① R语言做神经网络,多个输入多个输出的命令怎么写
net=newff(minmax(p),[3,5,4],{'tansig','purelin','logsig'},'trainlm');
net.trainParam.goal= 0.00001;
net.trainParam.epochs= 10000;
net= train(net,p,t);
Y=sim(net,p);
隐含层数通常取输入层数的1.2~1.5倍,但隐含层数增加相对训练效果会好些。
输出结果是根据你的T决定的,你这个如果训练效果好的话输出值的和就为1。
② rbf神经网络的输入参数个数有上限么
没有规定说只能有一个输出,输出向量维数也是根据你的输出样本确定的。在RBF网络之前训练,需要给出输入向量X和目标向量T,训练的目的是要求得第一层和第二层之间的权值W1、阀值B1,和第二层与第三层之间的权值W2、阀值B2。整个网络的训练分为两步,第一部是无监督的学习,求W1、B1。第二步是有监督的学习求W2、B2。newrbe()函数:和newrb()功能差不多,用于创建一个精确地神经网络,能够基于设计向量快速的无误差的设计一个径向基网络。该函数在创建RBF网络的时候,自动选择隐含层数目,隐藏层的数目等于样本输入向量的数目,使得误差为0。在样本输入向量非常多的情况下,用rbe就不大合适。
③ 如何用keras实现多变量输入神经网络
要点如下:
1、神经网络基本结构,应该是输入层-若干个隐含层-输出层。
2、输入层应该有7个输入变量。
3、隐含层层数自定,但每层要超过7个神经元。
4、输出层可以用softmax之类的函数,将隐含层的输出归并成一个。
代码请自行编写。
④ bp神经网络对输入数据和输出数据有什么要求
p神经网络的输入数据越多越好,输出数据需乎衫要反映网络的联想记忆和预测能力。
BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。
BP神经网络模型拓轮态扑结构包括输入层(input)、隐层(hide layer)和输出层(output layer)。BP网络具有高度非线性和较强的泛化能力,但也存在收敛速度慢、迭代步数多、易于陷入局部极小和全局搜索能力差等缺点。
(4)神经网络多个输入设置扩展阅读:
BP算法主要思想是:输入学习样本,使用反向传播算法对网络的权值和偏差进行反复的调整训练,使输出的向量与期望向量尽可能地接近,当网络岁桐腔输出层的误差平方和小于指定的误差时训练完成,保存网络的权值和偏差。
1、初始化,随机给定各连接权及阀值。
2、由给定的输入输出模式对计算隐层、输出层各单元输出
3、计算新的连接权及阀值,计算公式如下:
4、选取下一个输入模式对返回第2步反复训练直到网络设输出误差达到要求结束训练。