㈠ SDN的主要技术特点
SDN的主要技术特点
SDN的应用场景与SDN技术本身的特点有很大的相关性,下面是我带来的SDN的主要技术特点。供大家参考。
SDN的主要技术特点体现在3方面:
● 转发与控制分离。SDN具有转发与控制分离的特点,采用SDN控制器实现网络拓扑的收集、路由的计算、流表的生成及下发、网络的管理与控制等功能;而网络层设备仅负责流量的转发及策略的执行。通过这种方式可使得网络系统的转发面和控制面独立发展,转发面向通用化、简单化发展,成本可逐步降低;控制面可向集中化、统一化发展,具有更强的性能和容量。
● 控制逻辑集中。转发与控制分离之后,使得控制面向集中化发展。控制面的集中化,使得SDN控制器拥有网络的全局静态拓扑,全网的动态转发表信息,全网络的资源利用率,故障状态等。因此,SDN控制器可实现基于网络级别的统一管理、控制和优化,更可依托全局的拓扑的动态转发信息帮助实现快速的故障定位和排除,提高运营效率。
● 网络能力开放化。SDN还有一个重要特征是支持网络能力开放化。通过集中的SDN控制器实现网络资源的统一管理、整合以及虚拟化后,采用规范化的北向接口为上层应用提供按需分配的网络资源及服务,进而实现网络能力开放。这样的方式打破了现有网络对业务封闭的问题,是一种突破性的创新。
SDN控制与转发分离的特点,使得设备的硬件通用化、简单化,设备的硬件成本可大幅降低,可促进SDN的应用;但由于设备硬件的变化,转发流表的变化也存在SDN设备与现有网络设备的兼容问题,在一定时期内可能限制SDN在大规模网络中的应用。
SDN控制逻辑集中的特点,使得SDN控制器拥有网络全局拓扑和状态,可实施全局优化,提供网络端到端的部署、保障、检测等手段;同时,SDN控制器可集中控制不同层次的网络,实现网络的多层多域协同与优化,如:分组网络与光网络的联合调度。
SDN网络能力开放化的特点,使得网络可编程,易快捷提供的应用服务,网络不再仅仅是基础设施,更是一种服务,SDN的应用范围得到了进一步的拓展。
关于5G移动通信网络架构中SDN与NFV技术的应用论文
【摘要】
在当前的移动通信网络之中,关键在于突破软件定义网络(SDN)和网络功能虚拟化(NFV)的相关技术难题。在此之前,我们了解到如果在5G网络架构中运用SDN和NFV技术,将产生很大程度上的便利;再者,对国际上SDN与NFV技术最前沿的研究状况进行了阐述,对以SDN/NFV的网络架构为基础的设计理念进行了探究;最后,综合各种因素对在SDN/NFV技术之上的5G网络架构展开了试探性的探讨,并且对其中技术上的重难点进行了剖析,提出了相应的解决方案,希望能够为行业发展做出一定的贡献。
关键词
软件定义网络;网络功能虚拟化;5G网络架构
一些市场研究机构经过调研得出这样一个结论,第五代移动通信(以下简称为5G)网络大概会在2017年左右把相关协议确立下来,实现商业化的时间暂定为2020年。然而,近年来互联网流量消耗量不断升高,市场方面需求紧迫,再加之第五代移动通信技术在未来战略中占据着重要的位置,因此,市场上早已开始了对5G网络技术的研究,5G网络的需求正变得越来越迫切。
在国内市场,部分企业和组织也顺应时代的发展,接连开启了对5G网络的技术攻关。国际上更是如此,各国电信运营商争相提出自己的5G设想,并且都在对自己的方案进行技术论证。显然,不管是国外还是国内,无论是运营商还是设备商,都开始了对5G技术研究的漫漫长路。各组织之间的较量对达成行业内的技术共识是十分重要的,对于行业巨头来说,这是获取专利抢占技术高地,决胜未来的关键时期。现在的5G技术,还没有在关键领域达成技术共识。也正因如此,移动通信领域将迎来巨大的变革,这也将带来前所未有的机遇和挑战。
一、将SDN和NFV引入5G网络架构所带来的好处
SDN严格来说是一种网络创新架构,它有一些明显的特点:
1)控制部分与转发部分是隔离开的;
2)控制集中化;
3)用到的软件接口都是被广泛定义的。
核心要点在于,把控制面与数据面隔开,转发的功能仅由硬件设备的下层实现,其上层则分离,用于集中实现控制,从而实现网络应用与功能的可编程性。在集中化的控制系统中,可以掌握所有用户的网络使用情况,进而在全局上对网络流量进行宏观调控,合理配制网络资源,提高对资源的利用率。
在未来的网络中可以科学合理的利用SDN的这些优势,使其可以在网络通信行业大展拳脚。正是由于SDN技术的合理运用,才使得移动网络的基本功能得到更加有效地发挥,这也使其纵向融合变成现实,简化网络的同时可以适应逐渐增长的接入速率。追根溯源,SDN首创于斯坦福大学,而NFV的概念则来源于运营商联盟,他们的目的在于处理硬件设施笨重、传统与难以拓展等问题的同时,可以更好地使用现有的网络,使得投资利益最大化。
在不久前发布的NFV白皮书中可以了解到,他们对于SDN与NFV的关系是这样定义的:首先,这两者有着一种互补关系,他们是可以实现融合的,不过两者并没有依赖关系,换句话说,也就是NFV可以实现独立的布置,而不用考虑SDN的影响。但是两者是存在互补性的,其主要表现在SDN能使NFV具有更大的兼容性和操作简便的特点,反过来,NFV的虚拟化等技术则可以提升SDN的灵活性。
二、目标网络架构初探
就目前市场现状来看,阿朗及中国的华为、中兴等信息通讯公司、各大主要研究机构与论坛等争相提出自己设想的5G白皮书,这些白皮书分别承载了各大公司对5G网络时代的展望,对市场供需关系的理解。当今世界的5G网络架构并不成熟,几乎所有构想都处于刚刚提出,正在进行技术认证的阶段。
在SDN与NFV等基础思想的指导下,设计的5G移动通信网络架构主要有以下三种设计思路:
(1)对网元功能采用划分处理
当前的网络有着封闭且无序的特点,甚至部分功能存在相互冲突的情况,这就需要重新定义网络功能,进行更加清晰地梳理和划分。第一步要做的就是将控制端与转发端进行分离,以及实现软件与硬件的解耦。通过分离可以实现将控制功能全部置于SDN控制器之上的目的,在转发面使用合适的转发设备,一般都是标准件,其优势在于成本低廉,他们在同一接口实现连接。在控制面和转发面上均可以实现扩容或升级功能,这就使得设备愈发便捷高效。
(2)网络功能抽象
在对各部分网元功能进行分开处理之后,还需要做共性提取的工作,经过一定规律的封装,将具有不同功能的模块分离出来,对各模块之间使用的连接口均采用标准件。对比于未划分之前的网络功能,经过分解的网络功能模块将变得越来越多,这就将使得接口和协议变得极为复杂。
经过抽象处理实现网络功能的模块化,在各功能模块之间使用API接口,使得他们更加具有开放性,在相关标准的基础上对其进行重组,让重组后的网元功能具有全网视图,同时尽量满足用户的需求,为客户带来最佳的业务数据流传送与整合方法,进而实现网络资源的合理利用,强化互联网的服务能力。
当今的互联网技术发展日新月异,基于互联网行业的创新实践多如牛毛,这一切的一切都与其使用公共硬件平台,让客户使用开放的API接口,简化民众创新环节,减少创新要求有着极为重要的联系。故而,将API公布给开发者,使其随意使用,互联网的设计与开发突破传统的只针对运营商,转变为面向更为广大的用户群体,让运营商有着更加灵便的网络能力,进而解决已有的.因硬件问题而引发的升级困难、扩展性差等缺点。
(3)网络功能重构
将已经开放接口的各功能子模块分选出来,按照一定的需求进行组合使用,这样一来不但可以拥有基础的现有网络的基本功能,更重要的是可以让各组件相互独立,甚至实现动态性的伸缩,与此同时,可以结合未来的发展趋势进行快速研发、调试和合理布置,体现全新的功能。因此,在这个基础之上网络资源就能够实现共享,而且还能在实际业务的要求下进行按需编排和故障隔离等。这其实也就是进行重新划分并抽象的目的所在。
众所周知,IT技术具有灵活快速的优点,这一点也被电信网络所学习,在即将到来的5G时代,其网络架构将不可能是以往的固定、封闭的架构,取而代之的将是一个全新的依托于虚拟化技术的构架。对现有的模块进行划分及重组之后,不但可以实现最为基本的现有的网络功能,而且更重要的是可以减持冗余。举例说明,比如一些模块的功能或业务已然超过了使用寿命,而且也达到了退出市场的条件。但实际真的如此吗?根据测算其现有电路交换机的两千余个功能使用率甚至不超过百分之一,在模块化的基础之上,运营商就能够根据自己的实际需求进行选择,在最大限度利用投资资源的同时做到省去无用花费的目标。
三、结束语
文章在SDN和NFV技术的基础上,实现现有网络的解耦、抽象和重构,提出了一些创造性的使用设想,比如控制面与转发面实现分离、控制集中化、可编程的未来移动通信网络架构,并对未来移动通信的网络架构采取了试探性的摸索。经过总结分析可以知道,基于SDN和NFV的新型网络架构,不但能解决传统架构固有的一些缺点,还能够满足未来不断增多的新业务对网络可编程和快速响应的要求。
;㈡ 三星手机网络能力自动配置要开吗
进入这款手机的设置,在胡迹进入伍卖它的控制面板设置,控制面板设置有个虚拟网络设置,点击自动设置即可。
这款三星手机采用的是三星9820处理器,性能还是蛮强大的,不过仅仅支持4G全网通功能,它内置了4500毫安电池,支持25w的快速充电。部分三星手机支持智能网络切换功能(如S5系列),可以实现无线裤橘并网络和移动数据自动切换,设置路径:请打开手机设定-WLAN-智能网络切换-勾选/取消勾选。若您的手机无该选项,则同时开启无线网络和移动数据时,当身边无可用无线网络,将切换为移动数据。
㈢ SDN技术的应用场景
SDN技术的应用场景
SDN网络能力开放化的特点,使得网络可编程,易快捷提供的应用服务,网络不再仅仅是基础设施,更是一种服务,SDN的应用范围得到了进一步的拓展。下面是我带来的SDN的五大应用场景,希望对你有帮助!
针对网络的主要参与实体进行梳理后,SDN的应用场景基本聚焦到电信运营商、政府及企业客户、数据中心服务商以及互联网公司。关注的SDN应用场景主要聚焦在:数据中心网络、数据中心间的互联、政企网络、电信运营商网络、互联网公司业务部署。
场景1:SDN在数据中心网络的应用
数据中心网络SDN化的需求主要表现在海量的虚拟租户、多路径转发、VM(虚拟机)的智能部署和迁移、网络集中自动化管理、绿色节能、数据中心能力开放等几个方面。
SDN控制逻辑集中的特点可充分满足网络集中自动化管理、多路径转发、绿色节能等方面的要求;SDN网络能力开放化和虚拟化可充分满足数据中心能力开放、VM的智能部署和迁移、海量虚拟租户的需求。
数据中心的建设和维护一般统一由数据中心运营商或ICP/ISP维护,具有相对的封闭性,可统一规划、部署和升级改造,SDN在其中部署的可行性高。数据中心网络是SDN目前最为明确的应用场景之一,也是最有前景的应用场景之一。
场景2:SDN在数据中心互联的应用
数据中心之间互联网的网络具有流量大、突发性强、周期性强等特点,需要网络具备多路径转发与负载均衡、网络带宽按需提供、绿色节能、集中管理和控制的能力。如下图所示的SDN技术在多数据中心互联场景下的应用架构图所示,引入SDN的网络可通过部署统一的控制器来收集各数据中心之间的流量需求,进而进行统一的计算和调度、实施带宽的灵活按需分配、最大程度优化网络、提升资源利用率。
目前Google已经在其数据中心之间应用了SDN技术,将数据中心之间的链路利用率提升至接近100%,成效显着。
场景3:SDN在政企网络中的应用
政府及企业网络的业务类型多,网络设备功能复杂、类型多,对网络的安全性要求高,需要集中的管理和控制,需要网络的灵活性高,且能满足定制化需求。
SDN转发与控制分离的架构,可使得网络设备通用化、简单化。SDN将复杂的业务功能剥离,由上层应用服务器实现,不仅可以降低设备硬件成本,更可使得企业网络更加简化,层次更加清晰。同时,SDN控制的逻辑集中,可以实现企业网络的集中管理与控制,企业的安全策略集中部署和管理,更可以在控制器或上层应用灵活定制网络功能,更好满足企业网络的需求。
由于企业网络一般由企业自己的信息化部门复杂建设、管理和维护,具有封闭性,可统一规划、部署和升级改造,SDN部署的可行性高。
场景4:SDN在电信运营商网络的应用
电信运营商网络包括了宽带接入层、城域层、骨干层等层面。具体的网络还可分为有线网络和无线网络,网络存在多种方式,如传输网、数据网、交换网等。总的来说,电信运营商网络具有覆盖范围大、网络复杂、网络安全可靠性要求高、涉及的网络制式多、多厂商共存等特点。
SDN的转发与控制分离特点可有效实现设备的逐步融合,降低设备硬件成本。SDN的控制逻辑集中特点可逐步实现网络的集中化管理和全局优化,有效提升运营效率,提供端到端的`网络服务;SDN的网络能力虚拟化和开放化,也有利于电信运营商网络向智能化,开放化发展,发展更丰富的网络服务,增加收入。
例如NTT和德国电信都开始试验部署SDN,其中NTT搭建了很快日本和美国的试验环境,实现网恋过虚拟化,并故那里跨数据中心的WAN网络;而德国电信在云数据中心、无线、固定等接入环境使用SDN。
但是,SDN技术目前尚不够成熟,标准化程度也不够高。大范围、大量网络设备的管理问题,超大规模SDN控制器的安全性和稳定性问题,多厂商的协同和互通问题,不同网络层次/制式的协同和对接问题等均需要尽快得到解决。目前SDN技术在电信运营商网络大规模应用还难以实现,但可在局部网络或特定应用场景逐步使用,如移动回传网络场景、分组与光网络的协同场景等。
场景5:SDN在互联网公司业务部署中的应用
SDN即软件定义网络,然而笔者认为SDN的研究重点不应放在软件如何定义网络,而应在于如何开放网络能力。网络的终极意义在于为上层应用提供网络服务,承载上层应用。NaaS是网络的最终归宿。互联网公司业务基于SDN架构部署,将是SDN的重要应用场景。
SDN具有网络能力开放的特点,通过SDN控制器的北向接口,向上层应用提供标准化、规范化的网络能力接口,为上层应用提供网络能力服务。ICP/ISP可根据需要获得相应的网络服务,有效提升最终用户的业务体验。
国内企业如腾讯、网络等都在加快SDN的实验室部署,例如腾讯,利用SDN实现差异化的路径计算、流量控制和服务,为用户提供更好体验。
;