① 社会工作中,小组工作理论提到贝尔斯symlog方法,用来分析小组互动过程,这个方法是什么意思
咨询记录 · 回答于2021-04-20
② 贝叶斯网络的特性
1、贝叶斯网络本身是一种不定性因果关联模型。贝叶斯网络与其他决策模型不同,它本身是将多元知识图解可视化的一种概率知识表达与推理模型,更为贴切地蕴含了网络节点变量之间的因果关系及条件相关关系。
2、贝叶斯网络具有强大的不确定性问题处理能力。贝叶斯网络用条件概率表达各个信息要素之间的相关关系,能在有限的、不完整的、不确定的信息条件下进行学习和推理。
3、贝叶斯网络能有效地进行多源信息表达与融合。贝叶斯网络可将故障诊断与维修决策相关的各种信息纳入网络结构中,按节点的方式统一进行处理,能有效地按信息的相关关系进行融合。
对于贝叶斯网络推理研究中提出了多种近似推理算法,主要分为两大类:基于仿真方法和基于搜索的方法。在故障诊断领域里就我们水电仿真而言,往往故障概率很小,所以一般采用搜索推理算法较适合。就一个实例而言,首先要分析使用哪种算法模型:
a.)如果该实例节点信度网络是简单的有向图结构,它的节点数目少的情况下,采用贝叶斯网络的精确推理,它包含多树传播算法,团树传播算法,图约减算法,针对实例事件进行选择恰当的算法;
b.)如果是该实例所画出节点图形结构复杂且节点数目多,我们可采用近似推理算法去研究,具体实施起来最好能把复杂庞大的网络进行化简,然后在与精确推理相结合来考虑。
在日常生活中,人们往往进行常识推理,而这种推理通常是不准确的。例如,你看见一个头发潮湿的人走进来,你认为外面下雨了,那你也许错了;如果你在公园里看到一男一女带着一个小孩,你认为他们是一家人,你可能也犯了错误。在工程中,我们也同样需要进行科学合理的推理。但是,工程实际中的问题一般都比较复杂,而且存在着许多不确定性因素。这就给准确推理带来了很大的困难。很早以前,不确定性推理就是人工智能的一个重要研究领域。尽管许多人工智能领域的研究人员引入其它非概率原理,但是他们也认为在常识推理的基础上构建和使用概率方法也是可能的。为了提高推理的准确性,人们引入了概率理论。最早由Judea Pearl于1988年提出的贝叶斯网络(Bayesian Network)实质上就是一种基于概率的不确定性推理网络。它是用来表示变量集合连接概率的图形模型,提供了一种表示因果信息的方法。当时主要用于处理人工智能中的不确定性信息。随后它逐步成为了处理不确定性信息技术的主流,并且在计算机智能科学、工业控制、医疗诊断等领域的许多智能化系统中得到了重要的应用。
贝叶斯理论是处理不确定性信息的重要工具。作为一种基于概率的不确定性推理方法,贝叶斯网络在处理不确定信息的智能化系统中已得到了重要的应用,已成功地用于医疗诊断、统计决策、专家系统、学习预测等领域。这些成功的应用,充分体现了贝叶斯网络技术是一种强有力的不确定性推理方法。
③ 用GeNIe2.0软件如何构建贝叶斯网络各节点的先验概率怎么输入到软件中啊
鼠标放在节点上,点击右键,选择 Node Properties,选择 Definition 选项卡,,在该页面内输入条件概率。
④ Hugin使用问题,如何输入节点之间的条件概率
我虽然使用过,但是使的是最基本的功能,很多高深的都没有用过。
只是建一张网络图把先验概率和条件概率带入计算目标节点的话,还是比较简单的。你先利用工具(椭圆,箭头)把网络图画好,在对椭圆也就是节点双击还是右键我忘记了,总之就是打开节点,好像是个什么table,可以输入先验概率或是条件概率。好像是右键打开什么选项,还能改节点的名字。都输入进去了,点运行就可以计算目标节点的后验概率了。对了除了可以计算目标节点的后验概率也就是正向推理,还可以反响推理,也就是你双击点目标节点的某个水平的概率,使他变为红色也就是100%,就可以灵敏度分析了,这个作用是假设目标节点的某个状态发生了(100%),看看其他节点的概率都变为多少了。
⑤ 贝叶斯网络基本原理
贝叶斯网络又称信念网络,是有向无环图的网络拓扑结构和贝叶斯概率方法有机结合的模型表示,描述了各个数据项及其相互间的依赖关系。一个 BN 包括了一个拓扑结构模型和与之相关的一组条件概率参数。结构模型是一个有向无环图,每个节点则表示一个随机变量,是对于状态、过程、事件等实体的某个特性的形象描述,其中的有向边则表示随机变
量之间的条件依赖关系。BN 中每个节点( 除根节点外) 都有一个给定其父节点情况下的条件概率分布。2. 1. 1 贝叶斯网络定理
BN 是一种概率网络,即基于概率推理的图形化网络,这个概率网络的基础是贝叶斯公式。我们先来看一看贝叶斯基本公式。
定义 2. 1 条件概率: 设 X、Y 是两个事件,且 P( X) >0,称
基于BN+GIS新技术的突水态势研究
为在事件 X 发生的条件下事件 Y 发生的条件概率。
定义 2. 2 联合概率: 设 X,Y 是两个事件,且 P( X) >0,它们的联合概率为:
基于BN+GIS新技术的突水态势研究
定义2.3全概率公式:设试验E的样本空间为S,X为E的事件,Y1,Y2,…,Yn为E的一组事件,满足:
基于BN+GIS新技术的突水态势研究
定义2.4贝叶斯公式:根据定义2.1、定义2.2和定义2.3,很容易推得众所周知的贝叶斯公式:
基于BN+GIS新技术的突水态势研究
2. 1. 2 贝叶斯网络的拓扑结构
BN 是一个具有概率分布的有向无环图( Directed Acyclic Graph) ,其中每个节点代表一个数据变量或者属性,节点间的弧段代表数据变量( 属性) 之间的概率依赖关系。一条弧段由一个数据变量( 属性) X 指向另外一个数据变量( 属性) Y,说明数据变量 X 的取值可以对数据变量 Y 的取值产生影响。既然是有向无环图,因此 X,Y 间不构成有向回路。在 BN 当中,连接两个节点的一条弧 XY 中的弧头节点( 直接的原因节点) X 叫做弧尾节点( 结果节点) Y 的双亲节点( Parents) ,Y 叫做 X 的孩子节点( Children) 。如果从节点 A 有一条有向通路指向 B,则称节点 A 为节点 B 的祖先( Ancestor) ,同时称节点 B 为节点 A 的后代( Descendent) 。
BN 能够利用简单明了的图形表达方式定性地表示事件间复杂的概率关系和因果关系,在给定某些先验信息后,还可以定量地表示这些因果概率关系。BN 的拓扑结构通常是根据具体的问题和研究对象来确定的。目前如何通过结构学习自动确定和优化网络的拓扑结构是 BN 的一个研究热点。
2.1.3 条件独立性假设
条件独立性假设是BN进行定量推理的理论基础,可以减少先验概率的数目,从而大大地简化推理和计算过程。
BN的条件独立性假设的一个很重要的判据就是着名的分隔定理(D-Separation):
定义2.5阻塞:G=(V(G),E(G))为一个有向非循环图,s是其中的一条链。当s包含3个连续的节点x,y,z,满足以下3种情况之一,我们称s被节点集合W(WV(G))阻塞:
(1)z∈W,s上存在弧x→z和z→y;
(2)z∈W,s上存在弧x←z和z→y;
(3)s上存在弧x→z和z←y,σ(z)∩W=,σ(z)表示z以及z的所有子孙节点的集合。
图2.1 阻塞的3种情形
定义2.6阻塞集:两个节点x和y间的所有路径都被节点集合Z所阻塞,则称集合Z为x,y两个节点间的阻塞集。
定义2.7D-Separation:令X,Y和Z是一个有向无环图G中3个不相交节点的子集,如果在集合X和Y中所有节点间的所有路径都被集合Z所阻塞,则称集合X,Y被Z集合(d-separation),表示为<X,Y|Z>G,也称Z为X和Y的切割集。否则,称在给定集合Z下集合X和Y的图形依赖。
这个判据指出,如果Z隔离了X和Y时,那么可以认为X与Y是关于Z条件独立的,即:P(X|Y,Z)=P(X|Y)。
⑥ 列举三种构建贝叶斯网络的方法
构建贝叶斯网络可以通过络该网三种不同的连接方式来进行。贝叶斯网络三种基本连接方式:同父结构,V型结构,顺序结构。构建贝叶斯网络的方法:
贝叶斯网络:包括一个有向无环图(DAG)和一个条件概率表集合。
DAG中每一个节点表示一个随机变量,可以是可直接观测变量或隐藏变量,而有向边表示随机变量间的条件依赖;条件概率表中的每一个元素对应DAG中唯一的节点,存储此节点对于其所有直接前驱节点的联合条件概率。
构建一个贝叶斯网络流程:
根据前面贝叶斯网络的定义,我们可以初步的知道一个贝叶斯网络的构成,那么可以根据它的定义来构造一个贝叶斯网络,其实就是围绕着它的组成元素:DAG和节点参数与边的方向,下面分这两步来描述下如何构造一个贝叶斯网络。
1.确定随机变量间的拓扑关系,形成DAG。这一步通常需要领域专家完成,而想要建立一个好的拓扑结构,通常需要不断迭代和改进才可以。
2.训练贝叶斯网络参数——估计出各节点的条件概率表。这一步也就是要完成条件概率表的构造,如果每个随机变量的值都是可以直接观察的,像我们上面的例子,那么这一步的训练是直观的,方法类似于朴素贝叶斯分类。
⑦ 贝叶斯网络的简介
贝叶斯网络又称信度网络,是Bayes方法的扩展,是目前不确定知识表达和推理领域最有效的理论模型之一。从1988年由Pearl提出后,已经成为近几年来研究的热点.。一个贝叶斯网络是一个有向无环图(Directed Acyclic Graph,DAG),由代表变量节点及连接这些节点有向边构成。节点代表随机变量,节点间的有向边代表了节点间的互相关系(由父节点指向其子节点),用条件概率进行表达关系强度,没有父节点的用先验概率进行信息表达。节点变量可以是任何问题的抽象,如:测试值,观测现象,意见征询等。适用于表达和分析不确定性和概率性的事件,应用于有条件地依赖多种控制因素的决策,可以从不完全、不精确或不确定的知识或信息中做出推理。
⑧ 条件概率计算
P(A|B)=P(AB)/P(B)或在古典概率的情况下P(A|B)=AB的基本事件数/B的基本事件数不明白你说的逆是什么?
⑨ 贝叶斯网络的条件概率表怎么构建
这个条件概率本是父节点联合分布下的条件概率,所以应该是四种状态
⑩ 如何用matlab的BNT软建立一个贝叶斯网络及条件概率表
对上述信息建立贝叶斯网络,代码如下
[plain] view plainprint?
N=8;
dag=zeros(N,N);
A=1;S=2;T=3;L=4;B=5;E=6;X=7;D=8;
dag(A,T)=1;
dag(S,[L B])=1;
dag([T L],E)=1;
dag(B,D)=1;
dag(E,[X D])=1;
discrete_nodes=1:N;
node_sizes=2*ones(1,N);
bnet=mk_bnet(dag,node_sizes,'names',{'A','S','T','L','B','E','X','D'},'discrete',discrete_nodes);
bnet.CPD{A}=tabular_CPD(bnet,A,[0.99,0.01]);
bnet.CPD{S}=tabular_CPD(bnet,S,[0.5,0.5]);
bnet.CPD{T}=tabular_CPD(bnet,T,[0.99,0.95,0.01,0.05]);
bnet.CPD{L}=tabular_CPD(bnet,L,[0.99,0.9,0.01,0.1]);
bnet.CPD{B}=tabular_CPD(bnet,B,[0.7,0.4,0.3,0.6]);
bnet.CPD{E}=tabular_CPD(bnet,E,[1,0,0,0,0,1,1,1]);
bnet.CPD{X}=tabular_CPD(bnet,X,[0.95,0.02,0.05,0.98]);
bnet.CPD{D}=tabular_CPD(bnet,D,[0.9,0.2,0.3,0.1,0.1,0.8,0.7,0.9]);
draw_graph(dag)
说明:有N=8个节点,建立有向无环图dag,并且这些点的值是离散的,这里1=False 2=True,node_sizes给出了所有状态
mk_bnet中names后的{}里面给出了各个节点的别名
利用tabular_CPD设置各个变量的边缘概率,对于A和S,定义顺序是False True;对于T、L和B这类,顺序是FF FT TF TT;对于D这类,顺序是FFF FFT FTF FTT TFF TFT TTF TTT
简单检查下A的概率
[plain] view plainprint?
engine=jtree_inf_engine(bnet);
evidence=cell(1,N);
[engine,loglik]=enter_evidence(engine,evidence);
m=marginal_nodes(engine,A);
m.T()
现在可以给定任意条件,然后计算概率了。
[plain] view plainprint?
例如要计算任意组合条件下,个体分别得Tub、lung cancer和bronchitis的概率。下面代码计算了P(T=True|A=False,S=True,X=True,D=False)的概率
[plain] view plainprint?
engine=jtree_inf_engine(bnet);
evidence=cell(1,N);
evidence{A}=1;
evidence{S}=2;
evidence{X}=2;
evidence{D}=1;
[engine,loglik]=enter_evidence(engine,evidence);
m=marginal_nodes(engine,T);
m.T(2)