㈠ 神经网络加智能算法,写程序用什么语言好delphi合适吗简单易学的相比较就更好了,谢谢高手
神经网络算法本身就是智能算法啊,如果说仿真,那必然是用MATLAB好啊,其中有一个SIMULINK模块,用里边的神经网络模块可以直接进行仿真,不用编程序的,它是模块化得。当然如果老师要求必须编程,那就推荐一本书<<先进PID算法及MATLAB仿真》,里边有神经元网络的已经编好的程序,但这只是只能PID算法。不算是只能算法,但是这是一个偷懒的做法。如果真的想系统的学习先进算法,神经元网络,建议楼主还是要把神经网络的理论知识学透才行。
㈡ cnn卷积神经网络用什么语言来写pascial
200+
这个是hinton matlab代码的C++改写版. convnetjs - Star,SAE,首选的肯定是LIBSVM这个库;RBM#47. DeepLearn Toolbox - Star,包括了CNN;C++SVM方面,Java。
2。
下面主要一些DeepLearning的GitHub项目吧;SdA#47:2200+
实现了卷积神经网络,还实现了Rasmussen的共轭梯度Conjugate Gradient算法,DBN,C/CRBM/CDBN#47:Python。
3,CAE等主流模型,实现的模型有DBN#47,可以用来做分类,语言是Python;LR等,从算法与实现上都比较全:800+
实现了深度学习网络. rbm-mnist - Star,应该是应用最广的机器学习库了,强化学习等. Deep Learning(yusugomo) - Star,Scala:1000+
Matlab实现中最热的库存,提供了5种语言的实现。
5;dA#47:500+
这是同名书的配套代码。
4. Neural-Networks-And-Deep-Learning - Star!
1,回归
㈢ BP神经网络代码用什么实现
BP算法,只是一种算法,用任何语言都能实现。
Matlab有神经网络工具箱,提供已经封装好的:网络建立函数newff、训练函数train,省去了自己编写代码的麻烦,你可以考虑。
BP(Back Propagation)神经网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。BP神经网络模型拓扑结构包括输入层(input)、隐层(hidden layer)和输出层(output layer)。
㈣ 神经网络如何用单片机实现
用单片机开发神经网络应用主要考虑三个方向:
1)网络本身,神网本质上是一组矩阵,矩阵在单片机中的表现可以通过数组来实现;
2)输入输出,神网的应用就是把输入阵列与网络本身的矩阵点乘叉乘后算术求和,产生输出矩阵,把输入输出的算法做到单片机里也不是难事;
3)训练,神网的权值矩阵都是训练出来的,采用诸如前向或反向的算法,可以做离线也可以做在线,如果做离线就没有必要把算法实现在单片机内,PC上就可以做,然后导入矩阵即可;如果做在线则是相对较难的技术,需要在单片机上实现,对于单片机本身的资源要求也较高。
简单说,1)是基础,也最容易;1)+2)就已经是神经网络的应用了,也容易实现;1)+2)+Matlab神经网络离线训练是易于实现,且富有弹性的应用方式;1)+2)+在线训练基本上就是具备自己学习能力的机器人,这是学术界一直探索的方向。
希望能给你一些启发,研究神网对我来说已经是五六年前的过去了,还是很怀念那时候的激情,个人认为这将是二十一世纪后期最有影响力的技术之一。
㈤ 请问高手,神经网络模型与学习算法用什么语言编程比较好JAVA 、C语言还是C++等。谢谢!
个人建议,用Java,毕竟它对网络的针对性较强,而学习算法可以从C开始再到java因为从小到大比较好…
㈥ AlghaGo是什么编程语言开发的是神经网络吗
神经网络是一套识别预测算法,和程序语言又没什么关系,什么语言都可以实现啊
㈦ 用c语言编写RBF神经网络程序
RBF网络能够逼近任意的非线性函数,可以处理系统内的难以解析的规律性,具有良好的泛化能力,并有很快的学习收敛速度,已成功应用于非线性函数逼近、时间序列分析、数据分类、模式识别、信息处理、图像处理、系统建模、控制和故障诊断等。
简单说明一下为什么RBF网络学习收敛得比较快。当网络的一个或多个可调参数(权值或阈值)对任何一个输出都有影响时,这样的网络称为全局逼近网络。由于对于每次输入,网络上的每一个权值都要调整,从而导致全局逼近网络的学习速度很慢。BP网络就是一个典型的例子。
如果对于输入空间的某个局部区域只有少数几个连接权值影响输出,则该网络称为局部逼近网络。常见的局部逼近网络有RBF网络、小脑模型(CMAC)网络、B样条网络等。
附件是RBF神经网络的C++源码。
㈧ 神经网络编程序用什么语言啊
一般用matlab或者scilab来编程,因为输入输出是图像的话,用矩阵计算会更方便。
㈨ 人工智能是用什么语言编写的
人工智能用的比较多的语言有:Python、JAVA 和相关语言、C/C++、JavaScript、R语言。
从事人工智能,需要数学基础:高等数学,线性代数,概率论数理统计和随机过程,离散数学,数值分析。
需要算法的积累:人工神经网络,支持向量机,遗传算法等等算法;当然还有各个领域需要的算法,比如要让机器人自己在位置环境导航和建图就需要研究SLAM;总之算法很多需要时间的积累。
需要掌握至少一门编程语言:毕竟算法的实现还是要编程的;如果深入到硬件的话,一些电类基础课必不可少。有的还会需要了解域名比如com、top等等。
㈩ 人工智能用的编程语言是哪些
人工智能是一种未来性的技术,目前正在致力于研究自己的一套工具。一系列的进展在过去的几年中发生了:无事故驾驶超过300000英里并在三个州合法行驶迎来了自动驾驶的一个里程碑;IBM Waston击败了Jeopardy两届冠军;统计学习技术从对消费者兴趣到以万亿记的图像的复杂数据集进行模式识别。这些发展必然提高了科学家和巨匠们对人工智能的兴趣,这也使得开发者们了解创建人工智能应用的真实本质。
谷歌的AI击败了一位围棋大师,是一种衡量人工智能突然的快速发展的方式,也揭示了这些技术如何发展而来和将来可以如何发展。
哪一种编程语言适合人工智能?
你所熟练掌握的每一种编程语言都可以是人工智能的开发语言。人工智能程序可以使用几乎所有的编程语言实现,最常见的有:Lisp,Prolog,C/C++,近来又有Java,最近还有Python.
LISP
像LISP这样的高级语言在人工智能中备受青睐,因为在各高校多年的研究后选择了快速原型而舍弃了快速执行。垃圾收集,动态类型,数据函数,统一的语法,交互式环境和可扩展性等一些特性使得LIST非常适合人工智能编程。
PROLOG
这种语言有着LISP高层和传统优势有效结合,这对AI是非常有用的。它的优势是解决“基于逻辑的问题”。Prolog提供了针对于逻辑相关问题的解决方案,或者说它的解决方案有着简洁的逻辑特征。它的主要缺点(恕我直言)是学起来很难。
机器学习库
PyBrain 一个灵活,简单而有效的针对机器学习任务的算法,它是模块化的Python机器学习库。它也提供了多种预定义好的环境来测试和比较你的算法。
PyML 一个用Python写的双边框架,重点研究SVM和其他内核方法。它支持Linux和Mac OS X。
scikit-learn旨在提供简单而强大的解决方案,可以在不同的上下文中重用:机器学习作为科学和工程的一个多功能工具。它是python的一个模块,集成了经典的机器学习的算法,这些算法是和python科学包(numpy,scipy.matplotlib)紧密联系在一起的。
MDP-Toolkit这是一个Python数据处理的框架,可以很容易的进行扩展。它海收集了有监管和没有监管的学习算饭和其他数据处理单元,可以组合成数据处理序列或者更复杂的前馈网络结构。新算法的实现是简单和直观的。可用的算法是在不断的稳定增加的,包括信号处理方法(主成分分析、独立成分分析、慢特征分析),流型学习方法(局部线性嵌入),集中分类,概率方法(因子分析,RBM),数据预处理方法等等。 自然语言和文本处理库
NLTK 开源的Python模块,语言学数据和文档,用来研究和开发自然语言处理和文本分析。有windows,Mac OSX和Linux版本。
结论
python因为提供像 scikit-learn的好的框架,在人工智能方面扮演了一个重要的角色:Python中的机器学习,实现了这一领域中大多的需求。D3.js JS中数据驱动文档时可视化最强大和易于使用的工具之一。处理框架,它的快速原型制造使得它成为一门不可忽视的重要语言。AI需要大量的研究,因此没有必要要求一个500KB的Java样板代码去测试新的假说。python中几乎每一个想法都可以迅速通过20-30行代码来实现(JS和LISP也是一样)。因此,它对于人工智能是一门非常有用的语言。
案例
做了一个实验,一个使用人工智能和物联网做员工行为分析的软件。该软件通过员工情绪和行为的分心提供了一个有用的反馈给员工,从而提高了管理和工作习惯。
使用Python机器学习库,opencv和haarcascading概念来培训。建立了样品POC来检测通过安置在不同地点的无线摄像头传递回来基础情感像幸福,生气,悲伤,厌恶,怀疑,蔑视,讥讽和惊喜。收集到的数据会集中到云数据库中,甚至整个办公室都可以通过在Android设备或桌面点击一个按钮来取回。
开发者在深入分析脸部情感上复杂点和挖掘更多的细节中取得进步。在深入学习算法和机器学习的帮助下,可以帮助分析员工个人绩效和适当的员工/团队反馈。