A. 卷积神经网络
一般由卷积层,汇聚层,和全连接层交叉堆叠而成,使用反向传播算法进行训练(反向传播,再重新看一下)
卷积神经网络有三个结构上的特性:局部连接,权重共享以及子采样
滤波器filter 卷积核convolution kernel
局部连接,其实就是根据时间,权重递减 最后为0 参数就传播不到远处了
局部连接 乘以 滤波器 得特征映射
互相关,是一个衡量两个序列相关性的函数,
互相关和卷积的区别在于 卷积核仅仅是否进行翻转,因此互相关也可以称为 不翻转卷积
使用卷积 是为了进行特征抽取,卷积核 是否进行翻转和其特征抽取的能力无关。
当卷积核是可以学习的参数,卷积和互相关是等价的,因此,其实两者差不多。
Tips:P是代表特征映射
B. 卷积层在神经网络中如何运算
卷积神经网络(Convolutional Neural Networks, CNN)的核心是进行卷积运算操作。在实际应用中往往采用多层网络结构,因此又被称为深度卷积神经网络。本文将从单个卷积的计算出发,带大家掌握卷积层在神经网络中的运算方法。
2.1 单个卷积的计算
要想了解卷积层在神经网络中的计算过程,我们首先需要了解单个“卷积”是如何运作的。
想必大家在学习CNN的过程中都见过下图( 出处在此 ,这上面有各种各样的卷积gif图):
input_shape=(5,5),kernelsize=(3,3),padding=‘same’,stride=1,output_shape=(5,5)
在此图中:
在此次计算中:
Ps: 在实际应用中,每一个输出的特征图还会配备一个偏置s,在上图中无表示。
2.2 卷积层在神经网络中的运算
了解完单个卷积是如何计算的之后,我们就可以从神经网络的角度来看‘卷积层’的运算过程了。下图展示的是输入三通图像(8*8*3)经一层卷积结构,输出两通特征图(8*8*2)的计算过程:
卷积参数:input_shape=(8,8,3),kernelsize=(3,3),padding=‘same’,stride=1,output_shape=(8,8,2)
在此图中:
在此次卷积层的运算中:
首先我们来关注一下输入和输出,他俩的尺度都是(8*8),而输入是3通道,输出是2通道(深度学习中不管干啥一定要先看输入输出,对一层是这样,对整个模型也是这样)。
其次就准备进入我们最熟悉的卷积核计算了,可是在此之前我们得知道,这个运算过程中到底发生了几次卷积核计算呢?有的朋友可能要说,卷积的一大特性就是‘权值共享’,有几通输出就有几个卷积核,每个卷积核把输入特征图从头扫到尾。然而这个其实是不对的!
实际上,在卷积核计算数量问题上,应该是“ 有几通道的输出就有几套卷积核,每套内的卷积核数量与输入通道数相等 ”,就像我在上图中所画的:
至此,这一个卷积层的运算就全部完成了。
2.3 “可训练参数”验证
毕竟空口无凭,下面我来通过“ 可训练参数 ”的数量,来为大家验证一下卷积层是不是按我说的这么运算的。大家应该知道,一个卷积层内的“可训练参数”,其实就是指的卷积核里的那些值,以及要加的偏置量,那么如果按照前面描述的计算方法来看,一个卷积层内的“可训练参数有多少呢”?我们可知:
由此可得到:
那么按理说可训练参数量应为:
让我们用keras的summary()来验证一下:
很棒!
记住,普通卷积层的可训练参数量为:
Ps: 还有一个衡量模型大小、复杂度的量叫做“理论计算量FLOPs”(floating point operations)。它通常只考虑Conv、FC等参数层的乘、加操作的数量,并且“纯加”操作也会被忽略(例如bias)。卷积层运算中的FLOPs计算公式为:
Ps: 这里还要为大家明确一个“感受野”的概念,简单来讲就是卷积神经网络中的某一层特征图上的一个点,对应到原图上可以关联到多少个点,我们用一张图来解释一下:
上图展示的是一个3层一维卷积,kernel_size=3,我们可以看到:顶层左一的像素与底层左起7个像素值有关,这时候就代表它的感受野有7。我们可以显而易见的得出以下两个结论:
这个感受野在后续的卷积的拆分讲解中还要用到。
C. 如何理解卷积神经网络中的权值共享
所谓的权值共享就是说,给一张输入图片,用一个filter去扫这张图,filter里面的数就叫权重,这张图每个位置是被同样的filter扫的,所以权重是一样的,也就是共享。 这么说可能还不太明白,如果你能理解什么叫全连接神经网络的话,那么从一个尽量减少参数个数的角度去理解就可以了。 对于一张输入图片,大小为W*H,如果使用全连接网络,生成一张X*Y的feature map,需要W*H*X*Y个参数,如果原图长宽是10^2级别的,而且XY大小和WH差不多的话,那么这样一层网络需要的参数个数是10^8~10^12级别。 这么多参数肯定是不行的,那么我们就想办法减少参数的个数对于输出层feature map上的每一个像素,他与原图片的每一个像素都有连接,每一个链接都需要一个参数。但注意到图像一般都是局部相关的,那么如果输出层的每一个像素只和输入层图片的一个局部相连,那么需要参数的个数就会大大减少。假设输出层每个像素只与输入图片上F*F的一个小方块有连接,也就是说输出层的这个像素值,只是通过原图的这个F*F的小方形中的像素值计算而来,那么对于输出层的每个像素,需要的参数个数就从原来的W*H减小到了F*F。如果对于原图片的每一个F*F的方框都需要计算这样一个输出值,那么需要的参数只是W*H*F*F,如果原图长宽是10^2级别,而F在10以内的话,那么需要的参数的个数只有10^5~10^6级别,相比于原来的10^8~10^12小了很多很多。
D. 卷积神经网络
关于花书中卷积网络的笔记记录于 https://www.jianshu.com/p/5a3c90ea0807 。
卷积神经网络(Convolutional Neural Network,CNN或ConvNet)是一种具有 局部连接、权重共享 等特性的深层前馈神经网络。卷积神经网络是受生物学上感受野的机制而提出。 感受野(Receptive Field) 主要是指听觉、视觉等神经系统中一些神经元的特性,即 神经元只接受其所支配的刺激区域内的信号 。
卷积神经网络最早是主要用来处理图像信息。如果用全连接前馈网络来处理图像时,会存在以下两个问题:
目前的卷积神经网络一般是由卷积层、汇聚层和全连接层交叉堆叠而成的前馈神经网络,使用反向传播算法进行训练。 卷积神经网络有三个结构上的特性:局部连接,权重共享以及汇聚 。这些特性使卷积神经网络具有一定程度上的平移、缩放和旋转不变性。
卷积(Convolution)是分析数学中一种重要的运算。在信号处理或图像处理中,经常使用一维或二维卷积。
一维卷积经常用在信号处理中,用于计算信号的延迟累积。假设一个信号发生器每个时刻t 产生一个信号 ,其信息的衰减率为 ,即在 个时间步长后,信息为原来的 倍。假设 ,那么在时刻t收到的信号 为当前时刻产生的信息和以前时刻延迟信息的叠加:
我们把 称为 滤波器(Filter)或卷积核(Convolution Kernel) 。假设滤波器长度为 ,它和一个信号序列 的卷积为:
信号序列 和滤波器 的卷积定义为:
一般情况下滤波器的长度 远小于信号序列长度 ,下图给出一个一维卷积示例,滤波器为 :
二维卷积经常用在图像处理中。因为图像为一个两维结构,所以需要将一维卷积进行扩展。给定一个图像 和滤波器 ,其卷积为:
下图给出一个二维卷积示例:
注意这里的卷积运算并不是在图像中框定卷积核大小的方框并将各像素值与卷积核各个元素相乘并加和,而是先把卷积核旋转180度,再做上述运算。
在图像处理中,卷积经常作为特征提取的有效方法。一幅图像在经过卷积操作后得到结果称为 特征映射(Feature Map) 。
最上面的滤波器是常用的高斯滤波器,可以用来对图像进行 平滑去噪 ;中间和最下面的过滤器可以用来 提取边缘特征 。
在机器学习和图像处理领域,卷积的主要功能是在一个图像(或某种特征)上滑动一个卷积核(即滤波器),通过卷积操作得到一组新的特征。在计算卷积的过程中,需要进行卷积核翻转(即上文提到的旋转180度)。 在具体实现上,一般会以互相关操作来代替卷积,从而会减少一些不必要的操作或开销。
互相关(Cross-Correlation)是一个衡量两个序列相关性的函数,通常是用滑动窗口的点积计算来实现 。给定一个图像 和卷积核 ,它们的互相关为:
互相关和卷积的区别仅在于卷积核是否进行翻转。因此互相关也可以称为不翻转卷积 。当卷积核是可学习的参数时,卷积和互相关是等价的。因此,为了实现上(或描述上)的方便起见,我们用互相关来代替卷积。事实上,很多深度学习工具中卷积操作其实都是互相关操作。
在卷积的标准定义基础上,还可以引入滤波器的 滑动步长 和 零填充 来增加卷积多样性,更灵活地进行特征抽取。
滤波器的步长(Stride)是指滤波器在滑动时的时间间隔。
零填充(Zero Padding)是在输入向量两端进行补零。
假设卷积层的输入神经元个数为 ,卷积大小为 ,步长为 ,神经元两端各填补 个零,那么该卷积层的神经元数量为 。
一般常用的卷积有以下三类:
因为卷积网络的训练也是基于反向传播算法,因此我们重点关注卷积的导数性质:
假设 。
, , 。函数 为一个标量函数。
则由 有:
可以看出, 关于 的偏导数为 和 的卷积 :
同理得到:
当 或 时, ,即相当于对 进行 的零填充。从而 关于 的偏导数为 和 的宽卷积 。
用互相关的“卷积”表示,即为(注意 宽卷积运算具有交换性性质 ):
在全连接前馈神经网络中,如果第 层有 个神经元,第 层有 个神经元,连接边有 个,也就是权重矩阵有 个参数。当 和 都很大时,权重矩阵的参数非常多,训练的效率会非常低。
如果采用卷积来代替全连接,第 层的净输入 为第 层活性值 和滤波器 的卷积,即:
根据卷积的定义,卷积层有两个很重要的性质:
由于局部连接和权重共享,卷积层的参数只有一个m维的权重 和1维的偏置 ,共 个参数。参数个数和神经元的数量无关。此外,第 层的神经元个数不是任意选择的,而是满足 。
卷积层的作用是提取一个局部区域的特征,不同的卷积核相当于不同的特征提取器。
特征映射(Feature Map)为一幅图像(或其它特征映射)在经过卷积提取到的特征,每个特征映射可以作为一类抽取的图像特征。 为了提高卷积网络的表示能力,可以在每一层使用多个不同的特征映射,以更好地表示图像的特征。
在输入层,特征映射就是图像本身。如果是灰度图像,就是有一个特征映射,深度 ;如果是彩色图像,分别有RGB三个颜色通道的特征映射,深度 。
不失一般性,假设一个卷积层的结构如下:
为了计算输出特征映射 ,用卷积核 分别对输入特征映射 进行卷积,然后将卷积结果相加,并加上一个标量偏置 得到卷积层的净输入 再经过非线性激活函数后得到输出特征映射 。
在输入为 ,输出为 的卷积层中,每个输出特征映射都需要 个滤波器以及一个偏置。假设每个滤波器的大小为 ,那么共需要 个参数。
汇聚层(Pooling Layer)也叫子采样层(Subsampling Layer),其作用是进行特征选择,降低特征数量,并从而减少参数数量。
常用的汇聚函数有两种:
其中 为区域 内每个神经元的激活值。
可以看出,汇聚层不但可以有效地减少神经元的数量,还可以使得网络对一些小的局部形态改变保持不变性,并拥有更大的感受野。
典型的汇聚层是将每个特征映射划分为 大小的不重叠区域,然后使用最大汇聚的方式进行下采样。汇聚层也可以看做是一个特殊的卷积层,卷积核大小为 ,步长为 ,卷积核为 函数或 函数。过大的采样区域会急剧减少神经元的数量,会造成过多的信息损失。
一个典型的卷积网络是由卷积层、汇聚层、全连接层交叉堆叠而成。
目前常用卷积网络结构如图所示,一个卷积块为连续 个卷积层和 个汇聚层( 通常设置为 , 为 或 )。一个卷积网络中可以堆叠 个连续的卷积块,然后在后面接着 个全连接层( 的取值区间比较大,比如 或者更大; 一般为 )。
目前,整个网络结构 趋向于使用更小的卷积核(比如 和 )以及更深的结构(比如层数大于50) 。此外,由于卷积的操作性越来越灵活(比如不同的步长),汇聚层的作用变得也越来越小,因此目前比较流行的卷积网络中, 汇聚层的比例也逐渐降低,趋向于全卷积网络 。
在全连接前馈神经网络中,梯度主要通过每一层的误差项 进行反向传播,并进一步计算每层参数的梯度。在卷积神经网络中,主要有两种不同功能的神经层:卷积层和汇聚层。而参数为卷积核以及偏置,因此 只需要计算卷积层中参数的梯度。
不失一般性,第 层为卷积层,第 层的输入特征映射为 ,通过卷积计算得到第 层的特征映射净输入 ,第 层的第 个特征映射净输入
由 得:
同理可得,损失函数关于第 层的第 个偏置 的偏导数为:
在卷积网络中,每层参数的梯度依赖其所在层的误差项 。
卷积层和汇聚层中,误差项的计算有所不同,因此我们分别计算其误差项。
第 层的第 个特征映射的误差项 的具体推导过程如下:
其中 为第 层使用的激活函数导数, 为上采样函数(upsampling),与汇聚层中使用的下采样操作刚好相反。如果下采样是最大汇聚(max pooling),误差项 中每个值会直接传递到上一层对应区域中的最大值所对应的神经元,该区域中其它神经元的误差项的都设为0。如果下采样是平均汇聚(meanpooling),误差项 中每个值会被平均分配到上一层对应区域中的所有神经元上。
第 层的第 个特征映射的误差项 的具体推导过程如下:
其中 为宽卷积。
LeNet-5虽然提出的时间比较早,但是是一个非常成功的神经网络模型。基于LeNet-5 的手写数字识别系统在90年代被美国很多银行使用,用来识别支票上面的手写数字。LeNet-5 的网络结构如图:
不计输入层,LeNet-5共有7层,每一层的结构为:
AlexNet是第一个现代深度卷积网络模型,其首次使用了很多现代深度卷积网络的一些技术方法,比如采用了ReLU作为非线性激活函数,使用Dropout防止过拟合,使用数据增强来提高模型准确率等。AlexNet 赢得了2012 年ImageNet 图像分类竞赛的冠军。
AlexNet的结构如图,包括5个卷积层、3个全连接层和1个softmax层。因为网络规模超出了当时的单个GPU的内存限制,AlexNet 将网络拆为两半,分别放在两个GPU上,GPU间只在某些层(比如第3层)进行通讯。
AlexNet的具体结构如下:
在卷积网络中,如何设置卷积层的卷积核大小是一个十分关键的问题。 在Inception网络中,一个卷积层包含多个不同大小的卷积操作,称为Inception模块。Inception网络是由有多个inception模块和少量的汇聚层堆叠而成 。
v1版本的Inception模块,采用了4组平行的特征抽取方式,分别为1×1、3× 3、5×5的卷积和3×3的最大汇聚。同时,为了提高计算效率,减少参数数量,Inception模块在进行3×3、5×5的卷积之前、3×3的最大汇聚之后,进行一次1×1的卷积来减少特征映射的深度。如果输入特征映射之间存在冗余信息, 1×1的卷积相当于先进行一次特征抽取 。
E. ENAS:首个权值共享的神经网络搜索方法,千倍加速 | ICML 2018
论文: Efficient Neural Architecture Search via Parameter Sharing
神经网络结构搜索(NAS)目前在图像分类的模型结构设计上有很大的成果,但十分耗时,主要花在搜索到的网络(child model)的训练。论文的主要工作是提出 Efficient Neural Architecture Search (ENAS),强制所有的child model进行权重共享,避免从零开始训练,从而达到提高效率的目的。虽然不同的模型使用不同的权重,但从迁移学习和多任务学习的研究结果来看,将当前任务的模型A学习到的参数应用于别的任务的模型B是可行的。从实验看来,不仅共享参数是可行的,而且能带来很强的表现,实验仅用单张1080Ti,相对与NAS有1000x倍加速
NAS的搜索结果可以看作是大图中的子图,可以用单向无环图(DAG)来表示搜索空间,每个搜索的结构可以认为是图2的DAG一个子网。ENAS定义的DAG为所有子网的叠加,其中每个节点的每种计算类型都有自己的参数,当特定的计算方法激活时,参数才使用。因此,ENAS的设计允许子网进行参数共享,下面会介绍具体细节
为了设计循环单元(recurrent cell),采用 节点的DAG,节点代表计算类型,边代表信息流向,ENAS的controller也是RNN,主要定义:1) 激活的边 2) 每个节点的计算类型。在NAS(Zoph 2017),循环单元的搜索空间在预先定义结构的拓扑结构(二叉树)上,仅学习每个节点的计算类型,而NAS则同时学习拓扑结构和计算类型,更灵活
为了创建循环单元,the controller RNN首先采样 个block的结果,取 , 为当前单元输入信息(例如word embedding), 为前一个time step的隐藏层输出,具体步骤如下:
注意到每对节点( )都有独立的参数 ,根据选择的索引决定使用哪个参数,因此,ENAS的所有循环单元能同一个共享参数集合。论文的搜索空间包含指数数量的配置,假设有N个节点和4种激活函数,则共有 种配置
ENAS的controller为100个隐藏单元的LSTM,通过softmax分类器以自回归(autoregressive fashion)的方式进行选择的决定,上一个step的输出作为下一个step的输入embedding,controller的第一个step则接受空embedding输入。学习的参数主要有controller LSTM的参数 和子网的共享权重 ,ENAS的训练分两个交叉的阶段,第一阶段在完整的训练集上进行共享权重 学习,第二阶段训练controller LSTM的参数
固定controller的策略 ,然后进行 进行随机梯度下降(SGD)来最小化交叉熵损失函数的期望 , 为模型 在mini-batch上的交叉熵损失,模型 从 采样而来
梯度的计算如公式1, 上从 采样来的,集合所有模型的梯度进行更新。公式1是梯度的无偏估计,但有一个很高的方差(跟NAS一样,采样的模型性能差异),而论文发现,当 时,训练的效果还行
固定 然后更新策略参数 ,目标是最大化期望奖励 ,使用Adam优化器,梯度计算使用Williams的REINFORCE方法,加上指数滑动平均来降低方差, 的计算在独立的验证集上进行,整体基本跟Zoph的NAS一样
训练好的ENAS进行新模型构造,首先从训练的策略 采样几个新的结构,对于每个采样的模型,计算其在验证集的minibatch上的准确率,取准确率最高的模型进行从零开始的重新训练,可以对所有采样的网络进行从零训练,但是论文的方法准确率差不多,经济效益更大
对于创建卷积网络,the controller每个decision block进行两个决定,这些决定构成卷积网络的一层:
做 次选择产生 层的网络,共 种网络,在实验中,L取12
NASNet提出设计小的模块,然后堆叠成完整的网络,主要设计convolutional cell和rection cell
使用ENAS生成convolutional cell,构建B节点的DAG来代表单元内的计算,其中node 1和node 2代表单元输入,为完整网络中前两个单元的输出,剩余的 个节点,预测两个选择:1) 选择两个之前的节点作为当前节点输入 2) 选择用于两个输入的计算类型,共5种算子:identity, separable convolution with kernel size 3 × 3 and 5 × 5, and average pooling and max pooling with kernel size 3×3,然后将算子结果相加。对于 ,搜索过程如下:
对于rection cell,可以同样地使用上面的搜索空间生成: 1) 如图5采样一个计算图 2) 将所有计算的stride改为2。这样rection cell就能将输入缩小为1/2,controller共预测 blocks
最后计算下搜索空间的复杂度,对于node i ,troller选择前 个节点中的两个,然后选择五种算子的两种,共 种坑的单元。因为两种单元是独立的,所以搜索空间的大小最终为 ,对于 ,大约 种网络
节点的计算做了一点修改,增加highway connections,例如 修改为 ,其中 , 为elementwise乘法。搜索到的结果如图6所示,有意思的是:1) 激活方法全部为tanh或ReLU 2) 结构可能为局部最优,随机替换节点的激活函数都会造成大幅的性能下降 3) 搜索的输出是6个node的平均,与mixture of contexts(MoC)类似
单1080Ti训练了10小时,Penn Treebank上的结果如表1所示,PPL越低则性能越好,可以看到ENAS不准复杂度低,参数量也很少
表2的第一块为最好的分类网络DenseNet的结构,第二块为ENAS设计整个卷积网络的结果(感觉这里不应有micro search space),第三块为设计单元的结果
全网络搜索的最优结构如图7所示,达到4.23%错误率,比NAS的效果要好,大概单卡搜索7小时,相对NAS有50000x倍加速
单元搜索的结构如图8所示,单卡搜索11.5小时, ,错误率为3.54%,加上CutOut增强后比NASNet要好。论文发现ENAS搜索的结构都是局部最优的,修改都会带来性能的降低,而ENAS不采样多个网络进行训练,这个给NAS带来很大性能的提升
NAS是自动设计网络结构的重要方法,但需要耗费巨大的资源,导致不能广泛地应用,而论文提出的 Efficient Neural Architecture Search (ENAS),在搜索时对子网的参数进行共享,相对于NAS有超过1000x倍加速,单卡搜索不到半天,而且性能并没有降低,十分值得参考
F. 卷积神经网络算法是什么
一维构筑、二维构筑、全卷积构筑。
卷积神经网络(Convolutional Neural Networks, CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(Feedforward Neural Networks),是深度学习(deep learning)的代表算法之一。
卷积神经网络具有表征学习(representation learning)能力,能够按其阶层结构对输入信息进行平移不变分类(shift-invariant classification),因此也被称为“平移不变人工神经网络(Shift-Invariant Artificial Neural Networks, SIANN)”。
卷积神经网络的连接性:
卷积神经网络中卷积层间的连接被称为稀疏连接(sparse connection),即相比于前馈神经网络中的全连接,卷积层中的神经元仅与其相邻层的部分,而非全部神经元相连。具体地,卷积神经网络第l层特征图中的任意一个像素(神经元)都仅是l-1层中卷积核所定义的感受野内的像素的线性组合。
卷积神经网络的稀疏连接具有正则化的效果,提高了网络结构的稳定性和泛化能力,避免过度拟合,同时,稀疏连接减少了权重参数的总量,有利于神经网络的快速学习,和在计算时减少内存开销。
卷积神经网络中特征图同一通道内的所有像素共享一组卷积核权重系数,该性质被称为权重共享(weight sharing)。权重共享将卷积神经网络和其它包含局部连接结构的神经网络相区分,后者虽然使用了稀疏连接,但不同连接的权重是不同的。权重共享和稀疏连接一样,减少了卷积神经网络的参数总量,并具有正则化的效果。
在全连接网络视角下,卷积神经网络的稀疏连接和权重共享可以被视为两个无限强的先验(pirior),即一个隐含层神经元在其感受野之外的所有权重系数恒为0(但感受野可以在空间移动);且在一个通道内,所有神经元的权重系数相同。
G. 卷积神经网络
卷积神经网络 (Convolutional Neural Networks,CNN)是一种前馈神经网络。卷积神经网络是受生物学上感受野(Receptive Field)的机制而提出的。感受野主要是指听觉系统、本体感觉系统和视觉系统中神经元的一些性质。比如在视觉神经系统中,一个神经元的感受野是指视网膜上的特定区域,只有这个区域内的刺激才能够激活该神经元。
卷积神经网络又是怎样解决这个问题的呢?主要有三个思路:
在使用CNN提取特征时,到底使用哪一层的输出作为最后的特征呢?
答:倒数第二个全连接层的输出才是最后我们要提取的特征,也就是最后一个全连接层的输入才是我们需要的特征。
全连接层会忽视形状。卷积层可以保持形状不变。当输入数据是图像时,卷积层会以3维数据的形式接收输入数据,并同样以3维数据的形式输出至下一层。因此,在CNN中,可以(有可能)正确理解图像等具有形状的数据。
CNN中,有时将 卷积层的输入输出数据称为特征图(feature map) 。其中, 卷积层的输入数据称为输入特征图(input feature map) , 输出数据称为输出特征图(output feature map)。
卷积层进行的处理就是 卷积运算 。卷积运算相当于图像处理中的“滤波器运算”。
滤波器相当于权重或者参数,滤波器数值都是学习出来的。 卷积层实现的是垂直边缘检测 。
边缘检测实际就是将图像由亮到暗进行区分,即边缘的过渡(edge transitions)。
卷积层对应到全连接层,左上角经过滤波器,得到的3,相当于一个神经元输出为3.然后相当于,我们把输入矩阵拉直为36个数据,但是我们只对其中的9个数据赋予了权重。
步幅为1 ,移动一个,得到一个1,相当于另一个神经单元的输出是1.
并且使用的是同一个滤波器,对应到全连接层,就是权值共享。
在这个例子中,输入数据是有高长方向的形状的数据,滤波器也一样,有高长方向上的维度。假设用(height, width)表示数据和滤波器的形状,则在本例中,输入大小是(4, 4),滤波器大小是(3, 3),输出大小是(2, 2)。另外,有的文献中也会用“核”这个词来表示这里所说的“滤波器”。
对于输入数据,卷积运算以一定间隔滑动滤波器的窗口并应用。这里所说的窗口是指图7-4中灰色的3 × 3的部分。如图7-4所示,将各个位置上滤
波器的元素和输入的对应元素相乘,然后再求和(有时将这个计算称为乘积累加运算)。然后,将这个结果保存到输出的对应位置。将这个过程在所有位置都进行一遍,就可以得到卷积运算的输出。
CNN中,滤波器的参数就对应之前的权重。并且,CNN中也存在偏置。
在进行卷积层的处理之前,有时要向输入数据的周围填入固定的数据(比如0等),这称为填充(padding),是卷积运算中经常会用到的处理。比如,在图7-6的例子中,对大小为(4, 4)的输入数据应用了幅度为1的填充。“幅度为1的填充”是指用幅度为1像素的0填充周围。
应用滤波器的位置间隔称为 步幅(stride) 。
假设输入大小为(H, W),滤波器大小为(FH, FW),输出大小为(OH, OW),填充为P,步幅为S。
但是所设定的值必须使式(7.1)中的 和 分别可以除尽。当输出大小无法除尽时(结果是小数时),需要采取报错等对策。顺便说一下,根据深度学习的框架的不同,当值无法除尽时,有时会向最接近的整数四舍五入,不进行报错而继续运行。
之前的卷积运算的例子都是以有高、长方向的2维形状为对象的。但是,图像是3维数据,除了高、长方向之外,还需要处理通道方向。
在3维数据的卷积运算中,输入数据和滤波器的通道数要设为相同的值。
因此,作为4维数据,滤波器的权重数据要按(output_channel, input_channel, height, width)的顺序书写。比如,通道数为3、大小为5 × 5的滤
波器有20个时,可以写成(20, 3, 5, 5)。
对于每个通道,均使用自己的权值矩阵进行处理,输出时将多个通道所输出的值进行加和即可。
卷积运算的批处理,需要将在各层间传递的数据保存为4维数据。具体地讲,就是按(batch_num, channel, height, width)的顺序保存数据。
这里需要注意的是,网络间传递的是4维数据,对这N个数据进行了卷积运算。也就是说,批处理将N次的处理汇总成了1次进行。
池化是缩小高、长方向上的空间的运算。比如,如图7-14所示,进行将2 × 2的区域集约成1个元素的处理,缩小空间大小。
图7-14的例子是按步幅2进行2 × 2的Max池化时的处理顺序。“Max池化”是获取最大值的运算,“2 × 2”表示目标区域的大小。如图所示,从
2 × 2的区域中取出最大的元素。此外,这个例子中将步幅设为了2,所以2 × 2的窗口的移动间隔为2个元素。另外,一般来说,池化的窗口大小会和步幅设定成相同的值。比如,3 × 3的窗口的步幅会设为3,4 × 4的窗口的步幅会设为4等。
除了Max池化之外,还有Average池化等。相对于Max池化是从目标区域中取出最大值,Average池化则是计算目标区域的平均值。 在图像识别领域,主要使用Max池化。 因此,本书中说到“池化层”时,指的是Max池化。
池化层的特征
池化层有以下特征。
没有要学习的参数
池化层和卷积层不同,没有要学习的参数。池化只是从目标区域中取最大值(或者平均值),所以不存在要学习的参数。
通道数不发生变化
经过池化运算,输入数据和输出数据的通道数不会发生变化。如图7-15所示,计算是按通道独立进行的。
对微小的位置变化具有鲁棒性(健壮)
输入数据发生微小偏差时,池化仍会返回相同的结果。因此,池化对输入数据的微小偏差具有鲁棒性。比如,3 × 3的池化的情况下,如图
7-16所示,池化会吸收输入数据的偏差(根据数据的不同,结果有可能不一致)。
经过卷积层和池化层之后,进行Flatten,然后丢到全连接前向传播神经网络。
(找到一张图片使得某个filter响应最大。相当于filter固定,未知的是输入的图片。)未知的是输入的图片???
k是第k个filter,x是我们要找的参数。?这里我不是很明白。我得理解应该是去寻找最具有代表性的特征。
使用im2col来实现卷积层
卷积层的参数是需要学习的,但是池化层没有参数需要学习。全连接层的参数需要训练得到。
池化层不需要训练参数。全连接层的参数最多。卷积核的个数逐渐增多。激活层的size,逐渐减少。
最大池化只是计算神经网络某一层的静态属性,没有什么需要学习的,它只是一个静态属性 。
像这样展开之后,只需对展开的矩阵求各行的最大值,并转换为合适的形状即可(图7-22)。
参数
• input_dim ― 输入数据的维度:( 通道,高,长 )
• conv_param ― 卷积层的超参数(字典)。字典的关键字如下:
filter_num ― 滤波器的数量
filter_size ― 滤波器的大小
stride ― 步幅
pad ― 填充
• hidden_size ― 隐藏层(全连接)的神经元数量
• output_size ― 输出层(全连接)的神经元数量
• weitght_int_std ― 初始化时权重的标准差
LeNet
LeNet在1998年被提出,是进行手写数字识别的网络。如图7-27所示,它有连续的卷积层和池化层(正确地讲,是只“抽选元素”的子采样层),最后经全连接层输出结果。
和“现在的CNN”相比,LeNet有几个不同点。第一个不同点在于激活函数。LeNet中使用sigmoid函数,而现在的CNN中主要使用ReLU函数。
此外,原始的LeNet中使用子采样(subsampling)缩小中间数据的大小,而现在的CNN中Max池化是主流。
AlexNet
在LeNet问世20多年后,AlexNet被发布出来。AlexNet是引发深度学习热潮的导火线,不过它的网络结构和LeNet基本上没有什么不同,如图7-28所示。
AlexNet叠有多个卷积层和池化层,最后经由全连接层输出结果。虽然结构上AlexNet和LeNet没有大的不同,但有以下几点差异。
• 激活函数使用ReLU。
• 使用进行局部正规化的LRN(Local Response Normalization)层。
• 使用Dropout
TF2.0实现卷积神经网络
valid意味着不填充,same是填充
or the SAME padding, the output height and width are computed as:
out_height = ceil(float(in_height) / float(strides[1]))
out_width = ceil(float(in_width) / float(strides[2]))
And
For the VALID padding, the output height and width are computed as:
out_height = ceil(float(in_height - filter_height + 1) / float(strides[1]))
out_width = ceil(float(in_width - filter_width + 1) / float(strides[2]))
因此,我们可以设定 padding 策略。在 tf.keras.layers.Conv2D 中,当我们将 padding 参数设为 same 时,会将周围缺少的部分使用 0 补齐,使得输出的矩阵大小和输入一致。
H. 如何理解人工智能神经网络中的权值共享问题
权值(权重)共享这个词是由LeNet5模型提出来的。以CNN为例,在对一张图偏进行卷积的过程中,使用的是同一个卷积核的参数。比如一个3×3×1的卷积核,这个卷积核内9个的参数被整张图共享,而不会因为图像内位置的不同而改变卷积核内的权系数。说的再直白一些,就是用一个卷积核不改变其内权系数的情况下卷积处理整张图片(当然CNN中每一层不会只有一个卷积核的,这样说只是为了方便解释而已)。
I. 如何理解卷积神经网络中的权值共享
权值共享的通俗理解就是整张图片或者整组feature map共用一个卷积核,卷积核在图陪塌片上芦液圆慢慢滑动,所以图片上每个区域都是利用了卷积埋晌核内的参数,这就是权值共享。
J. 卷积神经网络每一层反向传导的权重和正向为什么相同
卷积操作的平移不变枯陆性、权值共享。
1、卷积操作的平移不变性:卷积操作具有平移不变性,即对于输入数据中的每个位置,都采用相同的卷积核进行卷积运算,因此每个位置的权重更新是相同的。在反向传播时,误差通过卷积操作反向传播到上一层时,也采用相同的卷积核进行计算仔败物,因此权重更新也是相同的,与前向传播相同。
2、权值共享:卷积操作中的卷积核中的权值在不同的位置使用相同的值,这样可以大大减少需要训练的参数量,同时也有助于提高模型念液的泛化能力。由于权值共享的存在,卷积神经网络中每一层的权重在前向传播和反向传播中都是相同的。