❶ 常见的网络传输介质有哪几种
网络传输介质是网络中传输数据、连接各网络站点的实体。网络信息还可以利用无线电系统、微波无线系统和红外技术等传输。目前常见的网络传输介质有:双绞线、同轴电缆、光纤等。 x0dx0a一、双绞线电缆(TP):将一对以上的双绞线封装在一个绝缘外套中,为了降低信号的干扰程度,电缆中的每一对双绞线一般是由两根绝缘铜导线相互扭绕而成,也因此把它称为双绞线。双绞线分为分为非屏蔽双绞线(UTP)和屏蔽双绞线(STP)。x0dx0ax0dx0a目前市面上出售的UTP分为3类,4类,5类和超5类四种:x0dx0a3类:传输速率支持10Mbps,外层保护胶皮较薄,皮上注有“cat3”x0dx0a4类:网络中不常用x0dx0a5类(超5类):传输速率支持100Mbps或10Mbps,外层保护胶皮较厚,皮上注有“cat5”x0dx0a超5类双绞线在传送信号时比普通5类双绞线的衰减更小,抗干扰能力更强,在100M网络中,受干扰程度只有普通5类线的1/4,目前较少应用。x0dx0ax0dx0aSTP分为3类和5类两种,STP的内部与UTP相同,外包铝箔,抗干扰能力强、传输速率高但价格昂贵。x0dx0ax0dx0a双绞线一般用于星型网的布线连接,两端安装有RJ-45头(水晶头),连接网卡与集线器,最大网线长度为100米,如果要加大网络的范围,在两段双绞线之间可安装中继器,最多可安装4个中继器,如安装4个中继器连5个网段,最大传输范围可达500米。x0dx0ax0dx0a二、同轴电缆:由一根空心的外圆柱导体和一根位于中心轴线的内导线组成,内导线和圆柱导体及外界之间用绝缘材料隔开。按直径的不同,可分为粗缆和细缆两种:x0dx0a粗缆:传输距离长,性能好但成本高、网络安装、维护困难,一般用于大型局域网的干线,连接时两端需终接器。x0dx0a (1)粗缆与外部收发器相连。x0dx0a (2)收发器与网卡之间用AUI电缆相连。x0dx0a (3)网卡必须有AUI接口(15针D型接口):每段500米,100个用户,4个中继器可达2500米,收发器之间最小2.5米,收发器电缆最大50米。x0dx0a细缆:与BNC网卡相连,两端装50欧的终端电阻。用T型头,T型头之间最小0.5米。细缆网络每段干线长度最大为185米,每段干线最多接入30个用户。如采用4个中继器连接5个网段,网络最大距离可达925米。x0dx0a细缆安装较容易,造价较低,但日常维护不方便,一旦一个用户出故障,便会影响其他用户的正常工作。x0dx0ax0dx0a根据传输频带的不同,可分为基带同轴电缆和宽带同轴电缆两种类型:x0dx0a基带:数字信号,信号占整个信道,同一时间内能传送一种信号。x0dx0a宽带:可传送不同频率的信号。x0dx0ax0dx0a三、光纤:是由一组光导纤维组成的用来传播光束的、细小而柔韧的传输介质。应用光学原理,由光发送机产生光束,将电信号变为光信号,再把光信号导入光纤,在另一端由光接收机接收光纤上传来的光信号,并把它变为电信号,经解码后再处理。与其它传输介质比较,光纤的电磁绝缘性能好、信号衰小、频带宽、传输速度快、传输距离大。主要用于要求传输距离较长、布线条件特殊的主干网连接。x0dx0ax0dx0a分为单模光纤和多模光纤:x0dx0a单模光纤:由激光作光源,仅有一条光通路,传输距离长,2千米以上。x0dx0a多模光纤:由二极管发光,低速短距离,2千米以内。
❷ 什么是以太网为什么要叫做“以太”网
以太网简介:
以太网(Ethernet)指的是由Xerox公司创建并由Xerox、Intel和DEC公司联合开发的基带局域网规范,是当今现有局域网采用的最通用的通信协议标准。以太网络使用CSMA/CD(载波监听多路访问及冲突检测)技术,并以10M/S的速率运行在多种类型的电缆上。以太网与IEEE802.3系列标准相类似。包括标准的以太网(10Mbit/s)、快速以太网(100Mbit/s)和10G(10Gbit/s)以太网。它们都符合IEEE802.3。
标准:
IEEE802.3规定了包括物理层的连线、电信号和介质访问层协议的内容。以太网是当前应用最普遍的局域网技术,它很大程度上取代了其他局域网标准。如令牌环、FDDI和ARCNET。历经100M以太网在上世纪末的飞速发展后,千兆以太网甚至10G以太网正在国际组织和领导企业的推动下不断拓展应用范围。
常见的802.3应用为:
10M: 10base-T (铜线UTP模式),
100M: 100base-TX (铜线UTP模式),
100base-FX(光纤线),
1000M: 1000base-T(铜线UTP模式)
以太网具有的一般特征概述如下:
共享媒体:所有网络设备依次使用同一通信媒体。
广播域:需要传输的帧被发送到所有节点,但只有寻址到的节点才会接收到帧。
CSMA/CD:以太网中利用载波监听多路访问/冲突检测方法(Carrier Sense Multiple Access/Collision Detection)以防止 twp 或更多节点同时发送。
MAC 地址:媒体访问控制层的所有 Ethernet 网络接口卡(NIC)都采用48位网络地址。这种地址全球唯一。
Ethernet 基本网络组成:
共享媒体和电缆:10BaseT(双绞线),10Base-2(同轴细缆),10Base-5(同轴粗缆)。
转发器或集线器:集线器或转发器是用来接收网络设备上的大量以太网连接的一类设备。通过某个连接的接收双方获得的数据被重新使用并发送到传输双方中所有连接设备上,以获得传输型设备。
网桥:网桥属于第二层设备,负责将网络划分为独立的冲突域获分段,达到能在同一个域/分段中维持广播及共享的目标。网桥中包括一份涵盖所有分段和转发帧的表格,以确保分段内及其周围的通信行为正常进行。
交换机:交换机,与网桥相同,也属于第二层设备,且是一种多端口设备。交换机所支持的功能类似于网桥,但它比网桥更具有的优势是,它可以临时将任意两个端口连接在一起。交换机包括一个交换矩阵,通过它可以迅速连接端口或解除端口连接。与集线器不同,交换机只转发从一个端口到其它连接目标节点且不包含广播的端口的帧。
以太网协议:IEEE 802.3标准中提供了以太帧结构。当前以太网支持光纤和双绞线媒体支持下的四种传输速率:
10 Mbps –10Base-TEthernet(802.3)
100 Mbps – Fast Ethernet(802.3u)
1000 Mbps – Gigabit Ethernet(802.3z))
10 Gigabit Ethernet – IEEE802.3ae
历史
以太网技术的最初进展来自于施乐帕洛阿尔托研究中心的许多先锋技术项目中的一个。人们通常认为以太网发明于1973年,当年罗伯特·梅特卡夫(Robert Metcalfe)给他PARC的老板写了一篇有关以太网潜力的备忘录。但是梅特卡夫本人认为以太网是之后几年才出现的。在1976年,梅特卡夫和他的助手David Boggs发表了一篇名为《以太网:局域计算机网络的分布式包交换技术》的文章。1977年底,梅特卡夫和他的合作者获得了“具有冲突检测的多点数据通信系统”的专利。多点传输系统被称为CSMA/CD(带冲突检测的载波侦听多路访问),从此标志以太网的诞生。
1979年,梅特卡夫为了开发个人电脑和局域网离开了施乐,成立了3Com公司。3com对迪吉多,英特尔,和施乐进行游说,希望与他们一起将以太网标准化、规范化。这个通用的以太网标准于1980年9月30日出台,当时业界有两个流行的非公有网络标准令牌环网和ARCNET,在以太网大潮的冲击下他们很快萎缩并被取代。而在此过程中,3Com也成了一个国际化的大公司。
以太网插头:
梅特卡夫曾经开玩笑说,Jerry Saltzer为3Com的成功作出了贡献。Saltzer在一篇与他人合着的很有影响力的论文中指出,在理论上令牌环网要比以太网优越。受到此结论的影响,很多电脑厂商或犹豫不决或决定不把以太网接口做为机器的标准配置,这样3com才有机会从销售以太网网卡大赚。这种情况也导致了另一种说法“以太网不适合在理论中研究,只适合在实际中应用”。也许只是句玩笑话,但这说明了这样一个技术观点:通常情况下,网络中实际的数据流特性与人们在局域网普及之前的估计不同,而正是因为以太网简单的结构才使局域网得以普及。梅特卡夫和Saltzer曾经在麻省理工学院 MAC项目(Project MAC)的同一层楼里工作,当时他正在做自己的哈佛大学毕业论文,在此期间奠定了以太网技术的理论基础。
该标准定义了在局域网(LAN)中采用的电缆类型和信号处理方法。以太网在互联设备之间以10~100Mbps的速率传送信息包,双绞线电缆10 Base T以太网由于其低成本、高可靠性以及10Mbps的速率而成为应用最为广泛的以太网技术。直扩的无线以太网可达11Mbps,许多制造供应商提供的产品都能采用通用的软件协议进行通信,开放性最好。
标准以太网:
开始以太网只有10Mbps的吞吐量,使用的是带有冲突检测的载波侦听多路访问(CSMA/CD,Carrier Sense Multiple Access/Collision Detection)的访问控制方法。这种早期的10Mbps以太网称之为标准以太网,以太网可以使用粗同轴电缆、细同轴电缆、非屏蔽双绞线、屏蔽双绞线和光纤等多种传输介质进行连接。并且在IEEE802.3标准中,为不同的传输介质制定了不同的物理层标准,在这些标准中前面的数字表示传输速度,单位是“Mbps”,最后的一个数字表示单段网线长度(基准单位是100m),Base表示“基带”的意思,Broad代表“宽带”。
·10Base-5 使用直径为0.4英寸、阻抗为50Ω粗同轴电缆,也称粗缆以太网,最大网段长度为500m。基带传输方法,拓扑结构为总线型。10Base-5组网主要硬件设备有:粗同轴电缆、带有AUI插口的以太网卡、中继器、收发器、收发器电缆、终结器等。
·10Base-2 使用直径为0.2英寸、阻抗为50Ω细同轴电缆,也称细缆以太网,最大网段长度为185m,基带传输方法,拓扑结构为总线型;10Base-2组网主要硬件设备有:细同轴电缆、带有BNC插口的以太网卡、中继器、T型连接器、终结器等。
·10Base-T 使用双绞线电缆,最大网段长度为100m。拓扑结构为星型;10Base-T组网主要硬件设备有:3类或5类非屏蔽双绞线、带有RJ-45插口的以太网卡、集线器、交换机、RJ-45插头等。
· 1Base-5 使用双绞线电缆,最大网段长度为500m,传输速度为1Mbps;
·10Broad-36 使用同轴电缆(RG-59/U CATV),网络的最大跨度为3600m,网段长度最大为1800m,是一种宽带传输方式;
·10Base-F 使用光纤传输介质,传输速率为10Mbps
1.以太网和IEEE802.3的工作原理
在基于广播的以太网中,所有的工作站都可以收到发送到网上的信息帧。每个工作站都要确认该信息帧是不是发送给自己的,一旦确认是发给自己的,就将它发送到高一层的协议层。
在采用CSMA/CD传输介质访问的以太网中,任何一个CSMA/CDLAN工作站在任何一时刻都可以访问网络。发送数据前,工作站要侦听网络是否堵塞,只有检测到网络空闲时,工作站才能发送数据。
在基于竞争的以太网中,只要网络空闲,任一工作站均可发送数据。当两个工作站发现网络空闲而同时发出数据时,就发生冲突。这时,两个传送操作都遭到破坏,工作站必须在一定时间后重发,何时重发由延时算法决定。
2.以太网和IEEE802.3服务的差别
尽管以太网与IEEE802.3标准有很多相似之处,但也存在一定的差别。以太网提供的服务对应于OSI参考模型的第一层和第二层,而IEEE802.3提供的服务对应于OSI参考模型的第一层和第二层的信道访问部分(即第二层的一部分)。IEEE802.3没有定义逻辑链路控制协议,但定义了几个不同物理层,而以太网只定义了一个。
IEEE802.3的每个物理层协议都可以从三方面说明其特征,这三方面分别是LAN的速度、信号传输方式和物理介质类型。
以太网是在 20 世纪 70 年代研制开发的一种基带局域网技术,使用同轴电缆作为网络媒体,采用载波多路访问和冲突检测( CSMA/CD )机制,数据传输速率达到10MBPS 。但是如今以太网更多的被用来指各种采用 CSMA/CD 技术的局域网。以太网的帧格式与 IP 是一致的,特别适合于传输 IP 数据。以太网由于具有简单方便、价格低、速度高等。
以太网这个名字,起源于一个科学假设:声音是通过空气传播的,那么光呢?在外太空没有空气光也可以传播。于是,有人说光是通过一种叫以太的物质传播。后来,爱因斯坦证明以太根本就不存在。
以太网与互联网的差别:
主要差别:以太网是一种局域网,只能连接附近的设备,因特网是广域网,我们可以通过因特网连接到美国去得到消息。
两者都算是用来连接电脑的网络,但是两者的范围是不同的。以太网是局限在一定的距离之内的,我们可以有成千上百个以太网;但是因特网呢,是最大的广域网了,我们只有一个因特网,所以因特网又可以说是网络中的网络。
因特网是一个超大的国际化的系统,它能够把世界上的各个地方的网络连接起来,私人的,公共的,学术的还是商业的网络或者政府的网络,都可以互相连接,共享资源。形象的来说,因特网就是我们在打开网页,发送邮件,在线听音乐看电影所用的网络,它包括了非常广泛的信息,现在的我们已经习以为常了。
而以太网呢,基本上就是只允许本地的几台电脑互相连接。电脑之间相互传送消息是有一组技术支持的。一般来说,连接到以太网上的电脑都在同一栋楼里,或者在周围附近。但是随着以太网网线的发展,以太网的范围可以扩展到十公里了。但是因为都是用网线互联,要想连接到很远的地方是不现实的。
生活化一点,以太网就是把你家的电脑,笔记本连接到猫上,然后再通过猫连接到因特网上去,这样你才能和国外的朋友Skype。因此,你家的电脑,笔记本和猫就组成了一个以太网。可以想象,世界上有成千上万个以太网。商业上应用以太网,将他们所有的电脑连接到主服务器上。
以太网可以有一个或者几个管理员。因特网上可能有一些部分是由管理员的,但是没有一个可以操控整个因特网的管理员。
另外一个区别就是安全性。以太网是比较安全的,因为他是一个封闭的内部网络,外部人员是没有权限的。但是因特网是公开连接的,每个人都可以浏览。
下面主要介绍了四种不同格式的以太网帧格式。
在每种格式的以太网帧的开始处都有64比特(8字节)的前导字符,如图1所示。其中,前7个字节称为前同步码(Preamble),内容是16进制数0xAA,最后1字节为帧起始标志符0xAB,它标识着以太网帧的开始。前导字符的作用是使接收节点进行同步并做好接收数据帧的准备。
图5 Ethernet 802. 3 SNAP帧格式
Ethernet 802. 3 SNAP类型以太网帧格式和Ethernet 802. 3 SAP类型以太网帧格式的主要区别在于:
2个字节的DSAP和SSAP字段内容被固定下来,其值为16进制数0xAA。
1个字节的"控制"字段内容被固定下来,其值为16进制数0x03。
增加了SNAP字段,由下面两项组成:
新增了3个字节的组织唯一标识符(Organizationally Unique Identifier,OUI ID)字段,其值通常等于MAC地址的前3字节,即网络适配器厂商代码。
2个字节的“类型”字段用来标识以太网帧所携带的上层数据类型。
太网可以采用多种连接介质,包括同轴缆、双绞线和光纤等。其中双绞线多用于从主机到集线器或交换机的连接,而光纤则主要用于交换机间的级联和交换机到路由器间的点到点链路上。同轴缆作为早期的主要连接介质已经逐渐趋于淘汰。
注意区分双绞线中的直通线和交叉线两种连线方法.
以下连接应使用直通电缆:
交换机到路由器以太网端口
计算机到交换机
计算机到集线器
交叉电缆用于直接连接 LAN 中的下列设备:
交换机到交换机
交换机到集线器
集线器到集线器
路由器到路由器的以太网端口连接
计算机到计算机
计算机到路由器的以太网端口
CSMA/CD共享介质以太网
带冲突检测的载波侦听多路访问 (CSMA/CD)[2]技术规定了多台电脑共享一个通道的方法。这项技术最早出现在1960年代由夏威夷大学开发的ALOHAnet,它使用无线电波为载体。这个方法要比令牌环网或者主控制网要简单。当某台电脑要发送信息时,必须遵守以下规则:
开始:如果线路空闲,则启动传输,否则转到第4步。
发送:如果检测到冲突,继续发送数据直到达到最小报文时间 (保证所有其他转发器和终端检测到冲突),再转到第4步。
成功传输:向更高层的网络协议报告发送成功,退出传输模式。
线路忙:等待,直到线路空闲线路进入空闲状态- 等待一个随机的时间,转到第1步,除非超过最大尝试次数。
超过最大尝试传输次数:向更高层的网络协议报告发送失败,退出传输模式。
就像在没有主持人的座谈会中,所有的参加者都通过一个共同的媒介(空气)来相互交谈。每个参加者在讲话前,都礼貌地等待别人把话讲完。如果两个客人同时开始讲话,那么他们都停下来,分别随机等待一段时间再开始讲话。这时,如果两个参加者等待的时间不同,冲突就不会出现。如果传输失败超过一次,将采用退避指数增长时间的方法(退避的时间通过截断二进制指数退避算法(truncated binary exponential backoff)来实现)。
最初的以太网是采用同轴电缆来连接各个设备的。电脑通过一个叫做附加单元接口(Attachment Unit Interface,AUI)的收发器连接到电缆上。一根简单网线对于一个小型网络来说还是很可靠的,对于大型网络来说,某处线路的故障或某个连接器的故障,都会造成以太网某个或多个网段的不稳定。
因为所有的通信信号都在共用线路上传输,即使信息只是发给其中的一个终端(destination),某台电脑发送的消息都将被所有其他电脑接收。在正常情况下,网络接口卡会滤掉不是发送给自己的信息,接收目标地址是自己的信息时才会向CPU发出中断请求,除非网卡处于混杂模式(Promiscuous mode)。这种“一个说,大家听”的特质是共享介质以太网在安全上的弱点,因为以太网上的一个节点可以选择是否监听线路上传输的所有信息。共享电缆也意味着共享带宽,所以在某些情况下以太网的速度可能会非常慢,比如电源故障之后,当所有的网络终端都重新启动时。
以太网这个名字,起源于一个科学假设:声音是通过空气传播的,那么光呢?在外太空没有空气光也可以传播。于是,有人说光是通过一种叫以太的物质传播。后来,爱因斯坦证明以太根本就不存在。
大家知道,声音是通过空气传播的,那么光是通过什么传播的呢?
在牛顿运动定律中,物体的运动是相对的。比如,地铁车厢里面的人看见您在车厢里原地踏步走,而位于车厢外面的人却看见你以120公里每小时的速度前进。
但光的运动并不是这样,您无论以什么物体作为参照物,它的运动速度始终都是299 792 458 米 / 秒。这个问题困惑了很多科学家,难道牛顿定律失灵了?一个来自瑞士专利局的职员,名叫爱因斯坦的人在1905年发表了篇论文,文中提到,无论观察者以何种速度运动,相对于他们而言,光的速度是恒久不变的,相对论便由此诞生了。
这简单的理念有一些非凡的结论。可能最着名者莫过于质量和能量的等价,用爱因斯坦的方程来表达就是E=mc^2(E是能量,m是质量,c是光速),以及没有任何东西能运动得比光还快的定律。由于能量和质量的等价,物体由于它的运动所具的能量应该加到它的质量上面去。换言之,要加速它将变得更为困难。这个效应只有当物体以接近于光速的速度运动时才有实际的意义。例如,以10%光速运动的物体的质量只比原先增加了0.5%,而以90%光速运动的物体,其质量变得比正常质量的2倍还多。当一个物体接近光速时,它的质量上升得越来越快,它需要越来越多的能量才能进一步加速上去。实际上它永远不可能达到光速,因为那时质量会变成无限大,而由质量能量等价原理,这就需要无限大的能量才能做到。
由此我们可以看出,世界上根本就不存在以太这种物质,因为光速是永远恒定不变的,为其找个运动参照物是个笑话。有鉴于此,以太网的命名也就是一个笑话。但以太网并不会消失,它正随着人们追求高速度而不断的进行蜕变。以前,只要数据链路层遵从CSMA/CD协议通信,那么它就可以被称为以太网,但随着接入共享网络设备的增加,冲突会使网络的传输效率越来越低。后来,交换机的出现使全双工以太网得到了更好的实现。未来,以太网会披上光的外衣,飞的更快。
网络体系结构
ethernet采用无源的介质,按广播方式传播信息。它规定了物理层和数据链路层协议,规定了物理层和数据链路层的接口以及数据链路层与更高层的接口。
⑴物理层
物理层规定了Ethernet的基本物理属性,如数据编码、时标、电频等。
⑵数据链路层
数据链路层的主要功能是完成帧发送和帧接收,包括负责对用户数据进行帧的组装与分解,随时监测物理层的信息监测标志,了解信道的忙闲情况,实现数据链路的收发管理。
❸ 网线一般可以传输多少米
双绞线不超过90米,同轴电缆为200-250 米左右。
1、双绞线:水平线缆作为数据传输时永久链路不超过90米,信道不超过100米。
2、同轴电缆:75-7同轴电缆为200-250 米左右,75-5为100-150米左右。
从家用的路由器到电脑之间的网线一般不要长于50米,但从小区或住宅楼的集线器(交换机)到各个住宅单元的网线长度100米也没问题,网线超过90米会引起网络信号衰减,沿路干扰增加,使传输数据容易出错,因而会造成上网卡住、网页出错等情况。
网络的传输,其实就是网络信号在双绞线上的传输,作为一种电子信号,在双绞线中传输时,必然要受到电阻和电容的影响,这就导致了网络信号的衰减和畸变。
信号的衰减或者畸变达到一定的程度,就会影响到信号的有效、稳定传输。
数据信息在网络中传输,当通过不同部件时均会产生延迟,五类UTP的延时为5.56ns/m。在设计以太网时,要求遵守一个中继规则,这个规则又称为黄金规则或5-4-3-2-1规则,此规则不但适用于10mbps的以太网,也适用于快速以太网。
这个规则要求环行冲突延迟不得超过512位时,对于100mbps的传输率,即为5120ns。环行中,网络元件有电缆、中继单元、MAU和DTE等,把它们的延时加起来,再乘2,即得出环行延时,同时也可计算出环行冲突直径。
按此理论,可计算出为保证一个最小帧发送完毕之前信号所能传输的最远距离。这就是为何要将链路跨距限定为100米的理由。
❹ 网线外径,总直径多少
一般网线的标准线径在0.5mm,有些也有在0.4左右都是可以用的。
三类线到六类线,粗细从26AWG到23AWG不等。最常见到的就是五类线的24AWG(0.511mm)和六类线的23AWG(0.573mm)。
普通的网线分为两种:
一种是机对机,一种是机对集线器,既一种是同等设备,
一种是不同设备。一要网线有两个水晶头,不同的网线,水晶头的做法不一样。
(4)网络的直径最大为多少米扩展阅读:
电缆中央的十字骨架随长度的变化而旋转角度,将四对双绞线卡在骨架的凹槽内,保持四对双绞线的相对位置,提高电缆的平衡特性和串扰衰减。另外,保证在安装过程中电缆的平衡结构不遭到破坏。六类非屏蔽双绞线裸铜线径为0.57mm(线规为23AWG),绝缘线径为1.02mm,STP电缆直径为6.53mm。
❺ 超五类网线的国家标准 线径是多少
超五类网线的直径一般在0.5mm左右,线的好坏除了粗细外,还有铜的好坏的。
虽然超五类网线线芯线径0.5mm~0.52mm,是各场合中综合布线工程中使用频率最高的线缆,但绝大多数用户对于超五类双绞线的了解却并不多。网线对网络系统的运输信号质量及稳定性有着至关重要的作用,而超五类网线的参数规格与网速是互为配合,相辅相成的关系。
(5)网络的直径最大为多少米扩展阅读:
注意事项:
严格遵守线槽的施工规范,保证合适的线缆弯曲半径。上下左右绕过其他线槽时,转弯坡度要平缓,重点注意两端线缆下垂受力后是否还能在不压损线缆的前提下盖上盖板。
超五类双绞线也是采用4个绕对和1条抗拉线,线对的颜色与五类双绞线完全相同,分别为白橙、橙、白绿、绿、白蓝、蓝、白棕和棕。裸铜线径为0.51mm(线规为24AWG),绝缘线径为0.92mm,UTP电缆直径为5mm。
超五类双绞线通常只被应用于100Mb/s快速以太网,实现桌面交换机到计算机的连接。超五类非屏蔽双绞线也能提供高达1000Mb/s的传输带宽,但是往往需要借助于价格高昂的特殊设备的支持。
❻ 网络传输介质有哪几种啊
双绞线、同轴电缆、光纤等。 双绞线电缆(TP):为了减少信号的干扰,一个以上的双绞线被封装在绝缘护套中。一般来说,电缆中的每一对双绞线都是由两根绝缘铜线绞合而成的,所以称为双绞线。双绞线分为非屏蔽双绞线(UTP)和屏蔽双绞线(STP)。目前,市场上销售的UTP分为三型、四型、五型和五型以上:3类:传输速率支持10Mbps,外层保护胶较薄,上面有“cat3”。第4类:网络中不常用5类(超5类):传输速率支持100Mbps或10Mbps,外层保护胶较厚,上面有“cat5”。超五类双绞线在传输信号时比普通五类双绞线衰孙察汪减更小,抗干扰能力更强。在100M网络中,干扰程度只有普通5类双绞线的1/4,没姿所以目前很少使用。STP分为三类和五类。STP内部和UTP一样,用铝箔包裹,抗干扰则仔能力强,传输速率高,价格高。双绞线一般用于星形网络的布线连接。RJ-45连接器(晶体连接器)安装在两端,用于连接网卡和集线器。网络电缆的最大长度为100米。如果要扩大网络范围,可以在两条双绞线电缆之间安装中继器,最多可以安装4个中继器。比如4个直放站安装5个网段,最大传输距离可以达到500m。