❶ BP神经网络的原理的BP什么意思
原文链接:http://tecdat.cn/?p=19936
在本教程中,您将学习如何在R语言中创建神经网络模型。
神经网络(或人工神经网络)具有通过样本进行学习的能力。人工神经网络是一种受生物神经元系统启发的信息处理模型。它由大量高度互连的处理元件(称为神经元)组成,以解决问题。它遵循非线性路径,并在整个节点中并行处理信息。神经网络是一个复杂的自适应系统。自适应意味着它可以通过调整输入权重来更改其内部结构。
该神经网络旨在解决人类容易遇到的问题和机器难以解决的问题,例如识别猫和狗的图片,识别编号的图片。这些问题通常称为模式识别。它的应用范围从光学字符识别到目标检测。
本教程将涵盖以下主题:
神经网络概论
正向传播和反向传播
激活函数
R中神经网络的实现
案例
利弊
结论
神经网络概论
神经网络是受人脑启发执行特定任务的算法。它是一组连接的输入/输出单元,其中每个连接都具有与之关联的权重。在学习阶段,网络通过调整权重进行学习,来预测给定输入的正确类别标签。
人脑由数十亿个处理信息的神经细胞组成。每个神经细胞都认为是一个简单的处理系统。被称为生物神经网络的神经元通过电信号传输信息。这种并行的交互系统使大脑能够思考和处理信息。一个神经元的树突接收来自另一个神经元的输入信号,并根据这些输入将输出响应到某个其他神经元的轴突。
创建测试数据集
创建测试数据集:专业知识得分和沟通技能得分
预测测试集的结果
使用计算函数预测测试数据的概率得分。
现在,将概率转换为二进制类。
预测结果为1,0和1。
利弊
神经网络更灵活,可以用于回归和分类问题。神经网络非常适合具有大量输入(例如图像)的非线性数据集,可以使用任意数量的输入和层,可以并行执行工作。
还有更多可供选择的算法,例如SVM,决策树和回归算法,这些算法简单,快速,易于训练并提供更好的性能。神经网络更多的是黑盒子,需要更多的开发时间和更多的计算能力。与其他机器学习算法相比,神经网络需要更多的数据。NN仅可用于数字输入和非缺失值数据集。一位着名的神经网络研究人员说:“神经网络是解决任何问题的第二好的方法。最好的方法是真正理解问题。”
神经网络的用途
神经网络的特性提供了许多应用方面,例如:
模式识别:神经网络非常适合模式识别问题,例如面部识别,物体检测,指纹识别等。
异常检测:神经网络擅长异常检测,它们可以轻松检测出不适合常规模式的异常模式。
时间序列预测:神经网络可用于预测时间序列问题,例如股票价格,天气预报。
自然语言处理:神经网络在自然语言处理任务中提供了广泛的应用,例如文本分类,命名实体识别(NER),词性标记,语音识别和拼写检查。
最受欢迎的见解
1.r语言用神经网络改进nelson-siegel模型拟合收益率曲线分析
2.r语言实现拟合神经网络预测和结果可视化
3.python用遗传算法-神经网络-模糊逻辑控制算法对乐透分析
4.用于nlp的python:使用keras的多标签文本lstm神经网络分类
5.用r语言实现神经网络预测股票实例
6.R语言基于Keras的小数据集深度学习图像分类
7.用于NLP的seq2seq模型实例用Keras实现神经机器翻译
8.python中基于网格搜索算法优化的深度学习模型分析糖
9.matlab使用贝叶斯优化的深度学习
❷ BP人工神经网络
人工神经网络(artificialneuralnetwork,ANN)指由大量与自然神经系统相类似的神经元联结而成的网络,是用工程技术手段模拟生物网络结构特征和功能特征的一类人工系统。神经网络不但具有处理数值数据的一般计算能力,而且还具有处理知识的思维、学习、记忆能力,它采用类似于“黑箱”的方法,通过学习和记忆,找出输入、输出变量之间的非线性关系(映射),在执行问题和求解时,将所获取的数据输入到已经训练好的网络,依据网络学到的知识进行网络推理,得出合理的答案与结果。
岩土工程中的许多问题是非线性问题,变量之间的关系十分复杂,很难用确切的数学、力学模型来描述。工程现场实测数据的代表性与测点的位置、范围和手段有关,有时很难满足传统统计方法所要求的统计条件和规律,加之岩土工程信息的复杂性和不确定性,因而运用神经网络方法实现岩土工程问题的求解是合适的。
BP神经网络模型是误差反向传播(BackPagation)网络模型的简称。它由输入层、隐含层和输出层组成。网络的学习过程就是对网络各层节点间连接权逐步修改的过程,这一过程由两部分组成:正向传播和反向传播。正向传播是输入模式从输入层经隐含层处理传向输出层;反向传播是均方误差信息从输出层向输入层传播,将误差信号沿原来的连接通路返回,通过修改各层神经元的权值,使得误差信号最小。
BP神经网络模型在建立及应用过程中,主要存在的不足和建议有以下四个方面:
(1)对于神经网络,数据愈多,网络的训练效果愈佳,也更能反映实际。但在实际操作中,由于条件的限制很难选取大量的样本值进行训练,样本数量偏少。
(2)BP网络模型其计算速度较慢、无法表达预测量与其相关参数之间亲疏关系。
(3)以定量数据为基础建立模型,若能收集到充分资料,以定性指标(如基坑降水方式、基坑支护模式、施工工况等)和一些易获取的定量指标作为输入层,以评价等级作为输出层,这样建立的BP网络模型将更准确全面。
(4)BP人工神经网络系统具有非线性、智能的特点。较好地考虑了定性描述和定量计算、精确逻辑分析和非确定性推理等方面,但由于样本不同,影响要素的权重不同,以及在根据先验知识和前人的经验总结对定性参数进行量化处理,必然会影响评价的客观性和准确性。因此,在实际评价中只有根据不同的基坑施工工况、不同的周边环境条件,应不同用户的需求,选择不同的分析指标,才能满足复杂工况条件下地质环境评价的要求,取得较好的应用效果。
❸ 正向传播反向传播是什么
题主问的应该是神经网络中的问题。
正向传播是指数据从X传入到神经网络,经过各个隐藏层得到最终损失的过程。
反向传播主要是针对神经网络优化的过程中进行,在L端计算总的损失函数,然后根据梯度递减公式,逐层的向前反馈,形成反向传播机制,可以优化参数
❹ 神经网络正向传播,没有反向传播,学习样本过多,是不是又慢又卡
神经网络反向传播训练函数:traingdm traingda trainoss trainrb traincgf traincgb、traingdx、trainlm等反向传播权/阈值学习函数有learngdm、learncon、learngd、learnh、learnhd、learnis、learnos、learnp、learnk、learnpn、learnsom、learnwh等
❺ 神经网络的一道题目
直接按照BP算法的公式,逐个调整权值即可。样本是(1,1),这是输入样本,输出为0,根据输出层的传递函数,要求输出层的输入小于等于0,不妨就设为0。利用输入输出样本进行一轮训练。
附上BP算法的流程:
1)正向传播:输入样本->输入层->各隐层(处理)->输出层
注1:若输出层实际输出与期望输出(教师信号)不符,则转入2)(误差反向传播过程)
2)误差反向传播:输出误差(某种形式)->隐层(逐层)->输入层
其主要目的是通过将输出误差反传,将误差分摊给各层所有单元,从而获得各层单元的误差信号,进而修正各单元的权值(其过程,是一个权值调整的过程)。
❻ 正向传播的神经网络是什么原理,没有反向传播,只有正向而已!是啥原理!
没有BP过程,就是参数不会被反向更新?参数初始化个啥最终结果就是啥,那这个网络能用来干嘛
❼ 什么是BP神经网络
BP算法的基本思想是:学习过程由信号正向传播与误差的反向回传两个部分组成;正向传播时,输入样本从输入层传入,经各隐层依次逐层处理,传向输出层,若输出层输出与期望不符,则将误差作为调整信号逐层反向回传,对神经元之间的连接权矩阵做出处理,使误差减小。经反复学习,最终使误差减小到可接受的范围。具体步骤如下:
1、从训练集中取出某一样本,把信息输入网络中。
2、通过各节点间的连接情况正向逐层处理后,得到神经网络的实际输出。
3、计算网络实际输出与期望输出的误差。
4、将误差逐层反向回传至之前各层,并按一定原则将误差信号加载到连接权值上,使整个神经网络的连接权值向误差减小的方向转化。
5、対训练集中每一个输入—输出样本对重复以上步骤,直到整个训练样本集的误差减小到符合要求为止。
❽ 神经网络中的前向指的是什么反向指的是什么
指的是前向传播和反向传播,前向传播根据输入值和神经网络的权值,并传到最后一层计算输出值。反向传播是根据真实值和输出值之间的误差函数对各参数进行求梯度,并作用优化方法来反向逐层更新参数。
❾ 神经网络中的前向和后向算法
神经网络中的前向和后向算法
看了一段时间的深度网络模型,也在tf和theano上都跑了一些模型,但是感觉没有潜下去,对很多东西的理解都只停留在“这个是干什么的”层次上面。昨天在和小老师一起看一篇文章的时候,就被问到RNN里面的后向传播算法具体是怎么推。当时心里觉得BP算法其实很熟悉啊,然后在推导的过程中就一脸懵逼了。于是又去网上翻了翻相关内容,自己走了一遍,准备做个笔记,算是个交代。
准备一个神经网络模型,比如:
其中,[i1,i2]
代表输入层的两个结点,[h1,h2]代表隐藏层的两个结点,[o1,o2]为输出。[b1,b2]
为偏置项。连接每个结点之间的边已经在图中标出。
来了解一下前向算法:
前向算法的作用是计算输入层结点对隐藏层结点的影响,也就是说,把网络正向的走一遍:输入层—->隐藏层—->输出层
计算每个结点对其下一层结点的影响。
?? 例如,我们要算结点h1
的值,那么就是:
是一个简单的加权求和。这里稍微说一下,偏置项和权重项的作用是类似的,不同之处在于权重项一般以乘法的形式体现,而偏置项以加法的形式体现。
??而在计算结点o1时,结点h1的输出不能简单的使用neth1的结果,必须要计算激活函数,激活函数,不是说要去激活什么,而是要指“激活的神经元的特征”通过函数保留并映射出来。以sigmoid函数为例,h1的输出:
于是
最后o1的输出结果,也就是整个网络的一个输出值是:
按照上面的步骤计算出out02,则[outo1,outo2]就是整个网络第一次前向运算之后得到的结果。
后向算法:
??在实际情况中,因为是随机给定的权值,很大的可能(几乎是100%)得到的输出与实际结果之间的偏差非常的大,这个时候我们就需要比较我们的输出和实际结果之间的差异,将这个残差返回给整个网络,调整网络中的权重关系。这也是为什么我们在神经网络中需要后向传播的原因。其主要计算步骤如下:
1. 计算总误差
2. 隐藏层的权值更新
在要更新每个边的权重之前,必须要知道这条边对最后输出结果的影响,可以用整体误差对w5求偏导求出:
具体计算的时候,可以采用链式法则展开:
在计算的时候一定要注意每个式子里面哪些自变量是什么,求导千万不要求错了。
??需要讲出来的一个地方是,在计算w1的权重时,Etotal中的两部分都需要对它进行求导,因为这条边在前向传播中对两个残差都有影响
3. 更新权重 这一步里面就没什么东西了,直接根据学习率来更新权重:
至此,一次正向+反向传播过程就到此为止,接下来只需要进行迭代,不断调整边的权重,修正网络的输出和实际结果之间的偏差(也就是training整个网络)。