⑴ 路由器是通用的吗
普通路由器是通用的(定制款除外),只要有账号密码登录无线路由器后台,根据设置向导一步一步的操作,就可以切换不同的运营商。没必要换一个宽带运营商,就换一台路由器。
如果是电信光猫的话,是不能连接其他运营商的宽带上网的,和定制版的无线路由器一样,都需要安装人员对路由器或者是电信光猫进行注册,通过特定的账号密码开通上网功能。
⑵ 计算机网络中的路由器使用距离向量算法
1、假设路由器使用距离向量算法,下图给出了网络拓扑及路由器的初始路由表(只包含部分字段),假设A给B传了一次路由信息,B处理后又也给C传了一次路由信息,请在表中填写经过路由信息交换之后B和C的路由表(相邻路由器间距离计为1)。
2、B路由器增加2条:10.3.0.0 s0 1
10.4.0.0 s1 1
3、C路由器增加2条:10.3.0.0 s0 2
10.2.0.0 S0 1
⑶ 简述静态路由、RIP和OSPF动态路由的原理以及各自的优缺点。
静态路由原理:路由项(routing entry)由手动配置,而非动态决定。与动态路由不同,静态路由是固定的,不会改变,即使网络状况已经改变或是重新被组态。一般来说,静态路由是由网络管理员逐项加入路由表。
优点:使用静态路由的另一个好处为网络安全保密性高。动态路由因为需要路由器之间频繁地交换各自的路由表,而对路由表的分析可以揭示网络的拓扑结构和网络地址等信息。因此,网络出于安全方面的考虑也可以采用静态路由。不占用网络带宽,因为静态路由不会产生更新流量。
缺点:大型和复杂的网络环境通常不宜采用静态路由。一方面,网络管理员难以全面地了解整个网络的拓扑结构;另一方面,当网络的拓扑结构和链路状态发生变化时,路由器中的静态路由信息需要大范围地调整,这一工作的难度和复杂程度非常高。当网络发生变化或网络发生故障时,不能重选路由,很可能使路由失败。
RIP原理:
1 、初始化。RIP初始化时,会从每个参与工作的接口上发送请求数据包。该请求数据包会向所有的RIP路由器请求一份完整的路由表。该请求通过LAN上的广播形式发送LAN或者在点到点链路发送到下一跳地址来完成。这是一个特殊的请求,向相邻设备请求完整的路由更新。
2 、接收请求。RIP有两种类型的消息,响应和接收消息。请求数据包中的每个路由条目都会被处理,从而为路由建立度量以及路径。RIP采用跳数度量,值为1的意为着一个直连的网络,16,为网络不可达。路由器会把整个路由表作为接收消息的应答返回。
3、接收到响应。路由器接收并处理响应,它会通过对路由表项进行添加,删除或者修改作出更新。
4、 常规路由更新和定时。路由器以30秒一次地将整个路由表以应答消息地形式发送到邻居路由器。路由器收到新路由或者现有路由地更新信息时,会设置一个180秒地超时时间。如果180秒没有任何更新信息,路由的跳数设为16。路由器以度量值16宣告该路由,直到刷新计时器从路由表中删除该路由。
刷新计时器的时间设为240秒,或者比过期计时器时间多60秒。Cisco还用了第三个计时器,称为抑制计时器。接收到一个度量更高的路由之后的180秒时间就是抑制计时器的时间,在此期间,路由器不会用它接收到的新信息对路由表进行更新,这样能够为网路的收敛提供一段额外的时间。
5、 触发路由更新。当某个路由度量发生改变时,路由器只发送与改变有关的路由,并不发送完整的路由表。
优点:
仅和相邻的路由器交换信息。如果两个路由器之间的通信不经过另外一个路由器,那么这两个路由器是相邻的。RIP协议规定,不相邻的路由器之间不交换信息。
路由器交换的信息是当前本路由器所知道的全部信息。即自己的路由表。
按固定时间交换路由信息,如,每隔30秒,然后路由器根据收到的路由信息更新路由表。
缺点:
1、过于简单,以跳数为依据计算度量值,经常得出非最优路由。
2、度量值以16为限,不适合大的网络。
3、安全性差,接受来自任何设备的路由更新。无密码验证机制,默认接受任何地方任何设备的路由更新。不能防止恶意的rip欺骗。
4、不支持无类ip地址和VLSM<ripv1>。
5、收敛性差,时间经常大于5分钟。
6、消耗带宽很大。完整的复制路由表,把自己的路由表复制给所有邻居,尤其在低速广域网链路上更以显式的全量更新。
OSPF原理:
1、初始化形成端口初始信息:在路由器初始化或网络结构发生变化(如链路发生变化,路由器新增或损坏)时,相关路由器会产生链路状态广播数据包LSA,该数据包里包含路由器上所有相连链路,也即为所有端口的状态信息。
2、路由器间通过泛洪(Floodingl机制交换链路状态信息:各路由器一方面将其LSA数据包传送给所有与其相邻的OSPF路由器,另一方面接收其相邻的OSPF路由器传来的LSA数据包,根据其更新自己的数据库。
3、形成稳定的区域拓扑结构数据库:OSPF路由协议通过泛洪法逐渐收敛,形成该区域拓扑结构的数据库,这时所有的路由器均保留了该数据库的一个副本。
4、形成路由表:所有的路由器根据其区域拓扑结构数据库副本采用最短路径法计算形成各自的路由表。
优点:OSPF适合在大范围的网络;组播触发式更新;收敛速度快;以开销作为度量值;OSPF协议的设计是为了避免路由环路;应用广泛。
缺点:OSPF协议的配置对于技术水平要求很高,配置比较复杂的;路由其自身的负载分担能力是很低的。
(3)某网络中的所有路由器均采用扩展阅读
RIP作为IGP(内部网关协议)中最先得到广泛使用的一种协议,主要应用于 AS 系统,即自治系统(Autonomous System)。连接 AS 系统有专门的协议,其中最早的这样的协议为“EGP”(外部网关协议),仍然应用于因特网,这样的协议通常被视为内部 AS路由选择协议。
RIP主要设计来利用同类技术与大小适度的网络一起工作。因此通过速度变化不大的接线连接,RIP 比较适用于简单的校园网和区域网,但并不适用于复杂网络的情况。
⑷ 计算机网络-4-4-转发分组,构建子网和划分超网
上图是一个路由器怎么进行分组转发的例子:有四个A类网络通过三个路由器连接在一起,每一个网络上都可能会有成千上万台主机。若路由表指出每一台主机该进行怎样的转发。则要维护的路由表是非常的庞大。 如果路由表指定到某一个网络如何转发,则路由表中只有4行,每一行对应一个网络。 以路由器2的路由表为例:由于R2同时连接在网络2和网络3上,因此只要目标主机在网络2或者网络3上,都可以通过接口0或者1或者路由器R2直接交付(当然还有使用ARP协议找到这些主机相应的MAC地址)。若目标主机在网络1中,则下一跳路由器为R1,其IP地址为20.0.0.7。路由器R2和R1由于同时连接在网络2上,因此从路由器2把转发分组给R1是很容易的。 我们应当注意到:每一个路由器至少都要拥有两个不同的IP地址。 总之,在路由表中,对每一条路由最主要的是以下两条信息: (目的网络,下一跳地址) 我们根据目的网络地址来确定下一跳路由器,这样可以得到以下结论:
虽然互联网上所有的分组转发都是 基于目的主机所在的网络 ,但是在大多数情况下都允许这样的实例: 对特定的主机指明一个路由 ,这种路由叫 特定主机路由 。采用特定主机路由可以使网络人员方便管理控制网络和测试网络
路由器还可以采用 默认路由 以减少路由表所占用的空间和搜索路由表所使用的时间。
当路由器接收到一个待转发的数据报,在从路由表中得出下一跳路由器的IP地址后,不是把这个地址写入IP数据报,而是送交 数据链路层的网络接口软件 ,网络接口软件把负责下一跳的路由器IP地址转化为硬件地址(必须使用ARP),将硬件地址写入MAC帧的首部,然后根据这个硬件地址找到下一跳路由器。由此可见,当发送一连串的数据报时,上述的这种查找路由表,用ARP得到硬件地址,把硬件地址写入MAC地址首部等过程,将不断地重复进行,造成了一定的开销。
根据以上几点,我们提出 分组转发算法:
这里我们需要强调一下,路由表并没有给分组指明某个网络的完整路径(即先经过哪一个路由器,然后再经过哪一个路由器,等等)。路由表指出,到达某个网络应该先到达某个路由器(下一条路由器),在到达下一跳路由器之后,再继续查找路由表,知道再下一步应当到达哪一个路由器。这样一步步的查找下去,直到最后到达目的网络。
为什么划分子网?
为解决上述问题,从1985年引出 子网络号字段 ,使得两级IP地址变为三级IP地址,这种做法叫做 划分子网(subnetting)【RFC950】 。
划分子网的基本思路:
划分子网的用例
如上图为某单位拥有一个B类IP地址,网络地址为145.13.0.0(网络号为145.13),凡是目的网络为145.13.x.x的数据报都会送到这个网络上路由器R1上。
现在把该网络划分为三个字网,这里假设子网络号占用8位,因此主机号就只剩下16-8=8位了,所划分的三个字网为145.13.3.0,145.13.7.0,145.3.21.0。路由器在接受到145.13.0.0上的路由器数据后,再根据数据报的目的地址把它转化到相应的子网。
总之,当没有划分子网的时候,IP地址是两节结构。划分子网后IP地址就变成了三级结构。划分子网只是把IP地址的主机号这部分进行再划分,而不改变IP地址原来的网络号。
假定有一个IP数据报(其目的地址为145.13.3.10)已经到达了路由器R1,那么这个路由器如何把它转发到子网145.13.3.0呢?
我们知道,从IP数据包报的首部无法看出源主机的目的主机所连接的网络是否进行了子网划分。这是因为32位IP地址本身以及数据报的首部没有包含任何关于子网划分的信息。因此必须另想办法,这就是使用 子网掩码 。
把三级IP地址的子网掩码和收到的目的地址的IP地址 逐位进行与(AND)运算,就可以立即得到网络地址,剩下的步骤就交给路由器处理分组。
使用子网掩码的好处是:不管网络有没有划分子网,只要把子网掩码和IP地址进行逐位 与(AND) 运算,就立即得出网络地址来,这样在路由器处理到来的分组时就可采取同样的做法。
在不划分子网时,为什么还要使用子网掩码?这就是为了更便于查找路由表。现在互联网规定:所有网络都必须使用子网掩码,同时在路由器的路由表中也必须有子网掩码这一栏。如果一个网路不划分子网,那么该网络的子网掩码就是用 默认的子网掩码 ,默认子网掩码中1的位置和IP地址中的网络号字段net-id正好相对应。因此,若用默认子网掩码和某个不划分子网的IP地址逐位相"与",就应该能够得出该IP地址的网络地址来,这样做可以不用查找该地址的类别位就能够知道这是哪一类的IP地址。显然:
图4-21是这三类IP地址的网络地址和相应的默认子网掩码:
子网掩码是一个网络或者一个子网的重要属性 。在RFC950成为互联网标准后,路由器在和相邻路由器交换路由信息时,必须把自己所在的网络(或子网)的子网掩码告诉相邻路由器,在路由器的路由表中的每一个项目,除了要给出目的网络地址外,还必须同时给出该网络的子网掩码。若一个路由器连接在两个子网上就拥有两个网络地址和两个子网掩码。
例4-2:
已知IP地址是141.14.72.24,子网掩码是255.255.192.0,求网络地址:
解: 255.255.192.0的二进制:11111111 11111111 11000000 00000000
IP 141.14.72.24二进制: 11111111 11111111 01001000
00000000
将IP地址二进制与子网掩码二进制进行 与(AND)运算 为 ::11111111 11111111 11000000 00000000
即网络IP为:141.14.64.0
在划分子网的情况下,分组转发的算法必须作出改动。在使用子网划分后,路由表应该包含以下内容:
在划分子网的情况下,路由器转发分组的算法如下:
例4-4:
图4-24有三个字网,两个路由器,以及路由器R1的部分路由表。现在源主机H1向目的主机H2发送分组。试讨论R1收到H1向H2发送的分组后查路由表的过程。
解:
源主机H1向目标主机H2发送的分组的目的地址为128.30.33.138。
源主机H1把本子网的子网掩码255.255.255.128与H2的IP地址128.30.33.128相与得到128.30.33.128,它不等于H1的网络地址(128.30.33.0)。这说明主机H2与主机H1不在同一个网段上,因此H1不能把数据包直接交付给H2。必须交给子网上的默认路由R1,由R1转发。
路由表在接受到这个分组之后,就在其路由表中逐行匹配寻找。
首先看R1路由表的第一行:用这一行的子网掩码255.255.255.128与H2IP地址进行互与,得到128.30.33.128,然后和这一行用样的方法进行第二行,结果发现相与出来的结果和目的网络地址匹配,则说明这个网络(子网2)就是收到的分组所要寻找的目的网络。于是就不用继续找了。R1把分组从接口1直接交付给主机H2(他们都在一个子网上)。
在一个划分子网的网络中可使用几个不同的子网掩码。使用变长 子网掩码VLSM(Variable Length Subnet Mask) 可进一步提高IP地址资源的利用率。在VLSM的基础上又进一步研究出 无分类编制 方法。它的正式名字是无分类域间路由选择CIDR(Classless Inter-Domain Routing)。
CIDR 最主要的特点有两个:
CIDR还使用斜线记法,就是在IP地址后面加上斜线/,然后写上 网络前缀所占的位数 。例如IP地址为128.14.35.7/20是某CIDR地址快中的一个地址,其中前20位就是网络前缀,后面的14位是主机位。如图所示:
当然以上地址的主机号全为0和全为1的地址,一般并不使用,这个地址块共有2^12个地址,我们可以使用地址块中最小的地址和网络前缀来指明这个地址快。例如,上述的地址块可记为128.14.32.0/20。
为了更方便的进行路由选择,CIDR使用了32位的地址掩码(address mask)。地址掩码是由一串1和一串0组成, 而1的个数就是网络前缀的个数。 虽然CIDR不使用子网了,但是出于某些原因,CIDR使用的地址掩码也可以继续称为 子网掩码,斜线记法中,斜线后面的数字就是1的个数 。例如,/20地址快的地址掩码是 11111111 11111111 11110000 00000000 (20个连续的1)。 斜线记法中,斜线后面的数字就是地址掩码中1的个数。
斜线记法还有一个好处就是它除了可以表示一个IP地址外,还提供了一些其他重要的信息。我们举例说明如下:
例如,地址为192.199.170.82/27不仅表示IP地址是192.199.170.82,而且还表示这个地址快的网络前缀有27位(剩下的5位是主机号),因此这个地址快包含32个IP地址( =32)。通过见到那的计算还可以得出,这个地址块的最小地址是192.199.170.64,最大地址是192.199.170.95。具体的计算方法是这样的:找到地址掩码中1和0的交界处发生在地址中的哪一个字节,现在是第四个字节,因此只要把这一个字节的十进制82用二进制表示即可:82的二进制是01010010,取其前3位(这3位加上前3字节的24位就够成了27位),再把后面的5位都写成0,即01000000,等于十进制64,这样就找到了地址快的最小地址192.199.170.64,再把最后面5位都置为1,即01011111,等于十进制的95,这就找到了地址块中的最大地址192.199.170.95。
由于一个CICR地址块有很多地址,所以在路由表中就利用CIDR地址块来查找目的网络。这种地址的聚合常称之为 路由聚合(route aggregation) ,它使得路由表中的一个项目可以表示原来传统分类地址的很多个路由,路由聚合也称之为 构成超网(supernetting) ,路由聚合有利于减少路由器之间的路由选择信息的交换,从而提高了整个互联网的性能。
每一个CIDR地址块中的地址数一定是2的整数次幂,这就是 构建超网 的来源。
网络前缀越短 ,其地址块所包含的地址数就越多,而在三级结构的IP地址中,划分子网是使网络前缀变长。
在使用了CIDR时,由于采用网络前缀这种记法,IP地址由网络前缀和主机号这两部分组成,因此在路由表中的项目也要有相应的变化,这时,每个项目由 网络前缀 和 下一跳地址组成 , 但是在查找路由表时可能会得到不止一个匹配结果 ,这样就带来一个问题:我们应该从这些匹配结果中选择哪一条路由呢?
正确的答案是: 应但从匹配结果中选择具有最长网络前缀的路由 ,这就做 最长前缀匹配(long-prefix matching) ,这是因为网络前缀越长,说明其地址块越小因而路由就越具体,最长前缀匹配又称之为 最长匹配 或者 最佳匹配 。
使用CIDR后,由于要寻找最长前缀匹配,使路由表的查找过程变的十分复杂,当路由表的项目数很大的时候,怎样设法减少路由表的平均查找时间就成为了一个非常重要的问题,现在常用的是 二叉线索(binary trie) ,它是一种特殊结构的树,IP地址中从左到右的比特值决定了从根节点逐层向下层延伸的路径,二二叉线索中的各个路径就代表路由表中存放的各个地址。
图4-26用一个例子说明二叉树线索的结构,图中给出了5个IP地址。为了简化二叉线索的结构,可以先找出对应一与每一个IP地址的唯一前缀(unique prefix),所谓唯一前缀就是在表中所有的IP地址中,该前缀时唯一的,这样就可以用这些唯一前缀来构造二叉线索。在进行查找时,只要能够和唯一前缀匹配相匹配就可以了。
从二叉树的根节点自顶向下的深度最多有32层,每一层对应于IP地址中的一位。