㈠ 神经网络到底能干什么
神经网络(Artificial Neural Networks,简写为ANNs)也简称为神经网络(NNs)或称作连接模型(Connection Model),它是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。
神经网络可以用于模式识别、信号处理、知识工程、专家系统、优化组合、机器人控制等。随着神经网络理论本身以及相关理论、相关技术的不断发展,神经网络的应用定将更加深入。
神经网络的研究可以分为理论研究和应用研究两大方面。
理论研究可分为以下两类:
1、利用神经生理与认知科学研究人类思维以及智能机理。
2、利用神经基础理论的研究成果,用数理方法探索功能更加完善、性能更加优越的神经网络模型,深入研究网络算法和性能,如:稳定性、收敛性、容错性、鲁棒性等;开发新的网络数理理论,如:神经网络动力学、非线性神经场等。
应用研究可分为以下两类:
1、神经网络的软件模拟和硬件实现的研究。
2、神经网络在各个领域中应用的研究。
㈡ 神经网络主要用于什么问题的求解
神经网络的研究可以分为理论研究和应用研究两大方面。
理论研究可分为以下两类:
1、利用神经生理与认知科学研究人类思维以及智能机理。
2、利用神经基础理论的研究成果,用数理方法探索功能更加完善、性能更加优越的神经网络模型,深入研究网络算法和性能,如:稳定性、收敛性、容错性、鲁棒性等;开发新的网络数理理论,如:神经网络动力学、非线性神经场等。
应用研究可分为以下两类:
1、神经网络的软件模拟和硬件实现的研究。
2、神经网络在各个领域中应用的研究。这些领域主要包括:
模式识别、信号处理、知识工程、专家系统、优化组合、机器人控制等。随着神经网络理论本身以及相关理论、相关技术的不断发展,神经网络的应用定将更加深入。
http://ke..com/view/5348.htm?fr=ala0_1
㈢ AlphaGo的神奇全靠它,详解人工神经网络!
Alphago在不被看好的情况下,以4比1击败了围棋世界冠军李世石,令其名震天下。随着AlphaGo知名度的不断提高,人们不禁好奇,究竟是什么使得AlphaGo得以战胜人类大脑?AlphaGo的核心依托——人工神经网络。
什么是神经网络?
人工神经网络是一种模仿生物神经网络(动物的中枢神经系统,特别是大脑)的结构和功能的数学模型或计算模型。神经网络由大量的人工神经元联结进行计算。大多数情况下人工神经网络能在外界信息的基础上改变内部结构,是一种自适应系统。现代神经网络是一种非线性统计性数据建模工具,常用来对输入和输出间复杂的关系进行建模,或用来探索数据的模式。
神经网络是一种运算模型,由大量的节点(或称“神经元”,或“单元”)和之间相互联接构成。每个节点代表一种特定的输出函数,称为激励函数。每两个节点间的连接都代表一个对于通过该连接信号的加权值,称之为权重,这相当于人工神经网络的记忆。网络的输出则依网络的连接方式,权重值和激励函数的不同而不同。而网络自身通常都是对自然界某种算法或者函数的逼近,也可能是对一种逻辑策略的表达。
例如,用于手写识别的一个神经网络是被可由一个输入图像的像素被激活的一组输入神经元所定义的。在通过函数(由网络的设计者确定)进行加权和变换之后,这些神经元被激活然后被传递到其他神经元。重复这一过程,直到最后一个输出神经元被激活。这样决定了被读取的字。
它的构筑理念是受到人或其他动物神经网络功能的运作启发而产生的。人工神经网络通常是通过一个基于数学统计学类型的学习方法得以优化,所以人工神经网络也是数学统计学方法的一种实际应用,通过统计学的标准数学方法我们能够得到大量的可以用函数来表达的局部结构空间,另一方面在人工智能学的人工感知领域,我们通过数学统计学的应用可以来做人工感知方面的决定问题(也就是说通过统计学的方法,人工神经网络能够类似人一样具有简单的决定能力和简单的判断能力),这种方法比起正式的逻辑学推理演算更具有优势。
人工神经网络是一个能够学习,能够总结归纳的系统,也就是说它能够通过已知数据的实验运用来学习和归纳总结。人工神经网络通过对局部情况的对照比较(而这些比较是基于不同情况下的自动学习和要实际解决问题的复杂性所决定的),它能够推理产生一个可以自动识别的系统。与之不同的基于符号系统下的学习方法,它们也具有推理功能,只是它们是建立在逻辑算法的基础上,也就是说它们之所以能够推理,基础是需要有一个推理算法则的集合。
2AlphaGo的原理回顶部
AlphaGo的原理
首先,AlphaGo同优秀的选手进行了150000场比赛,通过人工神经网络找到这些比赛的模式。然后通过总结,它会预测选手在任何位置高概率进行的一切可能。AlphaGo的设计师通过让其反复的和早期版本的自己对战来提高神经网络,使其逐步提高获胜的机会。
从广义上讲,神经网络是一个非常复杂的数学模型,通过对其高达数百万参数的调整来改变的它的行为。神经网络学习的意思是,电脑一直持续对其参数进行微小的调整,来尝试使其不断进行微小的改进。在学习的第一阶段,神经网络提高模仿选手下棋的概率。在第二阶段,它增加自我发挥,赢得比赛的概率。反复对极其复杂的功能进行微小的调整,听起来十分疯狂,但是如果有足够长的时间,足够快的计算能力,非常好的网络实施起来并不苦难。并且这些调整都是自动进行的。
经过这两个阶段的训练,神经网络就可以同围棋业余爱好者下一盘不错的棋了。但对于职业来讲,它还有很长的路要走。在某种意义上,它并不思考每一手之后的几步棋,而是通过对未来结果的推算来决定下在哪里。为了达到职业级别,AlphaGp需要一种新的估算方法。
为了克服这一障碍,研究人员采取的办法是让它反复的和自己进行对战,以此来使其不断其对于胜利的估算能力。尽可能的提高每一步的获胜概率。(在实践中,AlphaGo对这个想法进行了稍微复杂的调整。)然后,AlphaGo再结合多线程来使用这一方法进行下棋。
我们可以看到,AlphaGo的评估系统并没有基于太多的围棋知识,通过分析现有的无数场比赛的棋谱,以及无数次的自我对战练习,AlphaGo的神经网络进行了数以十亿计的微小调整,即便每次只是一个很小的增量改进。这些调整帮助AlphaGp建立了一个估值系统,这和那些出色围棋选手的直觉相似,对于棋盘上的每一步棋都了如指掌。
此外AlphaGo也使用搜索和优化的思想,再加上神经网络的学习功能,这两者有助于找到棋盘上更好的位置。这也是目前AlphaGo能够高水平发挥的原因。
3神经网络的延伸和限制回顶部
神经网络的延伸和限制
神经网络的这种能力也可以被用在其他方面,比如让神经网络学习一种艺术风格,然后再将这种风格应用到其他图像上。这种想法很简单:首先让神经网络接触到大量的图像,然后来确认这些图像的风格,接着将新的图像带入这种风格。
这虽然不是伟大的艺术,但它仍然是一个显着的利用神经网络来捕捉直觉并且应用在其他地方的例子。
在过去的几年中,神经网络在许多领域被用来捕捉直觉和模式识别。许多项目使用神经这些网络,涉及的任务如识别艺术风格或好的视频游戏的发展战略。但也有非常不同的网络模拟的直觉惊人的例子,比如语音和自然语言。
由于这种多样性,我看到AlphaGo本身不是一个革命性的突破,而是作为一个极其重要的发展前沿:建立系统,可以捕捉的直觉和学会识别模式的能力。此前计算机科学家们已经做了几十年,没有取得长足的进展。但现在,神经网络的成功已经大大扩大,我们可以利用电脑攻击范围内的潜在问题。
事实上,目前现有的神经网络的理解能力是非常差的。神经网络很容易被愚弄。用神经网络识别图像是一个不错的手段。但是实验证明,通过对图像进行细微的改动,就可以愚弄图像。例如,下面的图像左边的图是原始图,研究人员对中间的图像进行了微小的调整后,神经网络就无法区分了,就将原图显示了出来。
另一个限制是,现有的系统往往需要许多模型来学习。例如,AlphaGo从150000场对战来学习。这是一个很庞大额度数字!很多情况下,显然无法提供如此庞大的模型案例。
㈣ 人工神经网络可以解决哪些问题
信息领域中的应用:信息处理、模式识别、数据压缩等。
自动化领域:系统辨识、神经控制器、智能检测等。
工程领域:汽车工程、军事工程、化学工程、水利工程等。
在医学中的应用:生物信号的检测与分析、生物活性研究、医学专家系统等。
经济领域的应用:市场价格预测、风险评估等。
此外还有很多应用,比如交通领域的应用,心理学领域的应用等等。神经网络的应用领域是非常广的。
㈤ 人工智能:什么是人工神经网络
许多 人工智能 计算机系统的核心技术是人工神经网络(ANN),而这种网络的灵感来源于人类大脑中的生物结构。
通过使用连接的“神经元”结构,这些网络可以通过“学习”并在没有人类参与的情况下处理和评估某些数据。
这样的实际实例之一是使用人工神经网络(ANN)识别图像中的对象。在构建一个识别“猫“图像的一个系统中,将在包含标记为“猫”的图像的数据集上训练人工神经网络,该数据集可用作任何进行分析的参考点。正如人们可能学会根据尾巴或皮毛等独特特征来识别狗一样,人工神经网络(ANN)也可以通过将每个图像分解成不同的组成部分(如颜色和形状)进行识别。
实际上,神经网络提供了位于托管数据之上的排序和分类级别,可基于相似度来辅助数据的聚类和分组。可以使用人工神经网络(ANN)生成复杂的垃圾邮件过滤器,查找欺诈行为的算法以及可以精确了解情绪的客户关系工具。
人工神经网络如何工作
人工神经网络的灵感来自人脑的神经组织,使用类似于神经元的计算节点构造而成,这些节点沿着通道(如神经突触的工作方式)进行信息交互。这意味着一个计算节点的输出将影响另一个计算节点的处理。
神经网络标志着人工智能发展的巨大飞跃,在此之前,人工智能一直依赖于使用预定义的过程和定期的人工干预来产生所需的结果。人工神经网络可以使分析负载分布在多个互连层的网络中,每个互连层包含互连节点。在处理信息并对其进行场景处理之后,信息将传递到下一个节点,然后向下传递到各个层。这个想法是允许将其他场景信息接入网络,以通知每个阶段的处理。
单个“隐藏”层神经网络的基本结构
就像渔网的结构一样,神经网络的一个单层使用链将处理节点连接在一起。大量的连接使这些节点之间的通信得到增强,从而提高了准确性和数据处理吞吐量。
然后,人工神经网络将许多这样的层相互叠放以分析数据,从而创建从第一层到最后一层的输入和输出数据流。尽管其层数将根据人工神经网络的性质及其任务而变化,但其想法是将数据从一层传递到另一层,并随其添加附加的场景信息。
人脑是用3D矩阵连接起来的,而不是大量堆叠的图层。就像人类大脑一样,节点在接收到特定刺激时会在人工神经网络上“发射”信号,并将信号传递到另一个节点。但是,对于人工神经网络,输入信号定义为实数,输出为各种输入的总和。
这些输入的值取决于它们的权重,该权重用于增加或减少与正在执行的任务相对应的输入数据的重要性。其目标是采用任意数量的二进制数值输入并将其转换为单个二进制数值输出。
更复杂的神经网络提高了数据分析的复杂性
早期的神经网络模型使用浅层结构,其中只使用一个输入和输出层。而现代的系统由一个输入层和一个输出层组成,其中输入层首先将数据输入网络,多个“隐藏”层增加了数据分析的复杂性。
这就是“深度学习”一词的由来——“深度”部分专门指任何使用多个“隐藏”层的神经网络。
聚会的例子
为了说明人工神经网络在实际中是如何工作的,我们将其简化为一个实际示例。
想象一下你被邀请参加一个聚会,而你正在决定是否参加,这可能需要权衡利弊,并将各种因素纳入决策过程。在此示例中,只选择三个因素——“我的朋友会去吗?”、“聚会地点远吗?”、“天气会好吗?”
通过将这些考虑因素转换为二进制数值,可以使用人工神经网络对该过程进行建模。例如,我们可以为“天气”指定一个二进制数值,即‘1'代表晴天,‘0'代表恶劣天气。每个决定因素将重复相同的格式。
然而,仅仅赋值是不够的,因为这不能帮助你做出决定。为此需要定义一个阈值,即积极因素的数量超过消极因素的数量。根据二进制数值,合适的阈值可以是“2”。换句话说,在决定参加聚会之前,需要两个因素的阈值都是“1”,你才会决定去参加聚会。如果你的朋友要参加聚会(‘1'),并且天气很好(‘1'),那么这就表示你可以参加聚会。
如果天气不好(‘0'),并且聚会地点很远(‘0'),则达不到这一阈值,即使你的朋友参加(‘1'),你也不会参加聚会。
神经加权
诚然,这是神经网络基本原理的一个非常基本的例子,但希望它有助于突出二进制值和阈值的概念。然而,决策过程要比这个例子复杂得多,而且通常情况下,一个因素比另一个因素对决策过程的影响更大。
要创建这种变化,可以使用“神经加权”——-通过乘以因素的权重来确定因素的二进制值对其他因素的重要性。
尽管示例中的每个注意事项都可能使你难以决策,但你可能会更重视其中一个或两个因素。如果你不愿意在大雨中出行去聚会,那恶劣的天气将会超过其他两个考虑因素。在这一示例中,可以通过赋予更高的权重来更加重视天气因素的二进制值:
天气= w5
朋友= w2
距离= w2
如果假设阈值现在已设置为6,则恶劣的天气(值为0)将阻止其余输入达到所需的阈值,因此该节点将不会“触发”(这意味着你将决定不参加聚会)。
虽然这是一个简单的示例,但它提供了基于提供的权重做出决策的概述。如果要将其推断为图像识别系统,则是否参加聚会(输入)的各种考虑因素将是给定图像的折衷特征,即颜色、大小或形状。例如,对识别狗进行训练的系统可以对形状或颜色赋予更大的权重。
当神经网络处于训练状态时,权重和阈值将设置为随机值。然后,当训练数据通过网络传递时将不断进行调整,直到获得一致的输出为止。
神经网络的好处
神经网络可以有机地学习。也就是说,神经网络的输出结果并不受输入数据的完全限制。人工神经网络可以概括输入数据,使其在模式识别系统中具有价值。
他们还可以找到实现计算密集型答案的捷径。人工神经网络可以推断数据点之间的关系,而不是期望数据源中的记录是明确关联的。
它们也可以是容错的。当神经网络扩展到多个系统时,它们可以绕过无法通信的缺失节点。除了围绕网络中不再起作用的部分进行路由之外,人工神经网络还可以通过推理重新生成数据,并帮助确定不起作用的节点。这对于网络的自诊断和调试非常有用。
但是,深度神经网络提供的最大优势是能够处理和聚类非结构化数据,例如图片、音频文件、视频、文本、数字等数据。在分析层次结构中,每一层节点都在前一层的输出上进行训练,深层神经网络能够处理大量的这种非结构化数据,以便在人类处理分析之前找到相似之处。
神经网络的例子
神经网络应用还有许多示例,可以利用它从复杂或不精确数据中获得见解的能力。
图像识别人工神经网络可以解决诸如分析特定物体的照片等问题。这种算法可以用来区分狗和猫。更重要的是,神经网络已经被用于只使用细胞形状信息来诊断癌症。
近30年来,金融神经网络被用于汇率预测、股票表现和选择预测。神经网络也被用来确定贷款信用评分,学习正确识别良好的或糟糕的信用风险。而电信神经网络已被电信公司用于通过实时评估网络流量来优化路由和服务质量。