‘壹’ 一文读懂神经网络
要说近几年最引人注目的技术,无疑的,非人工智能莫属。无论你是否身处科技互联网行业,随处可见人工智能的身影:从 AlphaGo 击败世界围棋冠军,到无人驾驶概念的兴起,再到科技巨头 All in AI,以及各大高校向社会输送海量的人工智能专业的毕业生。以至于人们开始萌生一个想法:新的革命就要来了,我们的世界将再次发生一次巨变;而后开始焦虑:我的工作是否会被机器取代?我该如何才能抓住这次革命?
人工智能背后的核心技术是深度神经网络(Deep Neural Network),大概是一年前这个时候,我正在回老家的高铁上学习 3Blue1Brown 的 Neural Network 系列视频课程,短短 4 集 60 多分钟的时间,就把神经网络从 High Level 到推导细节说得清清楚楚,当时的我除了获得新知的兴奋之外,还有一点新的认知,算是给头脑中的革命性的技术泼了盆冷水:神经网络可以解决一些复杂的、以前很难通过写程序来完成的任务——例如图像、语音识别等,但它的实现机制告诉我,神经网络依然没有达到生物级别的智能,短期内期待它来取代人也是不可能的。
一年后的今天,依然在这个春运的时间点,将我对神经网络的理解写下来,算是对这部分知识的一个学习笔记,运气好的话,还可以让不了解神经网络的同学了解起来。
维基网络这样解释 神经网络 :
这个定义比较宽泛,你甚至还可以用它来定义其它的机器学习算法,例如之前我们一起学习的逻辑回归和 GBDT 决策树。下面我们具体一点,下图是一个逻辑回归的示意图:
其中 x1 和 x2 表示输入,w1 和 w2 是模型的参数,z 是一个线性函数:
接着我们对 z 做一个 sigmod 变换(图中蓝色圆),得到输出 y:
其实,上面的逻辑回归就可以看成是一个只有 1 层 输入层 , 1 层 输出层 的神经网络,图中容纳数字的圈儿被称作 神经元 ;其中,层与层之间的连接 w1、w2 以及 b,是这个 神经网络的参数 ,层之间如果每个神经元之间都保持着连接,这样的层被称为 全连接层 (Full Connection Layer),或 稠密层 (Dense Layer);此外,sigmoid 函数又被称作 激活函数 (Activation Function),除了 sigmoid 外,常用的激活函数还有 ReLU、tanh 函数等,这些函数都起到将线性函数进行非线性变换的作用。我们还剩下一个重要的概念: 隐藏层 ,它需要把 2 个以上的逻辑回归叠加起来加以说明:
如上图所示,除输入层和输出层以外,其他的层都叫做 隐藏层 。如果我们多叠加几层,这个神经网络又可以被称作 深度神经网络 (Deep Neural Network),有同学可能会问多少层才算“深”呢?这个没有绝对的定论,个人认为 3 层以上就算吧:)
以上,便是神经网络,以及神经网络中包含的概念,可见,神经网络并不特别,广义上讲,它就是
可见,神经网络和人脑神经也没有任何关联,如果我们说起它的另一个名字—— 多层感知机(Mutilayer Perceptron) ,就更不会觉得有多么玄乎了,多层感知机创造于 80 年代,可为什么直到 30 年后的今天才爆发呢?你想得没错,因为改了个名字……开个玩笑;实际上深度学习这项技术也经历过很长一段时间的黑暗低谷期,直到人们开始利用 GPU 来极大的提升训练模型的速度,以及几个标志性的事件:如 AlphaGo战胜李世石、Google 开源 TensorFlow 框架等等,感兴趣的同学可以翻一下这里的历史。
就拿上图中的 3 个逻辑回归组成的神经网络作为例子,它和普通的逻辑回归比起来,有什么优势呢?我们先来看下单逻辑回归有什么劣势,对于某些情况来说,逻辑回归可能永远无法使其分类,如下面数据:
这 4 个样本画在坐标系中如下图所示
因为逻辑回归的决策边界(Decision Boundary)是一条直线,所以上图中的两个分类,无论你怎么做,都无法找到一条直线将它们分开,但如果借助神经网络,就可以做到这一点。
由 3 个逻辑回归组成的网络(这里先忽略 bias)如下:
观察整个网络的计算过程,在进入输出层之前,该网络所做的计算实际上是:
即把输入先做了一次线性变换(Linear Transformation),得到 [z1, z2] ,再把 [z1, z2] 做了一个非线性变换(sigmoid),得到 [x1', x2'] ,(线性变换的概念可以参考 这个视频 )。从这里开始,后面的操作就和一个普通的逻辑回归没有任何差别了,所以它们的差异在于: 我们的数据在输入到模型之前,先做了一层特征变换处理(Feature Transformation,有时又叫做特征抽取 Feature Extraction),使之前不可能被分类的数据变得可以分类了 。
我们继续来看下特征变换的效果,假设 为 ,带入上述公式,算出 4 个样本对应的 [x1', x2'] 如下:
再将变换后的 4 个点绘制在坐标系中:
显然,在做了特征变换之后,这两个分类就可以很容易的被一条决策边界分开了。
所以, 神经网络的优势在于,它可以帮助我们自动的完成特征变换或特征提取 ,尤其对于声音、图像等复杂问题,因为在面对这些问题时,人们很难清晰明确的告诉你,哪些特征是有用的。
在解决特征变换的同时,神经网络也引入了新的问题,就是我们需要设计各式各样的网络结构来针对性的应对不同的场景,例如使用卷积神经网络(CNN)来处理图像、使用长短期记忆网络(LSTM)来处理序列问题、使用生成式对抗网络(GAN)来写诗和作图等,就连去年自然语言处理(NLP)中取得突破性进展的 Transformer/Bert 也是一种特定的网络结构。所以, 学好神经网络,对理解其他更高级的网络结构也是有帮助的 。
上面说了,神经网络可以看作一个非线性函数,该函数的参数是连接神经元的所有的 Weights 和 Biases,该函数可以简写为 f(W, B) ,以手写数字识别的任务作为例子:识别 MNIST 数据集 中的数字,数据集(MNIST 数据集是深度学习中的 HelloWorld)包含上万张不同的人写的数字图片,共有 0-9 十种数字,每张图片为 28*28=784 个像素,我们设计一个这样的网络来完成该任务:
把该网络函数所具备的属性补齐:
接下来的问题是,这个函数是如何产生的?这个问题本质上问的是这些参数的值是怎么确定的。
在机器学习中,有另一个函数 c 来衡量 f 的好坏,c 的参数是一堆数据集,你输入给 c 一批 Weights 和 Biases,c 输出 Bad 或 Good,当结果是 Bad 时,你需要继续调整 f 的 Weights 和 Biases,再次输入给 c,如此往复,直到 c 给出 Good 为止,这个 c 就是损失函数 Cost Function(或 Loss Function)。在手写数字识别的列子中,c 可以描述如下:
可见,要完成手写数字识别任务,只需要调整这 12730 个参数,让损失函数输出一个足够小的值即可,推而广之,绝大部分神经网络、机器学习的问题,都可以看成是定义损失函数、以及参数调优的问题。
在手写识别任务中,我们既可以使用交叉熵(Cross Entropy)损失函数,也可以使用 MSE(Mean Squared Error)作为损失函数,接下来,就剩下如何调优参数了。
神经网络的参数调优也没有使用特别的技术,依然是大家刚接触机器学习,就学到的梯度下降算法,梯度下降解决了上面迭代过程中的遗留问题——当损失函数给出 Bad 结果时,如何调整参数,能让 Loss 减少得最快。
梯度可以理解为:
把 Loss 对应到 H,12730 个参数对应到 (x,y),则 Loss 对所有参数的梯度可以表示为下面向量,该向量的长度为 12730:
$$
abla L(w,b) = left[
frac{partial L}{partial w_1},
frac{partial L}{partial w_2},...,
frac{partial L}{partial b_{26}}
ight] ^ op
$$
所以,每次迭代过程可以概括为
用梯度来调整参数的式子如下(为了简化,这里省略了 bias):
上式中, 是学习率,意为每次朝下降最快的方向前进一小步,避免优化过头(Overshoot)。
由于神经网络参数繁多,所以需要更高效的计算梯度的算法,于是,反向传播算法(Backpropagation)呼之欲出。
在学习反向传播算法之前,我们先复习一下微积分中的链式法则(Chain Rule):设 g = u(h) , h = f(x) 是两个可导函数,x 的一个很小的变化 △x 会使 h 产生一个很小的变化 △h,从而 g 也产生一个较小的变化 △g,现要求 △g/△x,可以使用链式法则:
有了以上基础,理解反向传播算法就简单了。
假设我们的演示网络只有 2 层,输入输出都只有 2 个神经元,如下图所示:
其中 是输入, 是输出, 是样本的目标值,这里使用的损失函数 L 为 MSE;图中的上标 (1) 或 (2) 分别表示参数属于第 (1) 层或第 (2) 层,下标 1 或 2 分别表示该层的第 1 或 第 2 个神经元。
现在我们来计算 和 ,掌握了这 2 个参数的偏导数计算之后,整个梯度的计算就掌握了。
所谓反向传播算法,指的是从右向左来计算每个参数的偏导数,先计算 ,根据链式法则
对左边项用链式法则展开
又 是输出值, 可以直接通过 MSE 的导数算出:
而 ,则 就是 sigmoid 函数的导数在 处的值,即
于是 就算出来了:
再来看 这一项,因为
所以
注意:上面式子对于所有的 和 都成立,且结果非常直观,即 对 的偏导为左边的输入 的大小;同时,这里还隐含着另一层意思:需要调整哪个 来影响 ,才能使 Loss 下降得最快,从该式子可以看出,当然是先调整较大的 值所对应的 ,效果才最显着 。
于是,最后一层参数 的偏导数就算出来了
我们再来算上一层的 ,根据链式法则 :
继续展开左边这一项
你发现没有,这几乎和计算最后一层一摸一样,但需要注意的是,这里的 对 Loss 造成的影响有多条路径,于是对于只有 2 个输出的本例来说:
上式中, 都已经在最后一层算出,下面我们来看下 ,因为
于是
同理
注意:这里也引申出梯度下降的调参直觉:即要使 Loss 下降得最快,优先调整 weight 值比较大的 weight。
至此, 也算出来了
观察上式, 所谓每个参数的偏导数,通过反向传播算法,都可以转换成线性加权(Weighted Sum)计算 ,归纳如下:
式子中 n 代表分类数,(l) 表示第 l 层,i 表示第 l 层的第 i 个神经元。 既然反向传播就是一个线性加权,那整个神经网络就可以借助于 GPU 的矩阵并行计算了 。
最后,当你明白了神经网络的原理,是不是越发的认为,它就是在做一堆的微积分运算,当然,作为能证明一个人是否学过微积分,神经网络还是值得学一下的。Just kidding ..
本文我们通过
这四点,全面的学习了神经网络这个知识点,希望本文能给你带来帮助。
参考:
‘贰’ 神经网络BP模型
一、BP模型概述
误差逆传播(Error Back-Propagation)神经网络模型简称为BP(Back-Propagation)网络模型。
Pall Werbas博士于1974年在他的博士论文中提出了误差逆传播学习算法。完整提出并被广泛接受误差逆传播学习算法的是以Rumelhart和McCelland为首的科学家小组。他们在1986年出版“Parallel Distributed Processing,Explorations in the Microstructure of Cognition”(《并行分布信息处理》)一书中,对误差逆传播学习算法进行了详尽的分析与介绍,并对这一算法的潜在能力进行了深入探讨。
BP网络是一种具有3层或3层以上的阶层型神经网络。上、下层之间各神经元实现全连接,即下层的每一个神经元与上层的每一个神经元都实现权连接,而每一层各神经元之间无连接。网络按有教师示教的方式进行学习,当一对学习模式提供给网络后,神经元的激活值从输入层经各隐含层向输出层传播,在输出层的各神经元获得网络的输入响应。在这之后,按减小期望输出与实际输出的误差的方向,从输入层经各隐含层逐层修正各连接权,最后回到输入层,故得名“误差逆传播学习算法”。随着这种误差逆传播修正的不断进行,网络对输入模式响应的正确率也不断提高。
BP网络主要应用于以下几个方面:
1)函数逼近:用输入模式与相应的期望输出模式学习一个网络逼近一个函数;
2)模式识别:用一个特定的期望输出模式将它与输入模式联系起来;
3)分类:把输入模式以所定义的合适方式进行分类;
4)数据压缩:减少输出矢量的维数以便于传输或存储。
在人工神经网络的实际应用中,80%~90%的人工神经网络模型采用BP网络或它的变化形式,它也是前向网络的核心部分,体现了人工神经网络最精华的部分。
二、BP模型原理
下面以三层BP网络为例,说明学习和应用的原理。
1.数据定义
P对学习模式(xp,dp),p=1,2,…,P;
输入模式矩阵X[N][P]=(x1,x2,…,xP);
目标模式矩阵d[M][P]=(d1,d2,…,dP)。
三层BP网络结构
输入层神经元节点数S0=N,i=1,2,…,S0;
隐含层神经元节点数S1,j=1,2,…,S1;
神经元激活函数f1[S1];
权值矩阵W1[S1][S0];
偏差向量b1[S1]。
输出层神经元节点数S2=M,k=1,2,…,S2;
神经元激活函数f2[S2];
权值矩阵W2[S2][S1];
偏差向量b2[S2]。
学习参数
目标误差ϵ;
初始权更新值Δ0;
最大权更新值Δmax;
权更新值增大倍数η+;
权更新值减小倍数η-。
2.误差函数定义
对第p个输入模式的误差的计算公式为
中国矿产资源评价新技术与评价新模型
y2kp为BP网的计算输出。
3.BP网络学习公式推导
BP网络学习公式推导的指导思想是,对网络的权值W、偏差b修正,使误差函数沿负梯度方向下降,直到网络输出误差精度达到目标精度要求,学习结束。
各层输出计算公式
输入层
y0i=xi,i=1,2,…,S0;
隐含层
中国矿产资源评价新技术与评价新模型
y1j=f1(z1j),
j=1,2,…,S1;
输出层
中国矿产资源评价新技术与评价新模型
y2k=f2(z2k),
k=1,2,…,S2。
输出节点的误差公式
中国矿产资源评价新技术与评价新模型
对输出层节点的梯度公式推导
中国矿产资源评价新技术与评价新模型
E是多个y2m的函数,但只有一个y2k与wkj有关,各y2m间相互独立。
其中
中国矿产资源评价新技术与评价新模型
则
中国矿产资源评价新技术与评价新模型
设输出层节点误差为
δ2k=(dk-y2k)·f2′(z2k),
则
中国矿产资源评价新技术与评价新模型
同理可得
中国矿产资源评价新技术与评价新模型
对隐含层节点的梯度公式推导
中国矿产资源评价新技术与评价新模型
E是多个y2k的函数,针对某一个w1ji,对应一个y1j,它与所有的y2k有关。因此,上式只存在对k的求和,其中
中国矿产资源评价新技术与评价新模型
则
中国矿产资源评价新技术与评价新模型
设隐含层节点误差为
中国矿产资源评价新技术与评价新模型
则
中国矿产资源评价新技术与评价新模型
同理可得
中国矿产资源评价新技术与评价新模型
4.采用弹性BP算法(RPROP)计算权值W、偏差b的修正值ΔW,Δb
1993年德国 Martin Riedmiller和Heinrich Braun 在他们的论文“A Direct Adaptive Method for Faster Backpropagation Learning:The RPROP Algorithm”中,提出Resilient Backpropagation算法——弹性BP算法(RPROP)。这种方法试图消除梯度的大小对权步的有害影响,因此,只有梯度的符号被认为表示权更新的方向。
权改变的大小仅仅由权专门的“更新值”
中国矿产资源评价新技术与评价新模型
其中
权更新遵循规则:如果导数是正(增加误差),这个权由它的更新值减少。如果导数是负,更新值增加。
中国矿产资源评价新技术与评价新模型
RPROP算法是根据局部梯度信息实现权步的直接修改。对于每个权,我们引入它的
各自的更新值
于在误差函数E上的局部梯度信息,按照以下的学习规则更新
中国矿产资源评价新技术与评价新模型
其中0<η-<1<η+。
在每个时刻,如果目标函数的梯度改变它的符号,它表示最后的更新太大,更新值
为了减少自由地可调参数的数目,增大倍数因子η+和减小倍数因子η–被设置到固定值
η+=1.2,
η-=0.5,
这两个值在大量的实践中得到了很好的效果。
RPROP算法采用了两个参数:初始权更新值Δ0和最大权更新值Δmax
当学习开始时,所有的更新值被设置为初始值Δ0,因为它直接确定了前面权步的大小,它应该按照权自身的初值进行选择,例如,Δ0=0.1(默认设置)。
为了使权不至于变得太大,设置最大权更新值限制Δmax,默认上界设置为
Δmax=50.0。
在很多实验中,发现通过设置最大权更新值Δmax到相当小的值,例如
Δmax=1.0。
我们可能达到误差减小的平滑性能。
5.计算修正权值W、偏差b
第t次学习,权值W、偏差b的的修正公式
W(t)=W(t-1)+ΔW(t),
b(t)=b(t-1)+Δb(t),
其中,t为学习次数。
6.BP网络学习成功结束条件每次学习累积误差平方和
中国矿产资源评价新技术与评价新模型
每次学习平均误差
中国矿产资源评价新技术与评价新模型
当平均误差MSE<ε,BP网络学习成功结束。
7.BP网络应用预测
在应用BP网络时,提供网络输入给输入层,应用给定的BP网络及BP网络学习得到的权值W、偏差b,网络输入经过从输入层经各隐含层向输出层的“顺传播”过程,计算出BP网的预测输出。
8.神经元激活函数f
线性函数
f(x)=x,
f′(x)=1,
f(x)的输入范围(-∞,+∞),输出范围(-∞,+∞)。
一般用于输出层,可使网络输出任何值。
S型函数S(x)
中国矿产资源评价新技术与评价新模型
f(x)的输入范围(-∞,+∞),输出范围(0,1)。
f′(x)=f(x)[1-f(x)],
f′(x)的输入范围(-∞,+∞),输出范围(0,
一般用于隐含层,可使范围(-∞,+∞)的输入,变成(0,1)的网络输出,对较大的输入,放大系数较小;而对较小的输入,放大系数较大,所以可用来处理和逼近非线性的输入/输出关系。
在用于模式识别时,可用于输出层,产生逼近于0或1的二值输出。
双曲正切S型函数
中国矿产资源评价新技术与评价新模型
f(x)的输入范围(-∞,+∞),输出范围(-1,1)。
f′(x)=1-f(x)·f(x),
f′(x)的输入范围(-∞,+∞),输出范围(0,1]。
一般用于隐含层,可使范围(-∞,+∞)的输入,变成(-1,1)的网络输出,对较大的输入,放大系数较小;而对较小的输入,放大系数较大,所以可用来处理和逼近非线性的输入/输出关系。
阶梯函数
类型1
中国矿产资源评价新技术与评价新模型
f(x)的输入范围(-∞,+∞),输出范围{0,1}。
f′(x)=0。
类型2
中国矿产资源评价新技术与评价新模型
f(x)的输入范围(-∞,+∞),输出范围{-1,1}。
f′(x)=0。
斜坡函数
类型1
中国矿产资源评价新技术与评价新模型
f(x)的输入范围(-∞,+∞),输出范围[0,1]。
中国矿产资源评价新技术与评价新模型
f′(x)的输入范围(-∞,+∞),输出范围{0,1}。
类型2
中国矿产资源评价新技术与评价新模型
f(x)的输入范围(-∞,+∞),输出范围[-1,1]。
中国矿产资源评价新技术与评价新模型
f′(x)的输入范围(-∞,+∞),输出范围{0,1}。
三、总体算法
1.三层BP网络(含输入层,隐含层,输出层)权值W、偏差b初始化总体算法
(1)输入参数X[N][P],S0,S1,f1[S1],S2,f2[S2];
(2)计算输入模式X[N][P]各个变量的最大值,最小值矩阵 Xmax[N],Xmin[N];
(3)隐含层的权值W1,偏差b1初始化。
情形1:隐含层激活函数f( )都是双曲正切S型函数
1)计算输入模式X[N][P]的每个变量的范围向量Xrng[N];
2)计算输入模式X的每个变量的范围均值向量Xmid[N];
3)计算W,b的幅度因子Wmag;
4)产生[-1,1]之间均匀分布的S0×1维随机数矩阵Rand[S1];
5)产生均值为0,方差为1的正态分布的S1×S0维随机数矩阵Randnr[S1][S0],随机数范围大致在[-1,1];
6)计算W[S1][S0],b[S1];
7)计算隐含层的初始化权值W1[S1][S0];
8)计算隐含层的初始化偏差b1[S1];
9))输出W1[S1][S0],b1[S1]。
情形2:隐含层激活函数f( )都是S型函数
1)计算输入模式X[N][P]的每个变量的范围向量Xrng[N];
2)计算输入模式X的每个变量的范围均值向量Xmid[N];
3)计算W,b的幅度因子Wmag;
4)产生[-1,1]之间均匀分布的S0×1维随机数矩阵Rand[S1];
5)产生均值为0,方差为1的正态分布的S1×S0维随机数矩阵Randnr[S1][S0],随机数范围大致在[-1,1];
6)计算W[S1][S0],b[S1];
7)计算隐含层的初始化权值W1[S1][S0];
8)计算隐含层的初始化偏差b1[S1];
9)输出W1[S1][S0],b1[S1]。
情形3:隐含层激活函数f( )为其他函数的情形
1)计算输入模式X[N][P]的每个变量的范围向量Xrng[N];
2)计算输入模式X的每个变量的范围均值向量Xmid[N];
3)计算W,b的幅度因子Wmag;
4)产生[-1,1]之间均匀分布的S0×1维随机数矩阵Rand[S1];
5)产生均值为0,方差为1的正态分布的S1×S0维随机数矩阵Randnr[S1][S0],随机数范围大致在[-1,1];
6)计算W[S1][S0],b[S1];
7)计算隐含层的初始化权值W1[S1][S0];
8)计算隐含层的初始化偏差b1[S1];
9)输出W1[S1][S0],b1[S1]。
(4)输出层的权值W2,偏差b2初始化
1)产生[-1,1]之间均匀分布的S2×S1维随机数矩阵W2[S2][S1];
2)产生[-1,1]之间均匀分布的S2×1维随机数矩阵b2[S2];
3)输出W2[S2][S1],b2[S2]。
2.应用弹性BP算法(RPROP)学习三层BP网络(含输入层,隐含层,输出层)权值W、偏差b总体算法
函数:Train3BP_RPROP(S0,X,P,S1,W1,b1,f1,S2,W2,b2,f2,d,TP)
(1)输入参数
P对模式(xp,dp),p=1,2,…,P;
三层BP网络结构;
学习参数。
(2)学习初始化
1)
2)各层W,b的梯度值
(3)由输入模式X求第一次学习各层输出y0,y1,y2及第一次学习平均误差MSE
(4)进入学习循环
epoch=1
(5)判断每次学习误差是否达到目标误差要求
如果MSE<ϵ,
则,跳出epoch循环,
转到(12)。
(6)保存第epoch-1次学习产生的各层W,b的梯度值
(7)求第epoch次学习各层W,b的梯度值
1)求各层误差反向传播值δ;
2)求第p次各层W,b的梯度值
3)求p=1,2,…,P次模式产生的W,b的梯度值
(8)如果epoch=1,则将第epoch-1次学习的各层W,b的梯度值
(9)求各层W,b的更新
1)求权更新值Δij更新;
2)求W,b的权更新值
3)求第epoch次学习修正后的各层W,b。
(10)用修正后各层W、b,由X求第epoch次学习各层输出y0,y1,y2及第epoch次学习误差MSE
(11)epoch=epoch+1,
如果epoch≤MAX_EPOCH,转到(5);
否则,转到(12)。
(12)输出处理
1)如果MSE<ε,
则学习达到目标误差要求,输出W1,b1,W2,b2。
2)如果MSE≥ε,
则学习没有达到目标误差要求,再次学习。
(13)结束
3.三层BP网络(含输入层,隐含层,输出层)预测总体算法
首先应用Train3lBP_RPROP( )学习三层BP网络(含输入层,隐含层,输出层)权值W、偏差b,然后应用三层BP网络(含输入层,隐含层,输出层)预测。
函数:Simu3lBP( )。
1)输入参数:
P个需预测的输入数据向量xp,p=1,2,…,P;
三层BP网络结构;
学习得到的各层权值W、偏差b。
2)计算P个需预测的输入数据向量xp(p=1,2,…,P)的网络输出 y2[S2][P],输出预测结果y2[S2][P]。
四、总体算法流程图
BP网络总体算法流程图见附图2。
五、数据流图
BP网数据流图见附图1。
六、实例
实例一 全国铜矿化探异常数据BP 模型分类
1.全国铜矿化探异常数据准备
在全国铜矿化探数据上用稳健统计学方法选取铜异常下限值33.1,生成全国铜矿化探异常数据。
2.模型数据准备
根据全国铜矿化探异常数据,选取7类33个矿点的化探数据作为模型数据。这7类分别是岩浆岩型铜矿、斑岩型铜矿、矽卡岩型、海相火山型铜矿、陆相火山型铜矿、受变质型铜矿、海相沉积型铜矿,另添加了一类没有铜异常的模型(表8-1)。
3.测试数据准备
全国化探数据作为测试数据集。
4.BP网络结构
隐层数2,输入层到输出层向量维数分别为14,9、5、1。学习率设置为0.9,系统误差1e-5。没有动量项。
表8-1 模型数据表
续表
5.计算结果图
如图8-2、图8-3。
图8-2
图8-3 全国铜矿矿床类型BP模型分类示意图
实例二 全国金矿矿石量品位数据BP 模型分类
1.模型数据准备
根据全国金矿储量品位数据,选取4类34个矿床数据作为模型数据,这4类分别是绿岩型金矿、与中酸性浸入岩有关的热液型金矿、微细浸染型型金矿、火山热液型金矿(表8-2)。
2.测试数据准备
模型样本点和部分金矿点金属量、矿石量、品位数据作为测试数据集。
3.BP网络结构
输入层为三维,隐层1层,隐层为三维,输出层为四维,学习率设置为0.8,系统误差1e-4,迭代次数5000。
表8-2 模型数据
4.计算结果
结果见表8-3、8-4。
表8-3 训练学习结果
表8-4 预测结果(部分)
续表
‘叁’ 神经网络算法
20 世纪五、六⼗年代,科学家 Frank Rosenblatt其受到 Warren McCulloch 和 Walter Pitts早期的⼯作的影响,发明了感知机(Perceptrons)。
⼀个感知器接受⼏个⼆进制输⼊, ,并产⽣⼀个⼆进制输出:
如上图所示的感知机有三个输⼊: 。通常可以有更多或更少输⼊。 我们再引⼊权重: ,衡量输入对输出的重要性。感知机的输出为0 或者 1,则由分配权重后的总和 ⼩于等于或者⼤于阈值决定。和权重⼀样,阈值(threshold)是⼀个实数,⼀个神经元的参数。⽤更精确的代数形式如下:
给三个因素设置权重来作出决定:
可以把这三个因素对应地⽤⼆进制变量 来表⽰。例如,如果天⽓好,我们把
,如果不好, 。类似地,如果你的朋友陪你去, ,否则 。 也类似。
这三个对于可能对你来说,“电影好不好看”对你来说最重要,而天气显得不是那么的重要。所以你会这样分配权值: ,然后定义阈值threshold=5。
现在,你可以使⽤感知器来给这种决策建⽴数学模型。
例如:
随着权重和阈值的变化,你可以得到不同的决策模型。很明显,感知机不是⼈做出决策使⽤的全部模型。但是这个例⼦说明了⼀个感知机如何能权衡不同的依据来决策。这看上去也可以⼤致解释⼀个感知机⽹络有时确实能够做出一些不错的决定。
现在我们队上面的结构做一点变化,令b=-threshold,即把阈值移到不等号左边,变成偏置, 那么感知器的规则可以重写为:
引⼊偏置只是我们描述感知器的⼀个很⼩的变动,但是我们后⾯会看到它引导更进⼀步的符号简化。因此,我们不再⽤阈值,⽽总是使⽤偏置。
感知机是首个可以学习的人工神经网络,它的出现引起的神经网络的第一层高潮。需要指出的是,感知机只能做简单的线性分类任务,而且Minsky在1969年出版的《Perceptron》书中,证明了感知机对XOR(异或)这样的问题都无法解决。但是感知机的提出,对神经网络的发展是具有重要意义的。
通过上面的感知机的观察我们发现一个问题,每个感知机的输出只有0和1,这就意味着有时我们只是在单个感知机上稍微修改了一点点权值w或者偏置b,就可能造成最终输出完全的反转。也就是说,感知机的输出是一个阶跃函数。如下图所示,在0附近的时候,输出的变化是非常明显的,而在远离0的地方,我们可能调整好久参数也不会发生输出的变化。
这样阶跃的跳变并不是我们想要的,我们需要的是当我们队权值w或者偏置b做出微小的调整后,输出也相应的发生微小的改变芹则禅。这同时也意味值我们的输出不再只是0和1,还可以输出小数。由此我们引入了S型神经元。
S型神经元使用 S 型函数,也叫Sigmoid function函数,我们用它作为激活函数。其表达式如下:
图像如下图所示:
利⽤实际的 σ 函数,我们得到⼀个,就像上⾯说明的,平滑的感知器。 σ 函数的平滑特性,正是关键因素,⽽不是其细部形式盯明。 σ 的平滑意味着权重和偏置的微⼩变化,即 ∆w 和 ∆b,会从神经元产⽣⼀个微⼩的输出变化 ∆output。实际上,微积分告诉我们
∆output 可以很好地近似表⽰为:
上面的式子是⼀个反映权重、偏置变化嫌尘和输出变化的线性函数。这⼀线性使得我们可以通过选择权重和偏置的微⼩变化来达到输出的微⼩变化。所以当 S 型神经元和感知器本质上是相同的,但S型神经元在计算处理如何变化权重和偏置来使输出变化的时候会更加容易。
有了对S型神经元的了解,我们就可以介绍神经网络的基本结构了。具体如下:
在⽹络中最左边的称为输⼊层,其中的神经元称为输⼊神经元。最右边的,即输出层包含有输出神经元,在图中,输出层只有⼀个神经元。中间层,既然这层中的神经元既不是输⼊也不是输出,则被称为隐藏层。
这就是神经网络的基本结构,随着后面的发展神经网络的层数也随之不断增加和复杂。
我们回顾一下神经网络发展的历程。神经网络的发展历史曲折荡漾,既有被人捧上天的时刻,也有摔落在街头无人问津的时段,中间经历了数次大起大落。
从单层神经网络(感知机)开始,到包含一个隐藏层的两层神经网络,再到多层的深度神经网络,一共有三次兴起过程。详见下图。
我们希望有⼀个算法,能让我们找到权重和偏置,以⾄于⽹络的输出 y(x) 能够拟合所有的 训练输⼊ x。为了量化我们如何实现这个⽬标,我们定义⼀个代价函数:
这⾥ w 表⽰所有的⽹络中权重的集合, b 是所有的偏置, n 是训练输⼊数据的个数,
a 是表⽰当输⼊为 x 时输出的向量,求和则是在总的训练输⼊ x 上进⾏的。当然,输出 a 取决于 x, w和 b,但是为了保持符号的简洁性,我没有明确地指出这种依赖关系。符号 ∥v∥ 是指向量 v 的模。我们把 C 称为⼆次代价函数;有时也称被称为均⽅误差或者 MSE。观察⼆次代价函数的形式我们可以看到 C(w, b) 是⾮负的,因为求和公式中的每⼀项都是⾮负的。此外,代价函数 C(w,b)的值相当⼩,即 C(w; b) ≈ 0,精确地说,是当对于所有的训练输⼊ x, y(x) 接近于输出 a 时。因
此如果我们的学习算法能找到合适的权重和偏置,使得 C(w; b) ≈ 0,它就能很好地⼯作。相反,当 C(w; b) 很⼤时就不怎么好了,那意味着对于⼤量地输⼊, y(x) 与输出 a 相差很⼤。因此我们的训练算法的⽬的,是最⼩化权重和偏置的代价函数 C(w; b)。换句话说,我们想要找到⼀系列能让代价尽可能⼩的权重和偏置。我们将采⽤称为梯度下降的算法来达到这个⽬的。
下面我们将代价函数简化为C(v)。它可以是任意的多元实值函数, 。
注意我们⽤ v 代替了 w 和 b 以强调它可能是任意的函数,我们现在先不局限于神经⽹络的环境。
为了使问题更加简单我们先考虑两个变量的情况,想象 C 是⼀个只有两个变量 和 的函数,我们的目的是找到 和 使得C最小。
如上图所示,我们的目的就是找到局部最小值。对于这样的一个问题,一种方法就是通过微积分的方法来解决,我们可以通过计算导数来求解C的极值点。但是对于神经网络来说,我们往往面对的是非常道的权值和偏置,也就是说v的维数不只是两维,有可能是亿万维的。对于一个高维的函数C(v)求导数几乎是不可能的。
在这种情况下,有人提出了一个有趣的算法。想象一下一个小球从山顶滚下山谷的过程, 我们的⽇常经验告诉我们这个球最终会滚到⾕底。我们先暂时忽略相关的物理定理, 对球体的⾁眼观察是为了激发我们的想象⽽不是束缚我们的思维。因此与其陷进物理学⾥凌乱的细节,不如我们就这样问⾃⼰:如果我们扮演⼀天的上帝,能够构造⾃⼰的物理定律,能够⽀配球体可以如何滚动,那么我们将会采取什么样的运动学定律来让球体能够总是滚落到⾕底呢?
为了更精确地描述这个问题,让我们思考⼀下,当我们在 和 ⽅向分别将球体移动⼀个很⼩的量,即 ∆ 和 ∆ 时,球体将会发⽣什么情况。微积分告诉我们 C 将会有如下变化:
也可以用向量表示为
现在我们的问题就转换为不断寻找一个小于0的∆C,使得C+∆C不断变小。
假设我们选取:
这⾥的 η 是个很⼩的正数(称为学习速率),于是
由于 ∥∇C∥2 ≥ 0,这保证了 ∆C ≤ 0,即,如果我们按照上述⽅程的规则去改变 v,那么 C
会⼀直减⼩,不会增加。
所以我们可以通过不断改变v来C的值不断下降,是小球滚到最低点。
总结⼀下,梯度下降算法⼯作的⽅式就是重复计算梯度 ∇C,然后沿着相反的⽅向移动,沿着⼭⾕“滚落”。我们可以想象它像这样:
为了使梯度下降能够正确地运⾏,我们需要选择合适的学习速率η,确保C不断减少,直到找到最小值。
知道了两个变量的函数 C 的梯度下降方法,我们可以很容易的把它推广到多维。我们假设 C 是⼀个有 m 个变量 的多元函数。 ∆C 将会变为:
其中, ∇C为
∆v为:
更新规则为:
在回到神经网络中,w和b的更新规则为:
前面提到神经⽹络如何使⽤梯度下降算法来学习他们⾃⾝的权重和偏置。但是,这⾥还留下了⼀个问题:我们并没有讨论如何计算代价函数的梯度。这里就需要用到一个非常重要的算法:反向传播算法(backpropagation)。
反向传播算法的启示是数学中的链式法则。
四个方程:
输出层误差方程:
当前层误差方程:
误差方程关于偏置的关系:
误差方程关于权值的关系
算法描述:
检视这个算法,你可以看到为何它被称作反向传播。我们从最后⼀层开始向后计算误差向量δ。这看起来有点奇怪,为何要从后⾯开始。但是如果你认真思考反向传播的证明,这种反向移动其实是代价函数是⽹络输出的函数的结果。为了理解代价随前⾯层的权重和偏置变化的规律,我们需要重复作⽤链式法则,反向地获得需要的表达式。
参考链接: http://neuralnetworksanddeeplearning.com/
‘肆’ 神经网络的准确率是怎么计算的
其实神经网络的准确率的标准是自己定义的。
我把你的例子赋予某种意义讲解:
1,期望输出[1 0 0 1],每个元素代表一个属性是否存在。像着4个元素分别表示:是否肺炎,是否肝炎,是否肾炎,是否胆炎,1表示是,0表示不是。
2,你的神经网络输出必定不可能全部都是输出只有0,1的输出。绝大部分是像[ 0.9968 0.0000 0.0001 0.9970]这样的输出,所以只要输出中的某个元素大于一定的值,例如0.7,我们就认为这个元素是1,即是有某种炎。否则为0,所以你的[ 0.9968 0.0000 0.0001 0.9970]可以看成是[1,0,0,1],。
3,所以一般神经网络的输出要按一定的标准定义成另一种输出(像上面说的),看调整后的输出和期望输出是否一致,一致的话算正确,不一致算错误。
4,用总量为n的检验样本对网络进行评价,输出调整后的输出,统计错误的个数,记为m。
所以检验正确率可以定义为n/m。