① BP神经网络怎么设置输入层节点数
matlab的? 输入层由你输入的特征决定的,送入特征matlab就自动确定输入层节点数了
② BP神经网络如何设置初始权值
初始权值、阈值的确定是靠经验的。
一般修改神经网络,不改阈值,改动其中间层神经元、转移函数、特征向量等。
③ 神经网络 seed 设置成多少
seed函数是对神经网络里用到的rand函数其作用的吧.设置seed为明确的值,只是不同的人或不同次运行随机函数是能产生相同的随机数,观察到相同的结果。实际运行中,设置成多少应该是无所谓的,这才是随机数。
④ BP神经网络中,如何设定神经元的初始连接权重以及阀值
初始连接权重关系到网络训练速度的快慢以及收敛速率,在基本的神经网络中,这个权重是随机设定的。在网络训练的过程中沿着误差减小的方向不断进行调整。针对这个权重的随机性不确定的缺点,有人提出了用遗传算法初始化BP的初始权重和阈值的想法,提出了遗传神经网络模型,并且有人预言下一代的神经网络将会是遗传神经网络。希望对你有所帮助。你可以查看这方面的文献
⑤ 神经网络算法中,参数的设置或者调整,有什么方法可以采用
若果对你有帮助,请点赞。
神经网络的结构(例如2输入3隐节点1输出)建好后,一般就要求神经网络里的权值和阈值。现在一般求解权值和阈值,都是采用梯度下降之类的搜索算法(梯度下降法、牛顿法、列文伯格-马跨特法、狗腿法等等),这些算法会先初始化一个解,在这个解的基础上,确定一个搜索方向和一个移动步长(各种法算确定方向和步长的方法不同,也就使各种算法适用于解决不同的问题),使初始解根据这个方向和步长移动后,能使目标函数的输出(在神经网络中就是预测误差)下降。 然后将它更新为新的解,再继续寻找下一步的移动方向的步长,这样不断的迭代下去,目标函数(神经网络中的预测误差)也不断下降,最终就能找到一个解,使得目标函数(预测误差)比较小。
而在寻解过程中,步长太大,就会搜索得不仔细,可能跨过了优秀的解,而步长太小,又会使寻解过程进行得太慢。因此,步长设置适当非常重要。
学习率对原步长(在梯度下降法中就是梯度的长度)作调整,如果学习率lr = 0.1,那么梯度下降法中每次调整的步长就是0.1*梯度,
而在matlab神经网络工具箱里的lr,代表的是初始学习率。因为matlab工具箱为了在寻解不同阶段更智能的选择合适的步长,使用的是可变学习率,它会根据上一次解的调整对目标函数带来的效果来对学习率作调整,再根据学习率决定步长。
机制如下:
if newE2/E2 > maxE_inc %若果误差上升大于阈值
lr = lr * lr_dec; %则降低学习率
else
if newE2 < E2 %若果误差减少
lr = lr * lr_inc;%则增加学习率
end
详细的可以看《神经网络之家》nnetinfo里的《[重要]写自己的BP神经网络(traingd)》一文,里面是matlab神经网络工具箱梯度下降法的简化代码
若果对你有帮助,请点赞。
祝学习愉快
⑥ 神经网络的隐层数,节点数设置。
我自己总结的:
1、神经网络算法隐含层的选取
1.1 构造法
首先运用三种确定隐含层层数的方法得到三个隐含层层数,找到最小值和最大值,然后从最小值开始逐个验证模型预测误差,直到达到最大值。最后选取模型误差最小的那个隐含层层数。该方法适用于双隐含层网络。
1.2 删除法
单隐含层网络非线性映射能力较弱,相同问题,为达到预定映射关系,隐层节点要多一些,以增加网络的可调参数,故适合运用删除法。
1.3黄金分割法
算法的主要思想:首先在[a,b]内寻找理想的隐含层节点数,这样就充分保证了网络的逼近能力和泛化能力。为满足高精度逼近的要求,再按照黄金分割原理拓展搜索区间,即得到区间[b,c](其中b=0.619*(c-a)+a),在区间[b,c]中搜索最优,则得到逼近能力更强的隐含层节点数,在实际应用根据要求,从中选取其一即可。
⑦ 为什么VGG神经网络不直接将图片缩放到224
网上图片大小是根据版面设计需要排版的。如果你需要固定大小的照片,可以在网上下载下来,再用图片处理软件调整即可。
⑧ BP神经网络中为什么设置阈值
你这是不是用遗传算法优化权值和阀值啊?
我不知道你x的哪里来的?所以也不知道你是如何确定初始权值和阀值。
不过我们平常写程序时这些值都是随机赋予的。
⑨ 神经网络gradient怎么设置
梯度是计算得来的,不是“设置”的。
传统的神经网络通过前向、后向两步运算进行训练。其中最关键的就是BP算法,它是网络训练的根本方式。在运行BP的过程中,你需要先根据定义好的“代价函数”分别对每一层的参数(一般是W和b)求偏导(也就是你说的gradient),用该偏导数在每一次迭代中更新对应的W和b,直至算法收敛。
具体实现思路和细节可以参考:http://deeplearning.stanford.e/wiki/index.php/%E5%8F%8D%E5%90%91%E4%BC%A0%E5%AF%BC%E7%AE%97%E6%B3%95