导航:首页 > 网络设置 > bp神经网络多少层合适

bp神经网络多少层合适

发布时间:2023-08-12 05:41:43

Ⅰ 神经网络BP模型

一、BP模型概述

误差逆传播(Error Back-Propagation)神经网络模型简称为BP(Back-Propagation)网络模型。

Pall Werbas博士于1974年在他的博士论文中提出了误差逆传播学习算法。完整提出并被广泛接受误差逆传播学习算法的是以Rumelhart和McCelland为首的科学家小组。他们在1986年出版“Parallel Distributed Processing,Explorations in the Microstructure of Cognition”(《并行分布信息处理》)一书中,对误差逆传播学习算法进行了详尽的分析与介绍,并对这一算法的潜在能力进行了深入探讨。

BP网络是一种具有3层或3层以上的阶层型神经网络。上、下层之间各神经元实现全连接,即下层的每一个神经元与上层的每一个神经元都实现权连接,而每一层各神经元之间无连接。网络按有教师示教的方式进行学习,当一对学习模式提供给网络后,神经元的激活值从输入层经各隐含层向输出层传播,在输出层的各神经元获得网络的输入响应。在这之后,按减小期望输出与实际输出的误差的方向,从输入层经各隐含层逐层修正各连接权,最后回到输入层,故得名“误差逆传播学习算法”。随着这种误差逆传播修正的不断进行,网络对输入模式响应的正确率也不断提高。

BP网络主要应用于以下几个方面:

1)函数逼近:用输入模式与相应的期望输出模式学习一个网络逼近一个函数;

2)模式识别:用一个特定的期望输出模式将它与输入模式联系起来;

3)分类:把输入模式以所定义的合适方式进行分类;

4)数据压缩:减少输出矢量的维数以便于传输或存储。

在人工神经网络的实际应用中,80%~90%的人工神经网络模型采用BP网络或它的变化形式,它也是前向网络的核心部分,体现了人工神经网络最精华的部分。

二、BP模型原理

下面以三层BP网络为例,说明学习和应用的原理。

1.数据定义

P对学习模式(xp,dp),p=1,2,…,P;

输入模式矩阵X[N][P]=(x1,x2,…,xP);

目标模式矩阵d[M][P]=(d1,d2,…,dP)。

三层BP网络结构

输入层神经元节点数S0=N,i=1,2,…,S0;

隐含层神经元节点数S1,j=1,2,…,S1;

神经元激活函数f1[S1];

权值矩阵W1[S1][S0];

偏差向量b1[S1]。

输出层神经元节点数S2=M,k=1,2,…,S2;

神经元激活函数f2[S2];

权值矩阵W2[S2][S1];

偏差向量b2[S2]。

学习参数

目标误差ϵ;

初始权更新值Δ0

最大权更新值Δmax

权更新值增大倍数η+

权更新值减小倍数η-

2.误差函数定义

对第p个输入模式的误差的计算公式为

中国矿产资源评价新技术与评价新模型

y2kp为BP网的计算输出。

3.BP网络学习公式推导

BP网络学习公式推导的指导思想是,对网络的权值W、偏差b修正,使误差函数沿负梯度方向下降,直到网络输出误差精度达到目标精度要求,学习结束。

各层输出计算公式

输入层

y0i=xi,i=1,2,…,S0;

隐含层

中国矿产资源评价新技术与评价新模型

y1j=f1(z1j),

j=1,2,…,S1;

输出层

中国矿产资源评价新技术与评价新模型

y2k=f2(z2k),

k=1,2,…,S2。

输出节点的误差公式

中国矿产资源评价新技术与评价新模型

对输出层节点的梯度公式推导

中国矿产资源评价新技术与评价新模型

E是多个y2m的函数,但只有一个y2k与wkj有关,各y2m间相互独立。

其中

中国矿产资源评价新技术与评价新模型

中国矿产资源评价新技术与评价新模型

设输出层节点误差为

δ2k=(dk-y2k)·f2′(z2k),

中国矿产资源评价新技术与评价新模型

同理可得

中国矿产资源评价新技术与评价新模型

对隐含层节点的梯度公式推导

中国矿产资源评价新技术与评价新模型

E是多个y2k的函数,针对某一个w1ji,对应一个y1j,它与所有的y2k有关。因此,上式只存在对k的求和,其中

中国矿产资源评价新技术与评价新模型

中国矿产资源评价新技术与评价新模型

设隐含层节点误差为

中国矿产资源评价新技术与评价新模型

中国矿产资源评价新技术与评价新模型

同理可得

中国矿产资源评价新技术与评价新模型

4.采用弹性BP算法(RPROP)计算权值W、偏差b的修正值ΔW,Δb

1993年德国 Martin Riedmiller和Heinrich Braun 在他们的论文“A Direct Adaptive Method for Faster Backpropagation Learning:The RPROP Algorithm”中,提出Resilient Backpropagation算法——弹性BP算法(RPROP)。这种方法试图消除梯度的大小对权步的有害影响,因此,只有梯度的符号被认为表示权更新的方向。

权改变的大小仅仅由权专门的“更新值”

确定

中国矿产资源评价新技术与评价新模型

其中

表示在模式集的所有模式(批学习)上求和的梯度信息,(t)表示t时刻或第t次学习。

权更新遵循规则:如果导数是正(增加误差),这个权由它的更新值减少。如果导数是负,更新值增加。

中国矿产资源评价新技术与评价新模型

RPROP算法是根据局部梯度信息实现权步的直接修改。对于每个权,我们引入它的

各自的更新值

,它独自确定权更新值的大小。这是基于符号相关的自适应过程,它基

于在误差函数E上的局部梯度信息,按照以下的学习规则更新

中国矿产资源评价新技术与评价新模型

其中0<η-<1<η+

在每个时刻,如果目标函数的梯度改变它的符号,它表示最后的更新太大,更新值

应由权更新值减小倍数因子η-得到减少;如果目标函数的梯度保持它的符号,更新值应由权更新值增大倍数因子η+得到增大。

为了减少自由地可调参数的数目,增大倍数因子η+和减小倍数因子η被设置到固定值

η+=1.2,

η-=0.5,

这两个值在大量的实践中得到了很好的效果。

RPROP算法采用了两个参数:初始权更新值Δ0和最大权更新值Δmax

当学习开始时,所有的更新值被设置为初始值Δ0,因为它直接确定了前面权步的大小,它应该按照权自身的初值进行选择,例如,Δ0=0.1(默认设置)。

为了使权不至于变得太大,设置最大权更新值限制Δmax,默认上界设置为

Δmax=50.0。

在很多实验中,发现通过设置最大权更新值Δmax到相当小的值,例如

Δmax=1.0。

我们可能达到误差减小的平滑性能。

5.计算修正权值W、偏差b

第t次学习,权值W、偏差b的的修正公式

W(t)=W(t-1)+ΔW(t)

b(t)=b(t-1)+Δb(t)

其中,t为学习次数。

6.BP网络学习成功结束条件每次学习累积误差平方和

中国矿产资源评价新技术与评价新模型

每次学习平均误差

中国矿产资源评价新技术与评价新模型

当平均误差MSE<ε,BP网络学习成功结束。

7.BP网络应用预测

在应用BP网络时,提供网络输入给输入层,应用给定的BP网络及BP网络学习得到的权值W、偏差b,网络输入经过从输入层经各隐含层向输出层的“顺传播”过程,计算出BP网的预测输出。

8.神经元激活函数f

线性函数

f(x)=x,

f′(x)=1,

f(x)的输入范围(-∞,+∞),输出范围(-∞,+∞)。

一般用于输出层,可使网络输出任何值。

S型函数S(x)

中国矿产资源评价新技术与评价新模型

f(x)的输入范围(-∞,+∞),输出范围(0,1)。

f′(x)=f(x)[1-f(x)],

f′(x)的输入范围(-∞,+∞),输出范围(0,

]。

一般用于隐含层,可使范围(-∞,+∞)的输入,变成(0,1)的网络输出,对较大的输入,放大系数较小;而对较小的输入,放大系数较大,所以可用来处理和逼近非线性的输入/输出关系。

在用于模式识别时,可用于输出层,产生逼近于0或1的二值输出。

双曲正切S型函数

中国矿产资源评价新技术与评价新模型

f(x)的输入范围(-∞,+∞),输出范围(-1,1)。

f′(x)=1-f(x)·f(x),

f′(x)的输入范围(-∞,+∞),输出范围(0,1]。

一般用于隐含层,可使范围(-∞,+∞)的输入,变成(-1,1)的网络输出,对较大的输入,放大系数较小;而对较小的输入,放大系数较大,所以可用来处理和逼近非线性的输入/输出关系。

阶梯函数

类型1

中国矿产资源评价新技术与评价新模型

f(x)的输入范围(-∞,+∞),输出范围{0,1}。

f′(x)=0。

类型2

中国矿产资源评价新技术与评价新模型

f(x)的输入范围(-∞,+∞),输出范围{-1,1}。

f′(x)=0。

斜坡函数

类型1

中国矿产资源评价新技术与评价新模型

f(x)的输入范围(-∞,+∞),输出范围[0,1]。

中国矿产资源评价新技术与评价新模型

f′(x)的输入范围(-∞,+∞),输出范围{0,1}。

类型2

中国矿产资源评价新技术与评价新模型

f(x)的输入范围(-∞,+∞),输出范围[-1,1]。

中国矿产资源评价新技术与评价新模型

f′(x)的输入范围(-∞,+∞),输出范围{0,1}。

三、总体算法

1.三层BP网络(含输入层,隐含层,输出层)权值W、偏差b初始化总体算法

(1)输入参数X[N][P],S0,S1,f1[S1],S2,f2[S2];

(2)计算输入模式X[N][P]各个变量的最大值,最小值矩阵 Xmax[N],Xmin[N];

(3)隐含层的权值W1,偏差b1初始化。

情形1:隐含层激活函数f( )都是双曲正切S型函数

1)计算输入模式X[N][P]的每个变量的范围向量Xrng[N];

2)计算输入模式X的每个变量的范围均值向量Xmid[N];

3)计算W,b的幅度因子Wmag

4)产生[-1,1]之间均匀分布的S0×1维随机数矩阵Rand[S1];

5)产生均值为0,方差为1的正态分布的S1×S0维随机数矩阵Randnr[S1][S0],随机数范围大致在[-1,1];

6)计算W[S1][S0],b[S1];

7)计算隐含层的初始化权值W1[S1][S0];

8)计算隐含层的初始化偏差b1[S1];

9))输出W1[S1][S0],b1[S1]。

情形2:隐含层激活函数f( )都是S型函数

1)计算输入模式X[N][P]的每个变量的范围向量Xrng[N];

2)计算输入模式X的每个变量的范围均值向量Xmid[N];

3)计算W,b的幅度因子Wmag;

4)产生[-1,1]之间均匀分布的S0×1维随机数矩阵Rand[S1];

5)产生均值为0,方差为1的正态分布的S1×S0维随机数矩阵Randnr[S1][S0],随机数范围大致在[-1,1];

6)计算W[S1][S0],b[S1];

7)计算隐含层的初始化权值W1[S1][S0];

8)计算隐含层的初始化偏差b1[S1];

9)输出W1[S1][S0],b1[S1]。

情形3:隐含层激活函数f( )为其他函数的情形

1)计算输入模式X[N][P]的每个变量的范围向量Xrng[N];

2)计算输入模式X的每个变量的范围均值向量Xmid[N];

3)计算W,b的幅度因子Wmag

4)产生[-1,1]之间均匀分布的S0×1维随机数矩阵Rand[S1];

5)产生均值为0,方差为1的正态分布的S1×S0维随机数矩阵Randnr[S1][S0],随机数范围大致在[-1,1];

6)计算W[S1][S0],b[S1];

7)计算隐含层的初始化权值W1[S1][S0];

8)计算隐含层的初始化偏差b1[S1];

9)输出W1[S1][S0],b1[S1]。

(4)输出层的权值W2,偏差b2初始化

1)产生[-1,1]之间均匀分布的S2×S1维随机数矩阵W2[S2][S1];

2)产生[-1,1]之间均匀分布的S2×1维随机数矩阵b2[S2];

3)输出W2[S2][S1],b2[S2]。

2.应用弹性BP算法(RPROP)学习三层BP网络(含输入层,隐含层,输出层)权值W、偏差b总体算法

函数:Train3BP_RPROP(S0,X,P,S1,W1,b1,f1,S2,W2,b2,f2,d,TP)

(1)输入参数

P对模式(xp,dp),p=1,2,…,P;

三层BP网络结构;

学习参数。

(2)学习初始化

1)

2)各层W,b的梯度值

初始化为零矩阵。

(3)由输入模式X求第一次学习各层输出y0,y1,y2及第一次学习平均误差MSE

(4)进入学习循环

epoch=1

(5)判断每次学习误差是否达到目标误差要求

如果MSE<ϵ,

则,跳出epoch循环,

转到(12)。

(6)保存第epoch-1次学习产生的各层W,b的梯度值

(7)求第epoch次学习各层W,b的梯度值

1)求各层误差反向传播值δ;

2)求第p次各层W,b的梯度值

3)求p=1,2,…,P次模式产生的W,b的梯度值

的累加。

(8)如果epoch=1,则将第epoch-1次学习的各层W,b的梯度值

设为第epoch次学习产生的各层W,b的梯度值

(9)求各层W,b的更新

1)求权更新值Δij更新;

2)求W,b的权更新值

3)求第epoch次学习修正后的各层W,b。

(10)用修正后各层W、b,由X求第epoch次学习各层输出y0,y1,y2及第epoch次学习误差MSE

(11)epoch=epoch+1,

如果epoch≤MAX_EPOCH,转到(5);

否则,转到(12)。

(12)输出处理

1)如果MSE<ε,

则学习达到目标误差要求,输出W1,b1,W2,b2

2)如果MSE≥ε,

则学习没有达到目标误差要求,再次学习。

(13)结束

3.三层BP网络(含输入层,隐含层,输出层)预测总体算法

首先应用Train3lBP_RPROP( )学习三层BP网络(含输入层,隐含层,输出层)权值W、偏差b,然后应用三层BP网络(含输入层,隐含层,输出层)预测。

函数:Simu3lBP( )。

1)输入参数:

P个需预测的输入数据向量xp,p=1,2,…,P;

三层BP网络结构;

学习得到的各层权值W、偏差b。

2)计算P个需预测的输入数据向量xp(p=1,2,…,P)的网络输出 y2[S2][P],输出预测结果y2[S2][P]。

四、总体算法流程图

BP网络总体算法流程图见附图2。

五、数据流图

BP网数据流图见附图1。

六、实例

实例一 全国铜矿化探异常数据BP 模型分类

1.全国铜矿化探异常数据准备

在全国铜矿化探数据上用稳健统计学方法选取铜异常下限值33.1,生成全国铜矿化探异常数据。

2.模型数据准备

根据全国铜矿化探异常数据,选取7类33个矿点的化探数据作为模型数据。这7类分别是岩浆岩型铜矿、斑岩型铜矿、矽卡岩型、海相火山型铜矿、陆相火山型铜矿、受变质型铜矿、海相沉积型铜矿,另添加了一类没有铜异常的模型(表8-1)。

3.测试数据准备

全国化探数据作为测试数据集。

4.BP网络结构

隐层数2,输入层到输出层向量维数分别为14,9、5、1。学习率设置为0.9,系统误差1e-5。没有动量项。

表8-1 模型数据表

续表

5.计算结果图

如图8-2、图8-3。

图8-2

图8-3 全国铜矿矿床类型BP模型分类示意图

实例二 全国金矿矿石量品位数据BP 模型分类

1.模型数据准备

根据全国金矿储量品位数据,选取4类34个矿床数据作为模型数据,这4类分别是绿岩型金矿、与中酸性浸入岩有关的热液型金矿、微细浸染型型金矿、火山热液型金矿(表8-2)。

2.测试数据准备

模型样本点和部分金矿点金属量、矿石量、品位数据作为测试数据集。

3.BP网络结构

输入层为三维,隐层1层,隐层为三维,输出层为四维,学习率设置为0.8,系统误差1e-4,迭代次数5000。

表8-2 模型数据

4.计算结果

结果见表8-3、8-4。

表8-3 训练学习结果

表8-4 预测结果(部分)

续表

Ⅱ BP神经网络中隐藏层节点个数怎么确定最佳

神经网络算法隐含层的选取:构造法,删除法,黄金分割法。

首先在[a,b]内寻找理想的隐含层节点数,这样就充分保证了网络的逼近能力和泛化能力,为满足高精度逼近的要求,再按照黄金分割原理拓展搜索区间;

即得到区间[b,c](其中b=0.619*(c-a)+a),在区间[b,c]中搜索最优,则得到逼近能力更强的隐含层节点数,在实际应用根据要求,从中选取其一即可。

计算过程

BP神经网络的计算过程由正向计算过程和反向计算过程组成。正向传播过程,输入模式从输入层经隐单元层逐层处理,并转向输出层,每一层神经元的状态只影响下一层神经元的状态。如果在输出层不能得到期望的输出,则转入反向传播,将误差信号沿原来的连接通路返回,通过修改各神经元的权值,使得误差信号最小。

以上内容参考:网络-BP神经网络

Ⅲ BP神经网络

神经网络能很好地解决不同的机器学习问题。神经网络模型是许多逻辑单元按照不同层级组织起来的网络,每一层的输出变量都是下一层的输入变量。

上图显示了人工神经网络是一个分层模型,逻辑上可以分为三层:

输入层 :输入层接收特征向量 x

输出层 :输出层产出最终的预测 h

隐含层 :隐含层介于输入层与输出层之间,之所以称之为隐含层,是因为当中产生的值并不像输入层使用的样本矩阵 X或者输出层用到的标签矩阵 y 那样直接可见。

下面引入一些标记法来帮助描述模型:

!$ a^{(j)}_{i} $ 代表第j层的第i个激活单元。 !$ heta^{(j)} $ 代表从第 j 层映射到第 j+1 层时的权重的矩阵,例如 !$ heta^{(1)} $ 代表从第一层映射到第二层的权重的矩阵。其尺寸为:以第 j+1层的激活单元数量为行数,以第 j 层的激活单元数加一为列数的矩阵。例如:上图所示的神经网络中 !$ heta^{(1)} $ 的尺寸为 3*4。

对于上图所示的模型,激活单元和输出分别表达为:

!$ a^{(2)}_{1} = g( heta^{(1)}_{10}x_0 + heta^{(1)}_{11}x_1 + heta^{(1)}_{12}x_2 + heta^{(1)}_{13}x_3 ) $

!$a^{(2)}_{2} = g( heta^{(1)}_{20}x_0 + heta^{(1)}_{21}x_1 + heta^{(1)}_{22}x_2 + heta^{(1)}_{23}x_3 ) $

!$a^{(2)}_{3} = g( heta^{(1)}_{30}x_0 + heta^{(1)}_{31}x_1 + heta^{(1)}_{32}x_2 + heta^{(1)}_{33}x_3 ) $

!$h_{ heta}{(x)} = g( heta^{(2)}_{10}a^{2}_{0} + heta^{(2)}_{11}a^{2}_{1} + heta^{(2)}_{12}a^{2}_{2} + heta^{(2)}_{13}a^{2}_{3} ) $

下面用向量化的方法以上面的神经网络为例,试着计算第二层的值:

对于多类分类问题来说:

我们可将神经网络的分类定义为两种情况:二类分类和多类分类。

二类分类: !$ S_{L} = 0,y = 0,y = 1$

多类分类: !$ S_{L} = k, y_{i} = 1表示分到第i类;(k>2)$

在神经网络中,我们可以有很多输出变量,我们的 !$h_{ heta}{(x)} $ 是一个维度为K的向量,并且我们训练集中的因变量也是同样维度的一个向量,因此我们的代价函数会比逻辑回归更加复杂一些,为: !$ h_{ heta}{(x)} in R^{K}(h_{ heta}{(x)})_{i} = i^{th} output$

我们希望通过代价函数来观察算法预测的结果与真实情况的误差有多大,唯一不同的是,对于每一行特征,我们都会给出K个预测,基本上我们可以利用循环,对每一行特征都预测K个不同结果,然后在利用循环在K个预测中选择可能性最高的一个,将其与y中的实际数据进行比较。

正则化的那一项只是排除了每一层 !$ heta_0$ 后,每一层的 矩阵的和。最里层的循环j循环所有的行(由 +1 层的激活单元数决定),循环i则循环所有的列,由该层( !$ s_l$ 层)的激活单元数所决定。即: !$h_{ heta}{(x)}$ 与真实值之间的距离为每个样本-每个类输出的加和,对参数进行 regularization bias 项处理所有参数的平方和。

由于神经网络允许多个隐含层,即各层的神经元都会产出预测,因此,就不能直接利用传统回归问题的梯度下降法来最小化 !$J( heta)$ ,而需要逐层考虑预测误差,并且逐层优化。为此,在多层神经网络中,使用反向传播算法(Backpropagation Algorithm)来优化预测,首先定义各层的预测误差为向量 !$ δ^{(l)} $

训练过程:

当我们对一个较为复杂的模型(例如神经网络)使用梯度下降算法时,可能会存在一些不容易察觉的错误,意味着,虽然代价看上去在不断减小,但最终的结果可能并不是最优解。

为了避免这样的问题,我们采取一种叫做梯度的数值检验( Numerical Gradient Checking )方法。这种方法的思想是通过估计梯度值来检验我们计算的导数值是否真的是我们要求的。

对梯度的估计采用的方法是在代价函数上沿着切线的方向选择离两个非常近的点然后计算两个点的平均值用以估计梯度。即对于某个特定的 ,我们计算出在 !$ heta - epsilon$ 处和 !$ heta + epsilon$ 的代价值(是一个非常小的值,通常选取 0.001),然后求两个代价的平均,用以估计在 !$ heta$ 处的代价值。

当 !$ heta$ 是一个向量时,我们则需要对偏导数进行检验。因为代价函数的偏导数检验只针对一个参数的改变进行检验,下面是一个只针对 !$ heta_1$ 进行检验的示例:

如果上式成立,则证明网络中BP算法有效,此时关闭梯度校验算法(因为梯度的近似计算效率很慢),继续网络的训练过程。

Ⅳ Matlab BP神经网络隐层选择几层合适隐层中的神经节点选择几个合适

我是一个一个挨着顺序试的,把神经元的节点一个个的增加,记录下每次的误差。一般来说,当神经元个数增加到某一个数后,误差就稳定了或者出现误差增大的情况。把误差最小的那个点作为较优点。

Ⅳ BP神经网络隐藏层层数越多越多好吗

并不是越多越好,要看实际问题。最合适的才是最好的。层数越多计算量就越大。普通笔记本算都算不出来。

Ⅵ 神经网络中层次多少对神经网络有什么影响

理论情况下,三层的神经网络能完成任意的n维到m维的映射。
输入层神经单元数确定方法:根据需要求解的问题和数据表示方式确定。
隐层的神经单元数确定方法:最佳的隐层单元数一定存在,但需要根据经验和多次试验确定。
经验公式如n2=2*n1+1等。
输出层神经单元数确定方法:有使用者要求来定,如bp网络用为分类器,一般有两种方式:
1,m; 2,log2(m).
层次太多增加了复杂度,并不一定能更好的识别。

Ⅶ bp神经网络,把它分为很多层,可以算深度学习嘛

不能算深度,而且多层单纯的bp神经网络会出现梯度扩散问题,深度网络不光是指层数增加,还添加了卷积层,降纬层等不同于一般隐藏层的神经元。

阅读全文

与bp神经网络多少层合适相关的资料

热点内容
没有无线网络手机连接打印机 浏览:625
中国电信网络不好apn应该怎么设置 浏览:599
华为的网络营销 浏览:736
这种网络环境能用无线路由器吗 浏览:265
公共网络如何用路由器桥接 浏览:664
怎样找到手机上的蜂窝网络 浏览:713
天猫网络销售能赚多少钱 浏览:517
现场的wifi网络 浏览:173
手机上的网络信号差 浏览:713
苹果提示助手没网络 浏览:962
家里的网络不好路由器可以增强吗 浏览:281
酒店网络佣金如何记账 浏览:423
无线网网络受限怎么办 浏览:544
怎么设置呼叫转移网络异常 浏览:968
编制双代号网络哪个软件好 浏览:559
迅雷网络的无线桥接怎么用 浏览:860
网络盒一天用多少电源 浏览:288
怎么知道网络设置 浏览:893
动车移动网络卡 浏览:963
手机网络显示啥表示真5g 浏览:892

友情链接