Ⅰ 一般神经网络要训练多久
决定神经网络训练多久有很多因素,如用的是CPU还是GPU,神经网络的结点数、层数,学习速率,激活函数等。一般在测试集的准确率不再明显增加时就可以停止训练了。
Ⅱ 神经网络运算一般配多少G显卡
8GB。
一个神经网络,除了看模型的性能(准确率/精度)以外,还要考虑在训练/推理时模型占用的内存大小和计算量,毕竟一个效果再好的模型,如果需要内存才能跑起来,综上总的算下来,神经网络运算一般配8GB显卡就够用了。
Ⅲ 跑一个神经网络需要多久
神经网络训练需要根据样本量来判断时间,一般情况下6个小时左右
人工神经网络(ArtificialNeuralNetworks,简写为ANNs)是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型
Ⅳ bp神经网络的缺点
1)局部极小化问题:从数学角度看,传统的BP神经网络为一种局部搜索的优化方法,它要解决的是一个复杂非线性化问题,网络的权值是通过沿局部改善的方向逐渐进行调整的,这样会使算法陷入局部极值,权值收敛到局部极小点,从而导致网络训练失败。加上BP神经网络对初始网络权重非常敏感,以不同的权重初始化网络,其往往会收敛于不同的局部极小,这也是很多学者每次训练得到不同结果的根本原因。
2)BP神经网络算法的收敛速度慢:由于BP神经网络算法本质上为梯度下降法,它所要优化的目标函数是非常复杂的,因此,必然会出现“锯齿形现象”,这使得BP算法低效;又由于优化的目标函数很复杂,它必然会在神经元输出接近0或1的情况下,出现一些平坦区,在这些区域内,权值误差改变很小,使训练过程几乎停顿。
3)BP神经网络结构选择不一:BP神经网络结构的选择至今尚无一种统一而完整的理论指导,一般只能由经验选定。网络结构选择过大,训练中效率不高,可能出现过拟合现象,造成网络性能低,容错性下降,若选择过小,则又会造成网络可能不收敛。而网络的结构直接影响网络的逼近能力及推广性质。因此,应用中如何选择合适的网络结构是一个重要的问题。
4)应用实例与网络规模的矛盾问题:BP神经网络难以解决应用问题的实例规模和网络规模间的矛盾问题,其涉及到网络容量的可能性与可行性的关系问题,即学习复杂性问题。
5)BP神经网络预测能力和训练能力的矛盾问题:预测能力也称泛化能力或者推广能力,而训练能力也称逼近能力或者学习能力。一般情况下,训练能力差时,预测能力也差。
Ⅳ 核心显卡可以跑神经网络
核心显卡可以跑,神经网络的你可以在核心店卡里面登录好神经经络网络,然后再进行系统操作就可以。