‘壹’ 人工智能未来的发展前景怎么样
就业方向:
1、搜索方向,例如网络识图、作业帮搜题等。视频搜索也是搜索领域进一步研究的方向;
2、计算机视觉和模式识别方向,其应用领域包括智能办公、智能交通、智慧城市等等;
3、医学图像处理,医疗设备和医疗器械很多都会涉及到图像处理和成像技术。
4、无人驾驶领域,是人工智能重点应用领域之一;
5、智慧生活和智慧城市等,包括交通、商业、生活的诸多领域将会出现人工智能的影子。
人工智能发展前景
第一:智能化是未来的重要趋势之一。随着互联网的发展,大数据、云计算和物联网等相关技术会陆续普及应用,在这个大背景下,智能化必然是发展趋势之一。
第二:产业互联网的发展必然会带动人工智能的发展。互联网当前正在从消费互联网向产业互联网发展,产业互联网将综合应用物联网、大数据和人工智能等相关技术来赋能广大传统行业,人工智能作为重要的技术之一,必然会在产业互联网发展的过程中释放出大量的就业岗位。
第三:人工智能技术将成为职场人的必备技能之一。随着智能体逐渐走进生产环境,未来职场人在工作过程中将会频繁的与大量的智能体进行交流和合作,这对于职场人提出了新的要求,就是需要掌握人工智能的相关技术。
‘贰’ 人工智能基础
偷个懒,直接贴上目录的思维导图。
1950 年,艾伦.图灵 (Alan Turing) 在他的论文《计算机器与智能》 ( Compu- tmg Machinery and Intelligence) 中提出了着名的图灵测试 (Turing test)
1956年,美国的达特茅斯学院讨论会。 这次会议提出:
这次会议为这个致力于通过机器来模拟人类智能的新领域定下了名 字一一 人工智能 ( Artificial Intelligence, AI) , 从而正式宜告了人工智能作为 一门学科的诞生。
麻省理工学院的约瑟夫· 维森鲍姆 (Joseph Weizen-haum) 教授在 1964 年到 1966 年间建立了世界上第一个自然语言对话程序 ELIZA。 ELIZA 通过简单的模式匹配和对话规则与人聊天。
进人80年代 , 由千专家系统(expert system)和人工神经网络(artific1al neural
专家系统是一种基于一组特定规则来回答特定领域问题的程序系统 。
与此同时 . 人工神经网络的研究也取得了重要进展 。
反向传播算法(backpropagation)可以在神经网络的隐藏层中学习到对输入 数据的有效表达 。从此 , 反向传播算法被广泛用于人工神经网络的训练。
在新一 次人工智能浪潮兴起的同时, 日本通商产业省在1982年雄心勃勃地开始 了旨在建造 “ 第五代计笢机" 的大型研究计划。
经过了10年研发 , 耗费了500亿日元 , 这个项目末能达成预期的目标。 到了80年代后期 , 产业界对专家系统的巨大投入 和过高期望开始显现出负面的 效果。 人们发现这类系统开发与维护的成本高昂 , 而商业价值有限。在矢望情绪的影
响下 , 对人工智能的投入被大幅度削减 , 人工智能的发展再度步入冬天 。
进入了 21 世纪
2012年一次全球范围的图像识别算法竞赛ILSVRC (也称为ImageNet挑战赛)。
多伦多大学开发的一个多层神经网络 Alex Net取得了冠军, 并大幅度超越了使用传统 "一各学习算法的第二名。
这次比赛的成果在人工智能学界引起了广泛的震动。
从此,多层神经网络为基础的深度学习被推广到多个应用领域, 在语音识别、图像分析、 视频埋解等诸多领域取得成功。
2016年,谷歌 (Google) 通过深度学习训练的阿尔法(AlphaGo) 4 : 1 战胜了曾经的围棋世界冠军李世乭(石)。
它的改进版更在2017年战胜了当时世界排名第一的中国棋手柯洁。
人工智能涉及很广,涵盖了感知、学习、推理与决策等方面的能力 。从实际 应用的角度说,人工智能最核心的能力就是根据给定的输人做出判断或预测 。 比如 :
当代的人工智能普 遍通过学习 (learning) 来获得进行预测和判断的能力。 这样的方法被称为 机器学习 ( machine learning) , 它已经成为入工智能的主流方法 。
感知器 (perceplron) 是一种训练线性分类器的算法。
支持向量机 (support vector machine, SVM) 是在特征空间上分类间隔最大的分类 ,与感知器一样,是对两个类别进行分类。
一个深度神经网络通常由多个顺序连接的层 (layer) 组成。 第一层一般以图像为输入 , 通过特定的运算从图像中提取特征。 接下来每一层以前一层提取出的特征榆 人,对其进行特定形式的变换 , 便可以得到更复杂一些的特征。 这种层次化的特征提 取过程可以累加,赋予神经网络强大的特征提取能力。经过很多层的变换之后 , 神经 网络就可以将原始图像变换为高层次的抽象的特征 。
当一个深度神经网络以卷积层为主体时 , 我们也称之为卷积神经网络 (convolutional neural network) 。
参考:《人工智能基础(高中版)》
‘叁’ AI到底有什么用他的主要功能是什么
是用于研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学,人工智能研究是为了使机器能够胜任一些通常需要人类智能才能完成的复杂工作。
主要功能:自然科学方面,能帮助使用数学计算机工具解决问题学科,有助于人类最终认识自身智能形成;经济方面,I能深入各行各业带来巨大宏观效益,促进计算机网络工业发展,能代替人类进行各种技术工作和脑力劳动,造成社会结构剧烈变化;社会方面,为人类文化生活提供新的模式。
(3)ai桥梁和人工神经网络哪个好扩展阅读:
人工智能在计算机上实现时有2种不同的方式。
1、一种是采用传统的编程技术,使系统呈现智能的效果,而不考虑所用方法是否与人或动物机体所用的方法相同,这种方法叫工程学方法。它已在一些领域内做出了成果,如文字识别、电脑下棋等。
2、另一种是模拟法,它不仅要看效果,还要求实现方法也和人类或生物机体所用的方法相同或相类似。遗传算法和人工神经网络均属后一类型。遗传算法模拟人类或生物的遗传-进化机制,人工神经网络则是模拟人类或动物大脑中神经细胞的活动方式。
‘肆’ AI可以应用到哪些领域
AI可以应用于:机器翻译,智能控制,专家系统,机器人学,语言和图像理解,遗传编程机器人工厂,自动程序设计,
航天应用,庞大的信息处理,储存与管理,执行化合生命体无法执行的或复杂或规模庞大的任务等等。
人工智能,英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。
人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器。
(4)ai桥梁和人工神经网络哪个好扩展阅读:
1956年夏季,以麦卡赛、明斯基、罗切斯特和申农等为首的一批有远见卓识的年轻科学家在一起聚会,共同研究和探讨用机器模拟智能的一系列有关问题,并首次提出了“人工智能”这一术语,
它标志着“人工智能”这门新兴学科的正式诞生。IBM公司“深蓝”电脑击败了人类的世界国际象棋冠军更是人工智能技术的一个完美表现。
‘伍’ 人工智能和神经网络有什么联系与区别
联系:都是模仿人类行为的数学模型以及算法。神经网络的研究能促进或者加快人工智能的发展。
区别如下:
一、指代不同
1、人工智能:是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。
2、神经网络:是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。
二、方法不同
1、人工智能:企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。
2、神经网络:依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。
三、目的不同
1、人工智能:主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。
2、神经网络:具有初步的自适应与自组织能力。在学习或训练过程中改变突触权重值,以适应周围环境的要求。同一网络因学习方式及内容不同可具有不同的功能。
‘陆’ 人工智能的发展前景如何
人工智能的发展前景很好,目前学习人工智能领域发展的人才逐步增长,适应了科技发展的潮流。人工智能的发展一共经历了六个发展期,随着大数据、互联网、云计算等科技的飞速发展,人工智能的发展也迎来了新高潮。想学习人工智能推荐选择【达内教育】。
人工智能技术和产业发展可以推动智慧城市的建设和发展,人工智能化正在逐步推动资源的优化配置和各企业的工作效率。
人工智能从最开始的专用智能向通用智能发展,之后向人机混合智能发展,最后向自主智能系统发展推动人类进入普惠型智能社会,语音识别实现人机交互的关键技术,现在的机器人也越来越人工化。
人工智能有利也有弊,发展人工智能也要充分考虑到人工智能技术的局限性,理性健康的发展目标才能推动社会的有利可持续发展。感兴趣的话点击此处,免费学习一下
想了解更多有关人工智能发展前景的相关信息,推荐咨询【达内教育】。达内与阿里、Adobe、红帽、ORACLE、微软、美国计算机行业协会(CompTIA)、网络等国际知名厂商建立了项目合作关系。共同制定行业培训标准,为达内学员提供高端技术、所学课程受国际厂商认可,让达内学员更具国际化就业竞争力。达内IT培训机构,试听名额限时抢购。
‘柒’ 人工智能的前景怎么样
《清华大学&中国工程院:2019人工智能发展报告》网络网盘资源免费下载
链接:https://pan..com/s/14muATb0I1wbux89-VZ-F5Q
‘捌’ 人工智能的发展前景如何
趋势一:AI于各行业垂直领域应用具有巨大的潜力
人工智能市场在零售、交通运输和自动化、制造业及农业等各行业垂直领域具有巨大的潜力。而驱动市场的主要因素,是人工智能技术在各种终端用户垂直领域的应用数量不断增加,尤其是改善对终端消费者服务。
当然人工智能市场要起来也受到IT基础设施完善、智能手机及智能穿戴式设备的普及。其中,以自然语言处理(NLP)应用市场占AI市场很大部分。随着自然语言处理的技术不断精进而驱动消费者服务的成长,还有:汽车信息通讯娱乐系统、AI机器人及支持AI的智能手机等领域。
趋势二:AI导入医疗保健行业维持高速成长
由于医疗保健行业大量使用大数据及人工智能,进而精准改善疾病诊断、医疗人员与患者之间人力的不平衡、降低医疗成本、促进跨行业合作关系。
此外AI还广泛应用于临床试验、大型医疗计划、医疗咨询与宣传推广和销售开发。人工智能导入医疗保健行业从2016年到2022年维持很高成长,预计从2016年的6.671亿美元达到2022年的79.888亿美元年均复合增长率为52.68%。
趋势三:AI取代屏幕成为新UI/UX接口
过去从PC到手机时代以来,用户接口都是透过屏幕或键盘来互动。随着智能喇叭(SmartSpeaker)、虚拟/增强现实(VR/AR)与自动驾驶车系统陆续进入人类生活环境,加速在不需要屏幕的情况下,人们也能够很轻松自在与运算系统沟通。
这表示着人工智能透过自然语言处理与机器学习让技术变得更为直观,也变得较易操控,未来将可以取代屏幕在用户接口与用户体验的地位。
人工智能除了在企业后端扮演重要角色外,在技术接口也可承担更复杂角色。例如:使用视觉图形的自动驾驶车,透过人工神经网络以实现实时翻译,也就是说,人工智能让接口变得更为简单且更有智能,也因此设定了未来互动的高标准模式。
趋势四:未来手机芯片一定内建AI运算核心
现阶段主流的ARM架构处理器速度不够快,若要进行大量的图像运算仍嫌不足,所以未来的手机芯片一定会内建AI运算核心。正如,苹果将3D感测技术带入iPhone之后,Android阵营智能手机将在明年跟进导入3D感测相关应用。
趋势五:AI芯片关键在于成功整合软硬件
AI芯片的核心是半导体及算法。AI硬件主要是要求更快指令周期与低功耗,包括GPU、DSP、ASIC、FPGA和神经元芯片,且须与深度学习算法相结合,