导航:首页 > 网络设置 > votenet算法用多少层网络

votenet算法用多少层网络

发布时间:2022-01-20 17:32:55

❶ 神经网络中的前向和后向算法

神经网络中的前向和后向算法
看了一段时间的深度网络模型,也在tf和theano上都跑了一些模型,但是感觉没有潜下去,对很多东西的理解都只停留在“这个是干什么的”层次上面。昨天在和小老师一起看一篇文章的时候,就被问到RNN里面的后向传播算法具体是怎么推。当时心里觉得BP算法其实很熟悉啊,然后在推导的过程中就一脸懵逼了。于是又去网上翻了翻相关内容,自己走了一遍,准备做个笔记,算是个交代。
准备一个神经网络模型,比如:

其中,[i1,i2]
代表输入层的两个结点,[h1,h2]代表隐藏层的两个结点,[o1,o2]为输出。[b1,b2]
为偏置项。连接每个结点之间的边已经在图中标出。
来了解一下前向算法:
前向算法的作用是计算输入层结点对隐藏层结点的影响,也就是说,把网络正向的走一遍:输入层—->隐藏层—->输出层
计算每个结点对其下一层结点的影响。
?? 例如,我们要算结点h1
的值,那么就是:
是一个简单的加权求和。这里稍微说一下,偏置项和权重项的作用是类似的,不同之处在于权重项一般以乘法的形式体现,而偏置项以加法的形式体现。
??而在计算结点o1时,结点h1的输出不能简单的使用neth1的结果,必须要计算激活函数,激活函数,不是说要去激活什么,而是要指“激活的神经元的特征”通过函数保留并映射出来。以sigmoid函数为例,h1的输出:

于是

最后o1的输出结果,也就是整个网络的一个输出值是:
按照上面的步骤计算出out02,则[outo1,outo2]就是整个网络第一次前向运算之后得到的结果。
后向算法:

??在实际情况中,因为是随机给定的权值,很大的可能(几乎是100%)得到的输出与实际结果之间的偏差非常的大,这个时候我们就需要比较我们的输出和实际结果之间的差异,将这个残差返回给整个网络,调整网络中的权重关系。这也是为什么我们在神经网络中需要后向传播的原因。其主要计算步骤如下:
1. 计算总误差
2. 隐藏层的权值更新
在要更新每个边的权重之前,必须要知道这条边对最后输出结果的影响,可以用整体误差对w5求偏导求出:
具体计算的时候,可以采用链式法则展开:
在计算的时候一定要注意每个式子里面哪些自变量是什么,求导千万不要求错了。
??需要讲出来的一个地方是,在计算w1的权重时,Etotal中的两部分都需要对它进行求导,因为这条边在前向传播中对两个残差都有影响
3. 更新权重 这一步里面就没什么东西了,直接根据学习率来更新权重:

至此,一次正向+反向传播过程就到此为止,接下来只需要进行迭代,不断调整边的权重,修正网络的输出和实际结果之间的偏差(也就是training整个网络)。

计算机网络的最短路径算法有哪些对应哪些协议

用于解决最短路径问题的算法被称做“最短路径算法”,有时被简称作“路径算法”。最常用的路径算法有:
Dijkstra算法、A*算法、SPFA算法、Bellman-Ford算法和Floyd-Warshall算法,本文主要介绍其中的三种。

最短路径问题是图论研究中的一个经典算法问题,旨在寻找图(由结点和路径组成的)中两结点之间的最短路径。
算法具体的形式包括:

确定起点的最短路径问题:即已知起始结点,求最短路径的问题。

确定终点的最短路径问题:与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题。在无向图中该问题与确定起点的问题完全等同,在有向图中该问题等同于把所有路径方向反转的确定起点的问题。
确定起点终点的最短路径问题:即已知起点和终点,求两结点之间的最短路径。

全局最短路径问题:求图中所有的最短路径。
Floyd

求多源、无负权边的最短路。用矩阵记录图。时效性较差,时间复杂度O(V^3)。

Floyd-Warshall算法(Floyd-Warshall algorithm)是解决任意两点间的最短路径的一种算法,可以正确处理有向图或负权的最短路径问题。
Floyd-Warshall算法的时间复杂度为O(N^3),空间复杂度为O(N^2)。

Floyd-Warshall的原理是动态规划:

设Di,j,k为从i到j的只以(1..k)集合中的节点为中间节点的最短路径的长度。

若最短路径经过点k,则Di,j,k = Di,k,k-1 + Dk,j,k-1;

若最短路径不经过点k,则Di,j,k = Di,j,k-1。

因此,Di,j,k = min(Di,k,k-1 + Dk,j,k-1 , Di,j,k-1)。

在实际算法中,为了节约空间,可以直接在原来空间上进行迭代,这样空间可降至二维。

Floyd-Warshall算法的描述如下:

for k ← 1 to n do

for i ← 1 to n do

for j ← 1 to n do

if (Di,k + Dk,j < Di,j) then

Di,j ← Di,k + Dk,j;

其中Di,j表示由点i到点j的代价,当Di,j为 ∞ 表示两点之间没有任何连接。

Dijkstra

求单源、无负权的最短路。时效性较好,时间复杂度为O(V*V+E),可以用优先队列进行优化,优化后时间复杂度变为0(v*lgn)。
源点可达的话,O(V*lgV+E*lgV)=>O(E*lgV)。

当是稀疏图的情况时,此时E=V*V/lgV,所以算法的时间复杂度可为O(V^2) 。可以用优先队列进行优化,优化后时间复杂度变为0(v*lgn)。
Bellman-Ford

求单源最短路,可以判断有无负权回路(若有,则不存在最短路),时效性较好,时间复杂度O(VE)。

Bellman-Ford算法是求解单源最短路径问题的一种算法。

单源点的最短路径问题是指:给定一个加权有向图G和源点s,对于图G中的任意一点v,求从s到v的最短路径。

与Dijkstra算法不同的是,在Bellman-Ford算法中,边的权值可以为负数。设想从我们可以从图中找到一个环

路(即从v出发,经过若干个点之后又回到v)且这个环路中所有边的权值之和为负。那么通过这个环路,环路中任意两点的最短路径就可以无穷小下去。如果不处理这个负环路,程序就会永远运行下去。 而Bellman-Ford算法具有分辨这种负环路的能力。
SPFA

是Bellman-Ford的队列优化,时效性相对好,时间复杂度O(kE)。(k< 与Bellman-ford算法类似,SPFA算法采用一系列的松弛操作以得到从某一个节点出发到达图中其它所有节点的最短路径。所不同的是,SPFA算法通过维护一个队列,使得一个节点的当前最短路径被更新之后没有必要立刻去更新其他的节点,从而大大减少了重复的操作次数。
SPFA算法可以用于存在负数边权的图,这与dijkstra算法是不同的。

与Dijkstra算法与Bellman-ford算法都不同,SPFA的算法时间效率是不稳定的,即它对于不同的图所需要的时间有很大的差别。
在最好情形下,每一个节点都只入队一次,则算法实际上变为广度优先遍历,其时间复杂度仅为O(E)。另一方面,存在这样的例子,使得每一个节点都被入队(V-1)次,此时算法退化为Bellman-ford算法,其时间复杂度为O(VE)。
SPFA算法在负边权图上可以完全取代Bellman-ford算法,另外在稀疏图中也表现良好。但是在非负边权图中,为了避免最坏情况的出现,通常使用效率更加稳定的Dijkstra算法,以及它的使用堆优化的版本。通常的SPFA。

❸ 请问matlab中RBF神经网络newrbe函数用的什么算法

newrbe是设计精确的径向基神经网络的函数,用法如:
P = [1 2 3];%输入
T = [2.0 4.1 5.9];%目标
net = newrbe(P,T);%生成神经网络

其算法是:生成的网络有2层,第一层是radbas神经元,用dist计算加权输入,用netprod计算网络输入,第二层是purelin神经元,用 dotprod计算加权输入,用netsum计算网络输入。两层都有偏差b。
newrbe先设第一层权重为p',偏差为0.8326,第二层权重IW{2,1}从第一层的仿真输出 A{1}得到,偏差 b{2}从解线性方程 [W{2,1} b{2}] * [A{1}; ones] = T 得到。

❹ 神经网络中rprop是什么算法

对于bp神经网络来说没有固定的标准可以得到最好的bp网络,设计好后只能手动修改参数然后选择最好的。下边是个分类的例子

clc
clear
close all

%---------------------------------------------------
% 产生训练样本与测试样本,每一列为一个样本

P1 = [rand(3,5),rand(3,5)+1,rand(3,5)+2];
T1 = [repmat([1;0;0],1,5),repmat([0;1;0],1,5),repmat([0;0;1],1,5)];

P2 = [rand(3,5),rand(3,5)+1,rand(3,5)+2];
T2 = [repmat([1;0;0],1,5),repmat([0;1;0],1,5),repmat([0;0;1],1,5)];

%---------------------------------------------------
% 归一化

[PN1,minp,maxp] = premnmx(P1);
PN2 = tramnmx(P2,minp,maxp);

%---------------------------------------------------
% 设置网络参数

NodeNum = 10; % 隐层节点数
TypeNum = 3; % 输出维数

TF1 = 'tansig';TF2 = 'purelin'; % 判别函数(缺省值)
%TF1 = 'tansig';TF2 = 'logsig';
%TF1 = 'logsig';TF2 = 'purelin';
%TF1 = 'tansig';TF2 = 'tansig';
%TF1 = 'logsig';TF2 = 'logsig';
%TF1 = 'purelin';TF2 = 'purelin';

net = newff(minmax(PN1),[NodeNum TypeNum],{TF1 TF2});

%---------------------------------------------------
% 指定训练参数

% net.trainFcn = 'traingd'; % 梯度下降算法
% net.trainFcn = 'traingdm'; % 动量梯度下降算法
%
% net.trainFcn = 'traingda'; % 变学习率梯度下降算法
% net.trainFcn = 'traingdx'; % 变学习率动量梯度下降算法
%
% (大型网络的首选算法 - 模式识别)
% net.trainFcn = 'trainrp'; % RPROP(弹性bp)算法,内存需求最小
%
% 共轭梯度算法
% net.trainFcn = 'traincgf'; % Fletcher-Reeves修正算法
% net.trainFcn = 'traincgp'; % Polak-Ribiere修正算法,内存需求比Fletcher-Reeves修正算法略大
% net.trainFcn = 'traincgb'; % Powell-Beal复位算法,内存需求比Polak-Ribiere修正算法略大
% (大型网络的首选算法 - 函数拟合,模式识别)
% net.trainFcn = 'trainscg'; % Scaled Conjugate Gradient算法,内存需求与Fletcher-Reeves修正算法相同,计算量比上面三种算法都小很多
%
% net.trainFcn = 'trainbfg'; % Quasi-Newton Algorithms - BFGS Algorithm,计算量和内存需求均比共轭梯度算法大,但收敛比较快
% net.trainFcn = 'trainoss'; % One Step Secant Algorithm,计算量和内存需求均比BFGS算法小,比共轭梯度算法略大
%
% (中小型网络的首选算法 - 函数拟合,模式识别)
net.trainFcn = 'trainlm'; % Levenberg-Marquardt算法,内存需求最大,收敛速度最快
%
% net.trainFcn = 'trainbr'; % 贝叶斯正则化算法
%
% 有代表性的五种算法为:'traingdx','trainrp','trainscg','trainoss', 'trainlm'

%---------------------%

net.trainParam.show = 1; % 训练显示间隔
net.trainParam.lr = 0.3; % 学习步长 - traingd,traingdm
net.trainParam.mc = 0.95; % 动量项系数 - traingdm,traingdx
net.trainParam.mem_rec = 10; % 分块计算Hessian矩阵(仅对Levenberg-Marquardt算法有效)
net.trainParam.epochs = 1000; % 最大训练次数
net.trainParam.goal = 1e-8; % 最小均方误差
net.trainParam.min_grad = 1e-20; % 最小梯度
net.trainParam.time = inf; % 最大训练时间

%---------------------------------------------------
% 训练与测试

net = train(net,PN1,T1); % 训练

%---------------------------------------------------
% 测试

Y1 = sim(net,PN1); % 训练样本实际输出
Y2 = sim(net,PN2); % 测试样本实际输出

Y1 = full(compet(Y1)); % 竞争输出
Y2 = full(compet(Y2));

%---------------------------------------------------
% 结果统计

Result = ~sum(abs(T1-Y1)) % 正确分类显示为1
Percent1 = sum(Result)/length(Result) % 训练样本正确分类率

Result = ~sum(abs(T2-Y2)) % 正确分类显示为1
Percent2 = sum(Result)/length(Result) % 测试样本正确分类率

❺ 在MATLAB中用神经网络算法求解无约束最优化问题

程序一:GA训练BP权值的主函数 function net=GABPNET(XX,YY) % 使用遗传算法对BP网络权值阈值进行优化,再用BP算法训练网络 %数据归一化预处理 nntwarn off XX=[1:19;2:20;3:21;4:22]'; YY=[1:4]; XX=premnmx(XX); YY=premnmx(YY); YY %创建网络 net=newff(minmax(XX),[19,25,1],{'tansig','tansig','purelin'},'trainlm'); %下面使用遗传算法对网络进行优化 P=XX; T=YY; R=size(P,1); S2=size(T,1); S1=25;%隐含层节点数 S=R*S1+S1*S2+S1+S2;%遗传算法编码长度 aa=ones(S,1)*[-1,1]; popu=50;%种群规模 save data2 XX YY % 是将 xx,yy 二个变数的数值存入 data2 这个MAT-file, initPpp=initializega(popu,aa,'gabpEval');%初始化种群 gen=100;%遗传代数 %下面调用gaot工具箱,其中目标函数定义为gabpEval [x,endPop,bPop,trace]=ga(aa,'gabpEval',[],initPpp,[1e-6 1 1],'maxGenTerm',gen,... 'normGeomSelect',[0.09],['arithXover'],[2],'nonUnifMutation',[2 gen 3]); %绘收敛曲线图 figure(1) plot(trace(:,1),1./trace(:,3),'r-'); hold on plot(trace(:,1),1./trace(:,2),'b-'); xlabel('Generation'); ylabel('Sum-Squared Error'); figure(2) plot(trace(:,1),trace(:,3),'r-'); hold on plot(trace(:,1),trace(:,2),'b-'); xlabel('Generation'); ylabel('Fittness');

❻ 神经网络中Belief Net和标准的神经网络有什么区别

这两个概念实际上是互相交叉的,例如,卷积神经网络(Convolutional neural networks,简称CNNs)就是一种深度的监督学习下的机器学习模型,而深度置信网(Deep Belief Nets,简称DBNs)就是一种无监督学习下的机器学习模型。深度学习的概念源于人工神经网络的研究。含多隐层的多层感知器就是一种深度学习结构。深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。深度学习的概念由Hinton等人于2006年提出。基于深信度网(DBN)提出非监督贪心逐层训练算法,为解决深层结构相关的优化难题带来希望,随后提出多层自动编码器深层结构。此外Lecun等人提出的卷积神经网络是第一个真正多层结构学习算法,它利用空间相对关系减少参数数目以提高训练性能。BP神经网络是ANN人工神经中的一种,常用的神经网络有BP、RBF、SOM、Hopfield等等,其功能不经相同,可总体来说ANN的主要功能是模式识别和分类训练。最本质的区别可以说是学习方法不同,或者说模型的优化方法不同。前者应该是基于遗传算法进行网络权值的学习,而后者大都是采用反向传播(BP)算法进行权值学习,而这两种算法差异很大。建议你分别了解:

如何用MATLAB的神经网络工具箱实现三层BP网络

使用神经网络工具箱可以非常简便地实现网络建立和训练,实例代码如下:

%%BP算法
functionOut=bpnet(p,t,p_test)
%p,t为样本需要提前组织好
globalS1
net=newff(minmax(p),[S1,8],{'tansig','purelin'},'trainlm');%trainlm训练函数最有效
%net=newff(P,T,31,{'tansig','purelin'},'trainlm');%新版用法
net.trainParam.epochs=1000;
net.trainParam.goal=0.00001;
net.trainParam.lr=0.01;
net.trainParam.showWindow=false;%阻止训练窗口的弹出
net.trainParam.showCommandLine=false;%阻止训练窗口的弹出
net=train(net,p,t);
Out=sim(net,p_test);
end

上面的代码不完整,完整的带训练样本数据的程序见附件。

❽ 多层前馈网络模型及BP算法

多层前馈网中,以单隐层网的应用最为普遍,如图6.1所示。习惯上将其称为三层前馈网或三层感知器,所谓三层即输入层、隐层和输出层。

图6.1 三层前馈神经网络结构

Fig.6.1 BP neural network structure

三层前馈网中,输入向量为X=(x1,x2,…,xi,…,xn)T,如加入x0=-1,可为输出层神经元引入阈值;隐层输出向量为Y=(y1,y2,…,yl,…,ym)T,如加入y0=-1,可为输出层神经元引入阈值;输出层输出向量为O=(o1,o2,…,ok,…,ol)T。输入层到隐层之间的权值阵用V表示,V=(V1,V2,…,Vj,…,Vm),其中列向量Vj为隐层第j个神经元对应的权向量;隐层到输出层之间的权值矩阵用W 表示,W=(W1,W2,…,Wk,…,Wl),其中列向量Wk为输出层第k个神经元对应的权向量。下面分析各层信号之间的数学关系。

输出层:

ok=f(netk)k=1,2,…,ι(6-1)

煤层开采顶板导水裂隙带高度预测理论与方法

隐层:

yj=f(netj)j=1,2,…,m(6-3)

煤层开采顶板导水裂隙带高度预测理论与方法

以上两式中,转移函数f(x)均为单极性Sigmoid函数

煤层开采顶板导水裂隙带高度预测理论与方法

f(x)具有连续、可导的特点,且有

煤层开采顶板导水裂隙带高度预测理论与方法

根据应用需要,也可以采用双极性Sigmoid函数(或称双曲线正切函数)

煤层开采顶板导水裂隙带高度预测理论与方法

式6-1~式6-6共同构成了三层前馈网的数学模型。

BP学习算法中按以下方法调整其权重与误差:

当网络输出与期望输出不相等时,存在输出误差E,定义如下:

煤层开采顶板导水裂隙带高度预测理论与方法

将以上误差定义式展开到隐层,

煤层开采顶板导水裂隙带高度预测理论与方法

进一步展开到输入层,

煤层开采顶板导水裂隙带高度预测理论与方法

由上式可以看出,网络输入误差是各层权值ωjk、υij的函数,因此调整权值可改变误差E。

显然,调整权值的原则是使误差不断减小,因此权值的调整量与误差的负梯度成正比,即

煤层开采顶板导水裂隙带高度预测理论与方法

煤层开采顶板导水裂隙带高度预测理论与方法

式中负号表示梯度下降,常数η∈(0,1)表示比例系数,在训练中反映了学习速率。可以看出BP法属于δ学习规则类,这类算法常被称为误差的梯度下降(GradientDescent)算法。

❾ 如何用matlab构建一个三层bp神经网络模型,用于预测温度。

第0节、引例
本文以Fisher的Iris数据集作为神经网络程序的测试数据集。Iris数据集可以在http://en.wikipedia.org/wiki/Iris_flower_data_set 找到。这里简要介绍一下Iris数据集:
有一批Iris花,已知这批Iris花可分为3个品种,现需要对其进行分类。不同品种的Iris花的花萼长度、花萼宽度、花瓣长度、花瓣宽度会有差异。我们现有一批已知品种的Iris花的花萼长度、花萼宽度、花瓣长度、花瓣宽度的数据。
一种解决方法是用已有的数据训练一个神经网络用作分类器。
如果你只想用C#或Matlab快速实现神经网络来解决你手头上的问题,或者已经了解神经网络基本原理,请直接跳到第二节——神经网络实现。

第一节、神经网络基本原理
1. 人工神经元( Artificial Neuron )模型
人工神经元是神经网络的基本元素,其原理可以用下图表示:

图1. 人工神经元模型

图中x1~xn是从其他神经元传来的输入信号,wij表示表示从神经元j到神经元i的连接权值,θ表示一个阈值 ( threshold ),或称为偏置( bias )。则神经元i的输出与输入的关系表示为:

图中 yi表示神经元i的输出,函数f称为激活函数 ( Activation Function )或转移函数 ( Transfer Function ) ,net称为净激活(net activation)。若将阈值看成是神经元i的一个输入x0的权重wi0,则上面的式子可以简化为:

若用X表示输入向量,用W表示权重向量,即:
X = [ x0 , x1 , x2 , ....... , xn ]

则神经元的输出可以表示为向量相乘的形式:

若神经元的净激活net为正,称该神经元处于激活状态或兴奋状态(fire),若净激活net为负,则称神经元处于抑制状态。
图1中的这种“阈值加权和”的神经元模型称为M-P模型 ( McCulloch-Pitts Model ),也称为神经网络的一个处理单元( PE, Processing Element )。

2. 常用激活函数
激活函数的选择是构建神经网络过程中的重要环节,下面简要介绍常用的激活函数。
(1) 线性函数 ( Liner Function )

(2) 斜面函数 ( Ramp Function )

(3) 阈值函数 ( Threshold Function )

以上3个激活函数都属于线性函数,下面介绍两个常用的非线性激活函数。
(4) S形函数 ( Sigmoid Function )

该函数的导函数:

(5) 双极S形函数

该函数的导函数:

S形函数与双极S形函数的图像如下:

图3. S形函数与双极S形函数图像
双极S形函数与S形函数主要区别在于函数的值域,双极S形函数值域是(-1,1),而S形函数值域是(0,1)。
由于S形函数与双极S形函数都是可导的(导函数是连续函数),因此适合用在BP神经网络中。(BP算法要求激活函数可导)
具体http://blog.csdn.net/gongxq0124/article/details/7681000/

阅读全文

与votenet算法用多少层网络相关的资料

热点内容
机关研究部署网络安全工作 浏览:520
如何公开网络密码 浏览:180
汽车车载网络的优点有哪些 浏览:814
乌海5g网络什么时候能用 浏览:147
无线网络5g频段速度 浏览:138
目前电信网络电视哪个好 浏览:364
投屏如何选择用手机网络 浏览:6
新会广电网络怎么取消会员包月 浏览:753
成都中国网络安全论坛 浏览:977
联通网络为什么不能升级 浏览:587
网络共享怎么关 浏览:999
路由器设置里显示网络未连接 浏览:628
家里的电信网络无信号怎么办 浏览:187
移动花卡是移动网络吗 浏览:502
电脑选择网络状态就重启 浏览:950
插网线小米盒子还是连接不上网络 浏览:543
君山区网络安全宣传周 浏览:440
近两年成功的网络营销案例 浏览:35
哪里可以学习网络营销推广 浏览:677
显示我网络连接但是用不了 浏览:218

友情链接