以把卷积层的作用 总结一点: 卷积层其实就是在提取特征,卷积层中最重要的是卷积核(训练出来的),不同的卷积核可以探测特定的形状、颜色、对比度等,然后特征图保持了抓取后的空间结构,所以不同卷积核对应的特征图表示某一维度的特征,具体什么特征可能我们并不知道。特征图作为输入再被卷积的话,可以则可以由此探测到"更大"的形状概念,也就是说随着卷积神经网络层数的增加,特征提取的越来越具体化。

激励层的作用可以理解为把卷积层的结果做 非线性映射

激励层

上图中的f表示激励函数,常用的激励函数几下几种:

常用的激励函数

我们先来看一下激励函数Sigmoid导数最小为0,最大为1/4,

激励函数Sigmoid

Tanh激活函数:和sigmoid相似,它会关于x轴上下对应,不至于朝某一方面偏向

Tanh激活函数

ReLU激活函数(修正线性单元):收敛快,求梯度快,但较脆弱,左边的梯度为0

ReLU激活函数

Leaky ReLU激活函数:不会饱和或者挂掉,计算也很快,但是计算量比较大

Leaky ReLU激活函数

一些激励函数的使用技巧 :一般不要用sigmoid,首先试RELU,因为快,但要小心点,如果RELU失效,请用Leaky ReLU,某些情况下tanh倒是有不错的结果。

这就是卷积神经网络的激励层,它就是将卷积层的线性计算的结果进行了非线性映射。可以从下面的图中理解。它展示的是将非线性操作应用到一个特征图中。这里的输出特征图也可以看作是"修正"过的特征图。如下所示:

非线性操作

池化层:降低了各个特征图的维度,但可以保持大分重要的信息。池化层夹在连续的卷积层中间,压缩数据和参数的量,减小过拟合,池化层并没有参数,它只不过是把上层给它的结果做了一个下采样(数据压缩)。下采样有 两种 常用的方式:

Max pooling :选取最大的,我们定义一个空间邻域(比如,2x2 的窗口),并从窗口内的修正特征图中取出最大的元素,最大池化被证明效果更好一些。

Average pooling :平均的,我们定义一个空间邻域(比如,2x2 的窗口),并从窗口内的修正特征图算出平均值

Max pooling

我们要注意一点的是:pooling在不同的depth上是分开执行的,也就是depth=5的话,pooling进行5次,产生5个池化后的矩阵,池化不需要参数控制。池化操作是分开应用到各个特征图的,我们可以从五个输入图中得到五个输出图。

池化操作

无论是max pool还是average pool都有分信息被舍弃,那么部分信息被舍弃后会损坏识别结果吗?

因为卷积后的Feature Map中有对于识别物体不必要的冗余信息,我们下采样就是为了去掉这些冗余信息,所以并不会损坏识别结果。

我们来看一下卷积之后的冗余信息是怎么产生的?

我们知道卷积核就是为了找到特定维度的信息,比如说某个形状,但是图像中并不会任何地方都出现这个形状,但卷积核在卷积过程中没有出现特定形状的图片位置卷积也会产生一个值,但是这个值的意义就不是很大了,所以我们使用池化层的作用,将这个值去掉的话,自然也不会损害识别结果了。

比如下图中,假如卷积核探测"横折"这个形状。 卷积后得到3x3的Feature Map中,真正有用的就是数字为3的那个节点,其余数值对于这个任务而言都是无关的。 所以用3x3的Max pooling后,并没有对"横折"的探测产生影响。 试想在这里例子中如果不使用Max pooling,而让网络自己去学习。 网络也会去学习与Max pooling近似效果的权重。因为是近似效果,增加了更多的参数的代价,却还不如直接进行最大池化处理。

最大池化处理

在全连接层中所有神经元都有权重连接,通常全连接层在卷积神经网络尾部。当前面卷积层抓取到足以用来识别图片的特征后,接下来的就是如何进行分类。 通常卷积网络的最后会将末端得到的长方体平摊成一个长长的向量,并送入全连接层配合输出层进行分类。比如,在下面图中我们进行的图像分类为四分类问题,所以卷积神经网络的输出层就会有四个神经元。

四分类问题

我们从卷积神经网络的输入层、卷积层、激活层、池化层以及全连接层来讲解卷积神经网络,我们可以认为全连接层之间的在做特征提取,而全连接层在做分类,这就是卷积神经网络的核心。

⑵ 卷积神经网络算法是什么

一维构筑、二维构筑、全卷积构筑。

卷积神经网络(Convolutional Neural Networks, CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(Feedforward Neural Networks),是深度学习(deep learning)的代表算法之一。

卷积神经网络具有表征学习(representation learning)能力,能够按其阶层结构对输入信息进行平移不变分类(shift-invariant classification),因此也被称为“平移不变人工神经网络(Shift-Invariant Artificial Neural Networks, SIANN)”。

卷积神经网络的连接性:

卷积神经网络中卷积层间的连接被称为稀疏连接(sparse connection),即相比于前馈神经网络中的全连接,卷积层中的神经元仅与其相邻层的部分,而非全部神经元相连。具体地,卷积神经网络第l层特征图中的任意一个像素(神经元)都仅是l-1层中卷积核所定义的感受野内的像素的线性组合。

卷积神经网络的稀疏连接具有正则化的效果,提高了网络结构的稳定性和泛化能力,避免过度拟合,同时,稀疏连接减少了权重参数的总量,有利于神经网络的快速学习,和在计算时减少内存开销。

卷积神经网络中特征图同一通道内的所有像素共享一组卷积核权重系数,该性质被称为权重共享(weight sharing)。权重共享将卷积神经网络和其它包含局部连接结构的神经网络相区分,后者虽然使用了稀疏连接,但不同连接的权重是不同的。权重共享和稀疏连接一样,减少了卷积神经网络的参数总量,并具有正则化的效果。

在全连接网络视角下,卷积神经网络的稀疏连接和权重共享可以被视为两个无限强的先验(pirior),即一个隐含层神经元在其感受野之外的所有权重系数恒为0(但感受野可以在空间移动);且在一个通道内,所有神经元的权重系数相同。

⑶ 如何理解人工智能神经网络中的权值共享问题

权值(权重)共享这个词是由LeNet5模型提出来的。以CNN为例,在对一张图偏进行卷积的过程中,使用的是同一个卷积核的参数。比如一个3×3×1的卷积核,这个卷积核内9个的参数被整张图共享,而不会因为图像内位置的不同而改变卷积核内的权系数。说的再直白一些,就是用一个卷积核不改变其内权系数的情况下卷积处理整张图片(当然CNN中每一层不会只有一个卷积核的,这样说只是为了方便解释而已)。

⑷ 卷积神经网络

一般由卷积层,汇聚层,和全连接层交叉堆叠而成,使用反向传播算法进行训练(反向传播,再重新看一下)
卷积神经网络有三个结构上的特性:局部连接,权重共享以及子采样

滤波器filter 卷积核convolution kernel
局部连接,其实就是根据时间,权重递减 最后为0 参数就传播不到远处了

局部连接 乘以 滤波器 得特征映射

互相关,是一个衡量两个序列相关性的函数,
互相关和卷积的区别在于 卷积核仅仅是否进行翻转,因此互相关也可以称为 不翻转卷积
使用卷积 是为了进行特征抽取,卷积核 是否进行翻转和其特征抽取的能力无关。
当卷积核是可以学习的参数,卷积和互相关是等价的,因此,其实两者差不多。

Tips:P是代表特征映射

⑸ 人工智能CNN卷积神经网络如何共享权值

首先权值共享就是滤波器共享,滤波器的参数是固定的,即是用相同的滤波器去扫一遍图像,提取一次特征特征,得到feature map。在卷积网络中,学好了一个滤波器,就相当于掌握了一种特征,这个滤波器在图像中滑动,进行特征提取,然后所有进行这样操作的区域都会被采集到这种特征,就好比上面的水平线。

⑹ 卷积神经网络每一层反向传导的权重和正向为什么相同

卷积操作的平移不变枯陆性、权值共享。
1、卷积操作的平移不变性:卷积操作具有平移不变性,即对于输入数据中的每个位置,都采用相同的卷积核进行卷积运算,因此每个位置的权重更新是相同的。在反向传播时,误差通过卷积操作反向传播到上一层时,也采用相同的卷积核进行计算仔败物,因此权重更新也是相同的,与前向传播相同。
2、权值共享:卷积操作中的卷积核中的权值在不同的位置使用相同的值,这样可以大大减少需要训练的参数量,同时也有助于提高模型念液的泛化能力。由于权值共享的存在,卷积神经网络中每一层的权重在前向传播和反向传播中都是相同的。

⑺ 如何理解卷积神经网络中的权值共享

权值共享的通俗理解就是整张图片或者整组feature map共用一个卷积核,卷积核在图陪塌片上芦液圆慢慢滑动,所以图片上每个区域都是利用了卷积埋晌核内的参数,这就是权值共享。

⑻ 卷积神经网络与聚类网络区别

卷积神经网络和聚类网络是两种不同类型的神经网络。

卷积神经网络(Convolutional Neural Network,CNN)主要用于图像、音频等二维或三维数据的处理和识别。棚世它采用卷积层、池化层、全连接层等结构,能够提取出图像中的特征并进穗冲行分类。卷积神经网络的特点是权重共享和局部连接,使得模型参数少,训练速度快,并且具有较强的鲁棒性和泛化能力。

聚类网络(Self-Organizing Map,SOM)则是一种用于无监督学习的神经网络,可以将输入数据集映射到高维的网格结构中,并且相似的输入数猜和歼据会被映射到相邻的网格单元中。聚类网络的特点是学习速度快、适用于大规模数据集,可以有效地发现数据集中的内在结构和特征。

因此,卷积神经网络和聚类网络在应用场景和功能上有所区别。卷积神经网络主要用于图像、音频等数据的识别和分类,而聚类网络主要用于无监督的数据分析和特征提取。

⑼ 如何理解卷积神经网络中的权值共享

所谓的权值共享就是说,给一张输入图片,用一个filter去扫这张图,filter里面的数就叫权重,这张图每个位置是被同样的filter扫的,所以权重是一样的,也就是共享。 这么说可能还不太明白,如果你能理解什么叫全连接神经网络的话,那么从一个尽量减少参数个数的角度去理解就可以了。 对于一张输入图片,大小为W*H,如果使用全连接网络,生成一张X*Y的feature map,需要W*H*X*Y个参数,如果原图长宽是10^2级别的,而且XY大小和WH差不多的话,那么这样一层网络需要的参数个数是10^8~10^12级别。 这么多参数肯定是不行的,那么我们就想办法减少参数的个数对于输出层feature map上的每一个像素,他与原图片的每一个像素都有连接,每一个链接都需要一个参数。但注意到图像一般都是局部相关的,那么如果输出层的每一个像素只和输入层图片的一个局部相连,那么需要参数的个数就会大大减少。假设输出层每个像素只与输入图片上F*F的一个小方块有连接,也就是说输出层的这个像素值,只是通过原图的这个F*F的小方形中的像素值计算而来,那么对于输出层的每个像素,需要的参数个数就从原来的W*H减小到了F*F。如果对于原图片的每一个F*F的方框都需要计算这样一个输出值,那么需要的参数只是W*H*F*F,如果原图长宽是10^2级别,而F在10以内的话,那么需要的参数的个数只有10^5~10^6级别,相比于原来的10^8~10^12小了很多很多。

阅读全文

与卷积神经网络可以权重共享吗相关的资料

热点内容
移动机顶盒没有无线网络选项了 浏览:616
苹果网络支付买不了怎么办 浏览:709
网络安全宣传周贵阳公安 浏览:800
飞行模式无线网络 浏览:20
被拉黑连不了网络怎么办 浏览:169
猫复位后没有网络怎么办 浏览:440
电力监控系统网络安全管理体系 浏览:57
网络共享如何操作 浏览:559
中国电信通用网络密码 浏览:458
手机在人群中网络很差是什么原因 浏览:276
如何看待网络宝宝 浏览:111
哪个网站可以查看网络参数 浏览:392
海信小聚显示网络未连接 浏览:241
苹果电脑软件怎么设置无线网络 浏览:166
网络连接被中断 浏览:736
安卓手机还原网络系统怎么还原 浏览:466
光猫误删了网络设置上不了网 浏览:821
网络高级设置怎么选 浏览:479
系统更新了wifi连不上网络 浏览:124
数字音响连接网络需要什么设备 浏览:668

友情链接