导航:首页 > 网络设置 > python设置网络

python设置网络

发布时间:2023-09-12 18:54:30

A. 如何用python和scikit learn实现神经网络

1:神经网络算法简介

2:Backpropagation算法详细介绍

3:非线性转化方程举例

4:自己实现神经网络算法NeuralNetwork

5:基于NeuralNetwork的XOR实例

6:基于NeuralNetwork的手写数字识别实例

7:scikit-learn中BernoulliRBM使用实例

8:scikit-learn中的手写数字识别实例

一:神经网络算法简介

1:背景

以人脑神经网络为启发,历史上出现过很多版本,但最着名的是backpropagation

2:多层向前神经网络(Multilayer Feed-Forward Neural Network)

B. python源码如何搭建网络玩法

Python搭建网站,利用现成的框架、可利用Flask搭建一个网站。

Flask创建一个应用很简单,只需要一行代码就可以创建一个应用。

Flask是一个使用 Python 编写的轻量级 Web 应用框架,其 WSGI 工具箱采用 Werkzeug ,模板引擎则使用 Jinja2 。





C. 从零开始用Python构建神经网络

从零开始用Python构建神经网络
动机:为了更加深入的理解深度学习,我们将使用 python 语言从头搭建一个神经网络,而不是使用像 Tensorflow 那样的封装好的框架。我认为理解神经网络的内部工作原理,对数据科学家来说至关重要。
这篇文章的内容是我的所学,希望也能对你有所帮助。
神经网络是什么?
介绍神经网络的文章大多数都会将它和大脑进行类比。如果你没有深入研究过大脑与神经网络的类比,那么将神经网络解释为一种将给定输入映射为期望输出的数学关系会更容易理解。
神经网络包括以下组成部分
? 一个输入层,x
? 任意数量的隐藏层
? 一个输出层,?
? 每层之间有一组权值和偏置,W and b
? 为隐藏层选择一种激活函数,σ。在教程中我们使用 Sigmoid 激活函数
下图展示了 2 层神经网络的结构(注意:我们在计算网络层数时通常排除输入层)

2 层神经网络的结构
用 Python 可以很容易的构建神经网络类

训练神经网络
这个网络的输出 ? 为:

你可能会注意到,在上面的等式中,输出 ? 是 W 和 b 函数。
因此 W 和 b 的值影响预测的准确率. 所以根据输入数据对 W 和 b 调优的过程就被成为训练神经网络。
每步训练迭代包含以下两个部分:
? 计算预测结果 ?,这一步称为前向传播
? 更新 W 和 b,,这一步成为反向传播
下面的顺序图展示了这个过程:

前向传播
正如我们在上图中看到的,前向传播只是简单的计算。对于一个基本的 2 层网络来说,它的输出是这样的:

我们在 NeuralNetwork 类中增加一个计算前向传播的函数。为了简单起见我们假设偏置 b 为0:

但是我们还需要一个方法来评估预测结果的好坏(即预测值和真实值的误差)。这就要用到损失函数。
损失函数
常用的损失函数有很多种,根据模型的需求来选择。在本教程中,我们使用误差平方和作为损失函数。
误差平方和是求每个预测值和真实值之间的误差再求和,这个误差是他们的差值求平方以便我们观察误差的绝对值。
训练的目标是找到一组 W 和 b,使得损失函数最好小,也即预测值和真实值之间的距离最小。
反向传播
我们已经度量出了预测的误差(损失),现在需要找到一种方法来传播误差,并以此更新权值和偏置。
为了知道如何适当的调整权值和偏置,我们需要知道损失函数对权值 W 和偏置 b 的导数。
回想微积分中的概念,函数的导数就是函数的斜率。

梯度下降法
如果我们已经求出了导数,我们就可以通过增加或减少导数值来更新权值 W 和偏置 b(参考上图)。这种方式被称为梯度下降法。
但是我们不能直接计算损失函数对权值和偏置的导数,因为在损失函数的等式中并没有显式的包含他们。因此,我们需要运用链式求导发在来帮助计算导数。

链式法则用于计算损失函数对 W 和 b 的导数。注意,为了简单起见。我们只展示了假设网络只有 1 层的偏导数。
这虽然很简陋,但是我们依然能得到想要的结果—损失函数对权值 W 的导数(斜率),因此我们可以相应的调整权值。
现在我们将反向传播算法的函数添加到 Python 代码中

为了更深入的理解微积分原理和反向传播中的链式求导法则,我强烈推荐 3Blue1Brown 的如下教程:
Youtube:https://youtu.be/tIeHLnjs5U8
整合并完成一个实例
既然我们已经有了包括前向传播和反向传播的完整 Python 代码,那么就将其应用到一个例子上看看它是如何工作的吧。

神经网络可以通过学习得到函数的权重。而我们仅靠观察是不太可能得到函数的权重的。
让我们训练神经网络进行 1500 次迭代,看看会发生什么。 注意观察下面每次迭代的损失函数,我们可以清楚地看到损失函数单调递减到最小值。这与我们之前介绍的梯度下降法一致。

让我们看看经过 1500 次迭代后的神经网络的最终预测结果:

经过 1500 次迭代训练后的预测结果
我们成功了!我们应用前向和方向传播算法成功的训练了神经网络并且预测结果收敛于真实值。
注意预测值和真实值之间存在细微的误差是允许的。这样可以防止模型过拟合并且使得神经网络对于未知数据有着更强的泛化能力。
下一步是什么?
幸运的是我们的学习之旅还没有结束,仍然有很多关于神经网络和深度学习的内容需要学习。例如:
? 除了 Sigmoid 以外,还可以用哪些激活函数
? 在训练网络的时候应用学习率
? 在面对图像分类任务的时候使用卷积神经网络
我很快会写更多关于这个主题的内容,敬请期待!
最后的想法
我自己也从零开始写了很多神经网络的代码
虽然可以使用诸如 Tensorflow 和 Keras 这样的深度学习框架方便的搭建深层网络而不需要完全理解其内部工作原理。但是我觉得对于有追求的数据科学家来说,理解内部原理是非常有益的。
这种练习对我自己来说已成成为重要的时间投入,希望也能对你有所帮助

D. BP神经网络的原理的BP什么意思

原文链接:http://tecdat.cn/?p=19936

在本教程中,您将学习如何在R语言中创建神经网络模型。

神经网络(或人工神经网络)具有通过样本进行学习的能力。人工神经网络是一种受生物神经元系统启发的信息处理模型。它由大量高度互连的处理元件(称为神经元)组成,以解决问题。它遵循非线性路径,并在整个节点中并行处理信息。神经网络是一个复杂的自适应系统。自适应意味着它可以通过调整输入权重来更改其内部结构。

该神经网络旨在解决人类容易遇到的问题和机器难以解决的问题,例如识别猫和狗的图片,识别编号的图片。这些问题通常称为模式识别。它的应用范围从光学字符识别到目标检测。

本教程将涵盖以下主题:

E. 如何使用python设置无线网络连接共享属性

这里必须要手动去设置,用的就是cmd,widows自带的命令开wifi。

F. 如何用9行Python代码编写一个简易神经网络

学习人工智能时,我给自己定了一个目标--用Python写一个简单的神经网络。为了确保真得理解它,我要求自己不使用任何神经网络库,从头写起。多亏了Andrew Trask写得一篇精彩的博客,我做到了!下面贴出那九行代码:在这篇文章中,我将解释我是如何做得,以便你可以写出你自己的。我将会提供一个长点的但是更完美的源代码。

首先,神经网络是什么?人脑由几千亿由突触相互连接的细胞(神经元)组成。突触传入足够的兴奋就会引起神经元的兴奋。这个过程被称为“思考”。我们可以在计算机上写一个神经网络来模拟这个过程。不需要在生物分子水平模拟人脑,只需模拟更高层级的规则。我们使用矩阵(二维数据表格)这一数学工具,并且为了简单明了,只模拟一个有3个输入和一个输出的神经元。

我们将训练神经元解决下面的问题。前四个例子被称作训练集。你发现规律了吗?‘?’是0还是1?你可能发现了,输出总是等于输入中最左列的值。所以‘?’应该是1。

训练过程

但是如何使我们的神经元回答正确呢?赋予每个输入一个权重,可以是一个正的或负的数字。拥有较大正(或负)权重的输入将决定神经元的输出。首先设置每个权重的初始值为一个随机数字,然后开始训练过程:

取一个训练样本的输入,使用权重调整它们,通过一个特殊的公式计算神经元的输出。

计算误差,即神经元的输出与训练样本中的期待输出之间的差值。

根据误差略微地调整权重。

重复这个过程1万次。最终权重将会变为符合训练集的一个最优解。如果使用神经元考虑这种规律的一个新情形,它将会给出一个很棒的预测。

这个过程就是back propagation。

计算神经元输出的公式

你可能会想,计算神经元输出的公式是什么?首先,计算神经元输入的加权和,即接着使之规范化,结果在0,1之间。为此使用一个数学函数--Sigmoid函数:Sigmoid函数的图形是一条“S”状的曲线。把第一个方程代入第二个,计算神经元输出的最终公式为:你可能注意到了,为了简单,我们没有引入最低兴奋阈值。

调整权重的公式

我们在训练时不断调整权重。但是怎么调整呢?可以使用“Error Weighted Derivative”公式:为什么使用这个公式?首先,我们想使调整和误差的大小成比例。其次,乘以输入(0或1),如果输入是0,权重就不会调整。最后,乘以Sigmoid曲线的斜率(图4)。为了理解最后一条,考虑这些:

我们使用Sigmoid曲线计算神经元的输出

如果输出是一个大的正(或负)数,这意味着神经元采用这种(或另一种)方式

从图四可以看出,在较大数值处,Sigmoid曲线斜率小

如果神经元认为当前权重是正确的,就不会对它进行很大调整。乘以Sigmoid曲线斜率便可以实现这一点

Sigmoid曲线的斜率可以通过求导得到:把第二个等式代入第一个等式里,得到调整权重的最终公式:当然有其他公式,它们可以使神经元学习得更快,但是这个公式的优点是非常简单。

构造Python代码

虽然我们没有使用神经网络库,但是将导入Python数学库numpy里的4个方法。分别是:

exp--自然指数

array--创建矩阵

dot--进行矩阵乘法

random--产生随机数

比如, 我们可以使用array()方法表示前面展示的训练集:“.T”方法用于矩阵转置(行变列)。所以,计算机这样存储数字:我觉得我们可以开始构建更优美的源代码了。给出这个源代码后,我会做一个总结。

我对每一行源代码都添加了注释来解释所有内容。注意在每次迭代时,我们同时处理所有训练集数据。所以变量都是矩阵(二维数据表格)。下面是一个用Python写地完整的示例代码。

我们做到了!我们用Python构建了一个简单的神经网络!

首先神经网络对自己赋予随机权重,然后使用训练集训练自己。接着,它考虑一种新的情形[1, 0, 0]并且预测了0.99993704。正确答案是1。非常接近!

传统计算机程序通常不会学习。而神经网络却能自己学习,适应并对新情形做出反应,这是多么神奇,就像人类一样。

G. Python网络编程6-使用Pysnmp实现简单网管

  简单网络管理协议SNMP(Simple Network Management Protocol)用于网络设备的管理。SNMP作为广泛应用于TCP/IP网络的网络管理标准协议,提供了统一的接口,从而实现了不同种类和厂商的网络设备之间的统一管理。
  SNMP协议分为三个版本:SNMPv1、SNMPv2c和SNMPv3。

  SNMP系统由网络管理系统NMS(Network Management System)、SNMP Agent、被管对象Management object和管理信息库MIB(Management Information Base)四部分组成。

  SNMP查询是指NMS主动向SNMP Agent发送查询请求,如图1-3所示。SNMP Agent接收到查询请求后,通过MIB表完成相应指令,并将结果反馈给NMS。SNMP查询操作有三种:Get、GetNext和GetBulk。SNMPv1版本不支持GetBulk操作。

  不同版本的SNMP查询操作的工作原理基本一致,唯一的区别是SNMPv3版本增加了身份验证和加密处理。下面以SNMPv2c版本的Get操作为例介绍SNMP查询操作的工作原理。假定NMS想要获取被管理设备MIB节点sysContact的值,使用可读团体名为public,过程如下所示:

  SNMP设置是指NMS主动向SNMP Agent发送对设备进行Set操作的请求,如下图示。SNMP Agent接收到Set请求后,通过MIB表完成相应指令,并将结果反馈给NMS。

  不同版本的SNMP Set操作的工作原理基本一致,唯一的区别是SNMPv3版本增加了身份验证和加密处理。下面以SNMPv3版本的Set操作为例介绍SNMP Set操作的工作原理。
假定NMS想要设置被管理设备MIB节点sysName的值为HUAWEI,过程如下所示:

  SNMPv1和SNMPv2c的Set操作报文格式如下图所示。一般情况下,SNMPv3的Set操作信息是经过加密封装在SNMP PDU中,其格式与SNMPv2c的Set操作报文格式一致。

  SNMP Traps是指SNMP Agent主动将设备产生的告警或事件上报给NMS,以便网络管理员及时了解设备当前运行的状态。
  SNMP Agent上报SNMP Traps有两种方式:Trap和Inform。SNMPv1版本不支持Inform。Trap和Inform的区别在于,SNMP Agent通过Inform向NMS发送告警或事件后,NMS需要回复InformResponse进行确认。

  在Ensp中搭建网络环境,在R2上启用SNMP作为SNMP agent,Linux主机作为NMS;为方便观察SNMP报文格式,在R2使用SNMP的版本为v2c。

通过下面的Python脚本获取R2的系统信息与当前的主机名

运行结果如下

  在R2接口上抓包结果如下,Linux主机向R2的161端口发送SNMP get-request报文,可以看到SNMP使用的版本为v2c,设置的团体名为public,随机生成了一个request-id,变量绑定列表(Variable bindings),即要查询的OID,但Value为空;值得注意的是这些信息都是明文传输的,为了安全在实际环境中应使用SNMPv3。

通过下面的Python脚本获取R2的接口信息。

运行结果如下:

在R2接口抓包结果如下,getBuikRequest相比get-request设置了一个max-repetitions字段,表明最多执行get操作的次数。Variable bindings中请求的OID条目只有一条。

下面Python脚本用于设置R2的主机名为SNMPv2R2。

运行结果如下

路由器上可以看到主机名有R2变为了SNMPv2R2。

get-response数据包内容与set-request中无异。

下面Python脚本用于接收,R2发送的Trap,并做简单解析。

先运行该脚本,之后再R2上手动将一个接口shutdown,结果如下:

接口上抓包结果如下,此时团体名用的是public,data部分表明是trap。

由于Ensp中的通用路由器认证算法只支持des56,而pysnmp不支持该算法,因此使用AR路由器配置SNMPv3。

使用下面Python脚本发送snmpv3 get报文获取设备系统信息。

抓包结果如下,首先发送get-resques进行SNMPv3认证请求,随机生成一个msgID,认证模式为USM,msgflgs中Reportable置1要求对方发送report,其他为置0,表示不进行加密与鉴权;另外安全参数,认证参数、加密参数都为空,此时不携带get请求数据。

路由器给NMS回复report,msgID与resquest一致,Msgflgs中各位都置0,同时回复使用的安全引擎,认证与加密参数为空,不进行认证与加密,因此能看到data中的数据。

AR1收到请求后进行回复,数据包中msgflags标志位中除reportable外其他位都置1,表示不需要回复,同时进行加密与鉴权。同样也可以看到认证用户为testuser,认证参数与加密参数都有填充,data部分也是同样加密。

参考:
什么是SNMP - 华为 (huawei.com)
AR100-S V300R003 MIB参考 - 华为 (huawei.com)
SNMP library for Python — SNMP library for Python 4.4 documentation (pysnmp.readthedocs.io)

阅读全文

与python设置网络相关的资料

热点内容
如何电脑查监控用的哪个网络 浏览:690
小米手机如何变更网络 浏览:250
自己家无线网络显示不认识的字 浏览:681
跨地域网络费用多少 浏览:867
网络安全主题班队会ppt素材 浏览:861
打印机怎么连接不了无线网络 浏览:79
交通阻断网络信号 浏览:650
如何打电话时有网络吗 浏览:259
计算机网络课技术实践课程报告册 浏览:693
网络造福了多少人 浏览:243
wifi网络密码必须是40位 浏览:917
无线网络电阻怎么样 浏览:254
电信卡苹果手机网络不好 浏览:378
4室2厅网络设置mesh 浏览:443
家庭网络如何提高下载速度 浏览:563
笔记本电脑没有网络怎么连接wifi 浏览:137
网络有异常会不会影响拨付钱 浏览:880
常州品牌网络服务哪个好 浏览:928
路由器受网络网速控制吗 浏览:525
计算机网络碰撞测试 浏览:838

友情链接