导航:首页 > 网络共享 > 迭代调整的是神经网络哪个参数

迭代调整的是神经网络哪个参数

发布时间:2022-06-07 14:11:38

Ⅰ MATLAB的BP神经网络中记录迭代次数的mse值的变量是什么

mse是均方误差(Mean Squared Error, MSE)是衡量“平均误差”的一种较方便的方法,可以评价数据的变化程度。
在MATLAB神经网络里,它是衡量神经网络(BP一样)在每一代的训练表现情况,MSE越小说明BP训练计算的越准确,结果越理想。
采纳我把,有问题继续问我

Ⅱ 神经网络算法中,参数的设置或者调整,有什么方法可以采用

若果对你有帮助,请点赞。
神经网络的结构(例如2输入3隐节点1输出)建好后,一般就要求神经网络里的权值和阈值。现在一般求解权值和阈值,都是采用梯度下降之类的搜索算法(梯度下降法、牛顿法、列文伯格-马跨特法、狗腿法等等),这些算法会先初始化一个解,在这个解的基础上,确定一个搜索方向和一个移动步长(各种法算确定方向和步长的方法不同,也就使各种算法适用于解决不同的问题),使初始解根据这个方向和步长移动后,能使目标函数的输出(在神经网络中就是预测误差)下降。 然后将它更新为新的解,再继续寻找下一步的移动方向的步长,这样不断的迭代下去,目标函数(神经网络中的预测误差)也不断下降,最终就能找到一个解,使得目标函数(预测误差)比较小。
而在寻解过程中,步长太大,就会搜索得不仔细,可能跨过了优秀的解,而步长太小,又会使寻解过程进行得太慢。因此,步长设置适当非常重要。
学习率对原步长(在梯度下降法中就是梯度的长度)作调整,如果学习率lr = 0.1,那么梯度下降法中每次调整的步长就是0.1*梯度,
而在matlab神经网络工具箱里的lr,代表的是初始学习率。因为matlab工具箱为了在寻解不同阶段更智能的选择合适的步长,使用的是可变学习率,它会根据上一次解的调整对目标函数带来的效果来对学习率作调整,再根据学习率决定步长。
机制如下:
if newE2/E2 > maxE_inc %若果误差上升大于阈值
lr = lr * lr_dec; %则降低学习率
else
if newE2 < E2 %若果误差减少
lr = lr * lr_inc;%则增加学习率
end
详细的可以看《神经网络之家》nnetinfo里的《[重要]写自己的BP神经网络(traingd)》一文,里面是matlab神经网络工具箱梯度下降法的简化代码

若果对你有帮助,请点赞。
祝学习愉快

Ⅲ 深度神经网络dnn怎么调节参数

深度神经网络(DNN)目前是许多现代AI应用的基础。
自从DNN在语音识别和图像识别任务中展现出突破性的成果,使用DNN的应用数量呈爆炸式增加。这些DNN方法被大量应用在无人驾驶汽车,癌症检测,游戏AI等方面。
在许多领域中,DNN目前的准确性已经超过人类。与早期的专家手动提取特征或制定规则不同,DNN的优越性能来自于在大量数据上使用统计学习方法,从原始数据中提取高级特征的能力,从而对输入空间进行有效的表示。

然而,DNN超高的准确性是以超高的计算复杂度为代价的。
通常意义下的计算引擎,尤其是GPU,是DNN的基础。因此,能够在不牺牲准确性和增加硬件成本的前提下,提高深度神经网络的能量效率和吞吐量的方法,对于DNN在AI系统中更广泛的应用是至关重要的。研究人员目前已经更多的将关注点放在针对DNN计算开发专用的加速方法。
鉴于篇幅,本文主要针对论文中的如下几部分详细介绍:
DNN的背景,历史和应用
DNN的组成部分,以及常见的DNN模型
简介如何使用硬件加速DNN运算
DNN的背景
人工智能与深度神经网络

深度神经网络,也被称为深度学习,是人工智能领域的重要分支,根据麦卡锡(人工智能之父)的定义,人工智能是创造像人一样的智能机械的科学工程。深度学习与人工智能的关系如图1所示:

图1:深度神经网络与人工智能的关系
人工智能领域内,一个大的子领域是机器学习,由Arthur Samuel在1959年定义为:让计算机拥有不需要明确编程即可学习的能力。
这意味着创建一个程序,这个程序可以被训练去学习如何去做一些智能的行为,然后这个程序就可以自己完成任务。而传统的人工启发式方法,需要对每个新问题重新设计程序。
高效的机器学习算法的优点是显而易见的。一个机器学习算法,只需通过训练,就可以解决某一领域中每一个新问题,而不是对每个新问题特定地进行编程。
在机器学习领域,有一个部分被称作brain-inspired computation。因为人类大脑是目前学习和解决问题最好的“机器”,很自然的,人们会从中寻找机器学习的方法。
尽管科学家们仍在探索大脑工作的细节,但是有一点被公认的是:神经元是大脑的主要计算单元。
人类大脑平均有860亿个神经元。神经元相互连接,通过树突接受其他神经元的信号,对这些信号进行计算之后,通过轴突将信号传递给下一个神经元。一个神经元的轴突分支出来并连接到许多其他神经元的树突上,轴突分支和树突之间的连接被称为突触。据估计,人类大脑平均有1014-1015个突触。
突触的一个关键特性是它可以缩放通过它的信号大小。这个比例因子可以被称为权重(weight),普遍认为,大脑学习的方式是通过改变突触的权重实现的。因此,不同的权重导致对输入产生不同的响应。注意,学习过程是学习刺激导致的权重调整,而大脑组织(可以被认为是程序)并不改变。
大脑的这个特征对机器学习算法有很好的启示。
神经网络与深度神经网络

神经元的计算是输入值的加权和这个概念启发了神经网络的研究。这些加权和对应于突触的缩放值以及神经元所接收的值的组合。此外,神经元并不仅仅是输入信号的加权和,如果是这样的话,级联的神经元的计算将是一种简单的线性代数运算。
相反的是,神经元组合输入的操作似乎是一种非线性函数,只有输入达到某个阈值的时候,神经元才会生成输出。因此,通过类比,我们可以知道神经网络在输入值的加权和的基础上应用了非线性函数。
图2(a)展示了计算神经网络的示意图,图的最左边是接受数值的“输入层”。这些值被传播到中间层神经元,通常也叫做网络的“隐藏层”。通过一个或更多隐藏层的加权和最终被传播到“输出层”,将神经网络的最终结果输出给用户。

图2:神经网络示意图

在神经网络领域,一个子领域被称为深度学习。最初的神经网络通常只有几层的网络。而深度网络通常有更多的层数,今天的网络一般在五层以上,甚至达到一千多层。
目前在视觉应用中使用深度神经网络的解释是:将图像所有像素输入到网络的第一层之后,该层的加权和可以被解释为表示图像不同的低阶特征。随着层数的加深,这些特征被组合,从而代表更高阶的图像特征。
例如,线可以被组合成形状,再进一步,可以被组合成一系列形状的集合。最后,再训练好这些信息之后,针对各个图像类别,网络给出由这些高阶特征组成各个对象的概率,即分类结果。
推理(Inference)与训练(Training)
既然DNN是机器学习算法中的一员,那么它的基本编程思想仍然是学习。DNN的学习即确定网络的权重值。通常,学习过程被称为训练网络(training)。一旦训练完成,程序可以使用由训练确定的权值进行计算,这个使用网络完成任务的操作被被称为推断(inference)。
接下来,如图3所示,我们用图像分类作为例子来展示如何训练一个深度神经网络。当我们使用一个DNN的时候,我们输入一幅图片,DNN输出一个得分向量,每一个分数对应一个物体分类;得到最高分数的分类意味着这幅图片最有可能属于这个分类。
训练DNN的首要目标就是确定如何设置权重,使得正确分类的得分最高(图片所对应的正确分类在训练数据集中标出),而使其他不正确分类的得分尽可能低。理想的正确分类得分与目前的权重所计算出的得分之间的差距被称为损失函数(loss)。
因此训练DNN的目标即找到一组权重,使得对一个较大规模数据集的loss最小。

图3:图像分类

权重(weight)的优化过程类似爬山的过程,这种方法被称为梯度下降(gradient decent)。损失函数对每个权值的梯度,即损失函数对每个权值求偏导数,被用来更新权值(例:第t到t+1次迭代:,其中α被称为学习率(Learning rate)。梯度值表明权值应该如何变化以减小loss。这个减小loss值的过程是重复迭代进行的。
梯度可以通过反向传播(Back-Propagation)过程很高效地进行计算,loss的影响反向通过网络来计算loss是如何被每个权重影响的。
训练权重有很多种方法。前面提到的是最常见的方法,被称为监督学习,其中所有的训练样本是有标签的。
无监督学习是另一种方法,其中所有训练样本都没有标签,最终目标是在数据中查找结构或聚类。半监督学习结合了两种方法,只有训练数据的一小部分被标记(例如,使用未标记的数据来定义集群边界,并使用少量的标记数据来标记集群)。
最后,强化学习可以用来训练一个DNN作为一个策略网络,对策略网络给出一个输入,它可以做出一个决定,使得下一步的行动得到相应的奖励;训练这个网络的过程是使网络能够做出使奖励(即奖励函数)最大化的决策,并且训练过程必须平衡尝试新行为(Exploration)和使用已知能给予高回报的行为(Exploitation)两种方法。

用于确定权重的另一种常用方法是fine-tune,使用预先训练好的模型的权重用作初始化,然后针对新的数据集(例如,传递学习)或新的约束(例如,降低的精度)调整权重。与从随机初始化开始相比,能够更快的训练,并且有时会有更好的准确性。

Ⅳ 神经网络参数如何确定

神经网络各个网络参数设定原则:

①、网络节点  网络输入层神经元节点数就是系统的特征因子(自变量)个数,输出层神经元节点数就是系统目标个数。隐层节点选按经验选取,一般设为输入层节点数的75%。如果输入层有7个节点,输出层1个节点,那么隐含层可暂设为5个节点,即构成一个7-5-1 BP神经网络模型。在系统训练时,实际还要对不同的隐层节点数4、5、6个分别进行比较,最后确定出最合理的网络结构。

②、初始权值的确定  初始权值是不应完全相等的一组值。已经证明,即便确定  存在一组互不相等的使系统误差更小的权值,如果所设Wji的的初始值彼此相等,它们将在学习过程中始终保持相等。故而,在程序中,我们设计了一个随机发生器程序,产生一组一0.5~+0.5的随机数,作为网络的初始权值。

③、最小训练速率  在经典的BP算法中,训练速率是由经验确定,训练速率越大,权重变化越大,收敛越快;但训练速率过大,会引起系统的振荡,因此,训练速率在不导致振荡前提下,越大越好。因此,在DPS中,训练速率会自动调整,并尽可能取大一些的值,但用户可规定一个最小训练速率。该值一般取0.9。

④、动态参数  动态系数的选择也是经验性的,一般取0.6 ~0.8。

⑤、允许误差  一般取0.001~0.00001,当2次迭代结果的误差小于该值时,系统结束迭代计算,给出结果。

⑥、迭代次数  一般取1000次。由于神经网络计算并不能保证在各种参数配置下迭代结果收敛,当迭代结果不收敛时,允许最大的迭代次数。

⑦、Sigmoid参数 该参数调整神经元激励函数形式,一般取0.9~1.0之间。

⑧、数据转换。在DPS系统中,允许对输入层各个节点的数据进行转换,提供转换的方法有取对数、平方根转换和数据标准化转换。

(4)迭代调整的是神经网络哪个参数扩展阅读:

神经网络的研究内容相当广泛,反映了多学科交叉技术领域的特点。主要的研究工作集中在以下几个方面:

1.生物原型

从生理学、心理学、解剖学、脑科学、病理学等方面研究神经细胞、神经网络、神经系统的生物原型结构及其功能机理。

2.建立模型

根据生物原型的研究,建立神经元、神经网络的理论模型。其中包括概念模型、知识模型、物理化学模型、数学模型等。

3.算法

在理论模型研究的基础上构作具体的神经网络模型,以实现计算机模拟或准备制作硬件,包括网络学习算法的研究。这方面的工作也称为技术模型研究。

神经网络用到的算法就是向量乘法,并且广泛采用符号函数及其各种逼近。并行、容错、可以硬件实现以及自我学习特性,是神经网络的几个基本优点,也是神经网络计算方法与传统方法的区别所在。

Ⅳ 神经网络中学习率、批处理样本数量、迭代次数有什么意义和影响

学习率是指每次训练过程中(迭代)变量改变(更新)的比率,例如x(t+1) = x(t) - a * delta
其中a可以看出学习率,一般在0 - 1之间,相当于步长,而delta相当于方向。
批处理样本数量,标准的BP是单样本学习的方法,例如图片识别,第一个图是猫,然后输入图像,网络学习一次(变量更新一次),学习到图片的特征,然后再输入第二个图片狗,在前面的基础上再学习。 而批训练,就是说两个图片一起输入后,计算两个样本学习的平均的误差(Loss), 从整体上来学习整个训练样本集合,这样的学习对于大样本数据更加有效率。
迭代次数就是学习的次数了,每次迭代就是向最优点前进的一小步,神经网络要学习到样本的特征,那就要一步一步地走,走了很多步才能到达符合精度地地点,所以需要学习很多次。

Ⅵ python神经网络编程有什么用

预测器
神经网络和计算机一样,对于输入和输出都做了一些处理,当我们不知道这些是什么具体处理的时候,可以使用模型来估计,模型中最重要的就是其中的参数。
对于以前所学的知识都是求出特定的参数,而在这里是使用误差值的大小去多次指导参数的调整,这就是迭代。
误差值=真实值-计算值
分类器
预测器是转换输入和输出之间的关系,分类器是将两类事物划分开,只是预测器的目的是找到输出在直线上,分类器是找到输出分为两类各在直线的上下方。但其实都是找到一个合适的斜率(只考虑简单情况下)
分类器中的误差值E=期望的正确值-基于A的猜测值得到的计算值$ E=t-y \quad E=(ΔA)x $这就是使用误差值E得到ΔA
ΔA=E/x
,再将ΔA作为调整分界线斜率A的量
但是这样会存在一个问题,那就是最终改进的直线会与最后一个训练样本十分匹配,近视可以认识忽略了之前的训练样本,所以要采用一个新的方法:采用ΔA几分之一的一个变化值,这样既能解决上面的问题,又可以有节制地抑制错误和噪声的影响,该方法如下
ΔA=L(E/x)
此处的L称之为调节系数(学习率)
使用学习率可以解决以上问题,但是当数据本身不是由单一线性过程支配时,简单的线性分类器还是不能实现分类,这个时候就要采用多个线性分类器来划分(这就是神经网络的核心思想)

Ⅶ hopfield神经网络怎么迭代

人工神经网络模型主要考虑网络连接的拓扑结构、神经元的特征、学习规则等。目前,已有近40种神经网络模型,其中有反传网络、感知器、自组织映射、Hopfield网络、波耳兹曼机、适应谐振理论等。根据连接的拓扑结构,神经网络模型可以分为:

(1)前向网络 网络中各个神经元接受前一级的输入,并输出到下一级,网络中没有反馈,可以用一个有向无环路图表示。这种网络实现信号从输入空间到输出空间的变换,它的信息处理能力来自于简单非线性函数的多次复合。网络结构简单,易于实现。反传网络是一种典型的前向网络。

(2)反馈网络 网络内神经元间有反馈,可以用一个无向的完备图表示。这种神经网络的信息处理是状态的变换,可以用动力学系统理论处理。系统的稳定性与联想记忆功能有密切关系。Hopfield网络、波耳兹曼机均属于这种类型。

学习是神经网络研究的一个重要内容,它的适应性是通过学习实现的。根据环境的变化,对权值进行调整,改善系统的行为。由Hebb提出的Hebb学习规则为神经网络的学习算法奠定了基础。Hebb规则认为学习过程最终发生在神经元之间的突触部位,突触的联系强度随着突触前后神经元的活动而变化。在此基础上,人们提出了各种学习规则和算法,以适应不同网络模型的需要。有效的学习算法,使得神经网络能够通过连接权值的调整,构造客观世界的内在表示,形成具有特色的信息处理方法,信息存储和处理体现在网络的连接中。
根据学习环境不同,神经网络的学习方式可分为监督学习和非监督学习。在监督学习中,将训练样本的数据加到网络输入端,同时将相应的期望输出与网络输出相比较,得到误差信号,以此控制权值连接强度的调整,经多次训练后收敛到一个确定的权值。当样本情况发生变化时,经学习可以修改权值以适应新的环境。使用监督学习的神经网络模型有反传网络、感知器等。非监督学习时,事先不给定标准样本,直接将网络置于环境之中,学习阶段与工作阶段成为一体。此时,学习规律的变化服从连接权值的演变方程。非监督学习最简单的例子是Hebb学习规则。竞争学习规则是一个更复杂的非监督学习的例子,它是根据已建立的聚类进行权值调整。自组织映射、适应谐振理论网络等都是与竞争学习有关的典型模型。
研究神经网络的非线性动力学性质,主要采用动力学系统理论、非线性规划理论和统计理论,来分析神经网络的演化过程和吸引子的性质,探索神经网络的协同行为和集体计算功能,了解神经信息处理机制。为了探讨神经网络在整体性和模糊性方面处理信息的可能,混沌理论的概念和方法将会发挥作用。混沌是一个相当难以精确定义的数学概念。一般而言,“混沌”是指由确定性方程描述的动力学系统中表现出的非确定性行为,或称之为确定的随机性。“确定性”是因为它由内在的原因而不是外来的噪声或干扰所产生,而“随机性”是指其不规则的、不能预测的行为,只可能用统计的方法描述。混沌动力学系统的主要特征是其状态对初始条件的灵敏依赖性,混沌反映其内在的随机性。混沌理论是指描述具有混沌行为的非线性动力学系统的基本理论、概念、方法,它把动力学系统的复杂行为理解为其自身与其在同外界进行物质、能量和信息交换过程中内在的有结构的行为,而不是外来的和偶然的行为,混沌状态是一种定态。混沌动力学系统的定态包括:静止、平稳量、周期性、准同期性和混沌解。混沌轨线是整体上稳定与局部不稳定相结合的结果,称之为奇异吸引子。

Ⅷ 神经网络训练迭代次数到底是就是外层循环次数呢,还是外层循环次数*内层的样本数目

迭代次数是:总的迭代次数即echo。
误差曲线的纵坐标给出的是:测试样本集中的几组样本的输出误差的mse。
自己编程的话,误差计算方式可以自己定,可以是MSE、SSE、1/2*sse等等。

Ⅸ 深度学习入门课程笔记 神经网络

深度学习入门课程笔记 神经网络
神经网络:

首先咱们先来回顾一下之前课程所讲前向传播和反向传播知识点,前往传播就是从输入X到最终得到LOSS值的过程,反向传播是从最终的LOSS值经过梯度的传播最终计算出权重矩阵W中所有参数对于最终的LOSS值影响大小,更新参数就是通过不同权重参数对终LOSS值的影响来调节参数,使得咱们的参数矩阵W能够更拟合咱们的数据,也就是使得最终的LOSS值能够降低。这一系列的过程就是相当于完成了一次迭代
神经网络本质

下面咱们就来看看神经网络跟传统的线性分类到底有什么区别,从公式中我们可以看出,一个最明显的区别就是神经网络函数多了一个MAX()计算也就是说我们咱们现在的函数公式变成了一个非线性的操作,也正是这种非线性的函数使得神经网络相比于传统的线性分类更强大,因为非线性可以使得咱们的函数去拟合更复杂的数据。
神经网络结构

接下来咱们就来看一下神经网络的结构,从途中可以看出,神经网络是一个层次的结构
输入层也就是代表着数据源
隐层这个大家理解起来可能有些费劲,咱们可以把隐层当成是中间层也就是在这里对输入数据进行了非线性的变换
激活函数它是跟隐层在一起的,比如这个MAX()函数就是一个激活函数,正是因为激活函数的存在才使得整个神经网络呈现出一种非线性的模式。
输出层这个就是最终得到的结果了,比如一个分类任务,最终的输出就是每个类别的概率值了

我们可以看到对应于多层的网络也就是有多个隐层,相当于咱们又加了一层非线性函数MAX(),这个理解起来很简单了吧,对于深层网络来说,它具有更好的非线性也就是说网络的层数越深就更能够去拟合更复杂的数据。
生物学上的结构

看过很多讲解都提高了把神经网络和人类的脑结构相对比,我觉得这有些增加了游戏难度,因为很多同学本身对生物学结构就不是很清楚,又搞了这多名词出来,理解起来好像更费劲了,这里咱们就不说生物学结构了,直接看右半部分,和之前的线性分类最大的区别就是我们多了一个activation function也就是咱们刚才所说的激活函数,可以说正是激活函数的存在使得整个神经网络变得强大起来。
神经元

那么神经网络能表达多复杂的数据信息是由什么决定的呢?这个例子给了咱们很好的解释,神经网络是表达能力是由神经元的个数,也就是每一个隐层所函数神经元的个数来决定的,神经元越多,层数越深表达的能力也就越强,理论上我们认为神经元越多越好!
防止过拟合

咱们刚才说了神经网络具有很强的表达能力,但是也很危险的,就是说神经网络很容易发成过拟合现象,因为咱们有大量的神经元也就是导致了我们需要的参数是极其多的,那么该怎么办呢?最直接的方法就是加上正则化项,它可以使得咱们的神经网络不至于过拟合很严重也是咱们训练神经网络必做的一项,图中显示了正则化的作用!

Ⅹ 神经网络 的四个基本属性是什么

神经网络 的四个基本属性:

(1)非线性:非线性是自然界的普遍特征。脑智能是一种非线性现象。人工神经元处于两种不同的激活或抑制状态,它们在数学上是非线性的。由阈值神经元组成的网络具有更好的性能,可以提高网络的容错性和存储容量。

(2)无限制性:神经网络通常由多个连接广泛的神经元组成。一个系统的整体行为不仅取决于单个神经元的特性,而且还取决于单元之间的相互作用和互连。通过单元之间的大量连接来模拟大脑的非限制性。联想记忆是一个典型的无限制的例子。

(3)非常定性:人工神经网络具有自适应、自组织和自学习的能力。神经网络处理的信息不仅会发生变化,而且非线性动态系统本身也在发生变化。迭代过程通常用来描述动态系统的演化。

(4)非凸性:在一定条件下,系统的演化方向取决于特定的状态函数。例如,能量函数的极值对应于系统的相对稳定状态。非凸性是指函数具有多个极值,系统具有多个稳定平衡态,从而导致系统演化的多样性。

(10)迭代调整的是神经网络哪个参数扩展阅读:

神经网络的特点优点:

人工神经网络的特点和优越性,主要表现在三个方面:

第一,具有自学习功能。例如实现图像识别时,只在先把许多不同的图像样板和对应的应识别的结果输入人工神经网络,网络就会通过自学习功能,慢慢学会识别类似的图像。自学习功能对于预测有特别重要的意义。预期未来的人工神经网络计算机将为人类提供经济预测、市场预测、效益预测,其应用前途是很远大的。

第二,具有联想存储功能。用人工神经网络的反馈网络就可以实现这种联想。

第三,具有高速寻找优化解的能力。寻找一个复杂问题的优化解,往往需要很大的计算量,利用一个针对某问题而设计的反馈型人工神经网络,发挥计算机的高速运算能力,可能很快找到优化解。

阅读全文

与迭代调整的是神经网络哪个参数相关的资料

热点内容
华为网络软件怎么设置 浏览:513
大爱是什么意思网络 浏览:478
邮政的无线网络未配置什么意思 浏览:370
平凉优质网络公司有哪些 浏览:47
苹果解锁设备一直说遇到网络困难 浏览:241
网络机顶盒怎么查看mac地址 浏览:88
网络安全和发现要 浏览:579
湖北招商帮网络怎么样 浏览:92
联想g40自动关闭无线网络 浏览:421
惠州汽车网络营销全网推广 浏览:646
沧州营销网络推广哪个好 浏览:801
苹果手机出境怎么设置网络 浏览:419
网络盒子便宜的多少钱 浏览:209
电脑启动之后网络掉线 浏览:457
如何加入电脑间的共享网络 浏览:116
适合在家做的网络工作有哪些 浏览:167
6月1日网络安全法 浏览:600
惠普笔记本如何解除无线网络 浏览:718
连接路由器无线网络显示不可用 浏览:102
吴江区网络标志设计电话多少 浏览:847

友情链接