导航:首页 > 网络设置 > 网络协议路由器

网络协议路由器

发布时间:2023-02-06 09:20:21

A. 计算机网络-4-6-互联网的路由选择协议

路由选择协议的核心是 路由算法 。即 需要一种算法来获取路表中的各项 ,一个比较好的路由选择算法应该有以下特点[BELL86]:

一个实际的路由选择算法,应该尽可能的接近于理想的算法,在不同的应用条件下,可以对上面提出的六个方面有不同的侧重。

倘若从路由算法能否随网络的通信量或拓扑自适应的进行调整变化来划分,则只有两大类: 静态路由选择策略 动态路由选择策略 。静态路由选择策略也叫做 非自适应路由选择 ,其特点是简单和开销较小,但不能即使适应网络状态的变化。对于很简单的小网络,完全可以采用静态路由选择,用人工配置每一条路由。动态路由选择也叫做 自适应路由选择 ,其特点是能够较好的适应网络状态的变化,但实现起来较为复杂,开销也比较大,因此动态路由选择适用于较复杂的大网络。

互联网采用的路由选择协议主要是自适应的(动态的),分布式路由选择协议。由于以下两种原因,互联网采用分层次的路由选择协议:

为此,可以把整个互联网划分为许多较小的 自治系统AS(autonomous system) ,自治系统AS是在单一技术管理下的一组路由器,而这些路由器使用一种自治系统内部的路由选择协议和共同的度量,一个AS对其他AS表现的出是 一个单一的和一致的路由选择策略

在目前的互联网中,一个大的ISP就是一个自治系统。这样,互联网就把路由选择协议划分为两大类:

自治系统之间的路由选择协议也叫做 域间路由选择(interdomain routing) ,而在自治系统内部的路由选择叫做 域内路由选择(intradomain routing) 。如图4-31

RIP(routing information protocol)是内部网关协议IGP中最先得到广泛使用的协议[RFC1058],也叫 路由信息协议 ,RIP是一种分布式的 基于距离向量的路由选择协议 。最大的优点就是简单。

RIP协议要求网络中的每一个路由器都要维护从它自己到其他每一个目的网络的距离记录(因此这是一组距离,叫做距离向量),RIP将距离定义如下:

从一路由器到直接连接的网络的距离为1,从路由器到非之间的网络的距离定义为所经过的路由器数+1。

RIP协议的距离也称之为 跳数 ,但是一条跳数最多只能包含15个路由器,因此,当距离=16时,就相当于不可达。因此RIP只能适用于小型互联网。

注意的是,到直接连接的网络也定义为0(采用这种定义的理由是:路由器在和直接连接在该网络上的主机进行通信并不需要经过另外的路由器,既然经过每一个路由器都要将距离增加1,那么不经过路由器就不需要+1,就是0)。

RIP不能在两个网络之间同时使用多条路由。RIP选择一条具有最少路由器的路由(最短路由),哪怕还存在另一条高速低延时的但是路由器较多的路由。

路由器在刚开始工作的时候,其内部路由表是空的。然后路由器就可以和直接相连的几个网络的距离(这些距离为1),接着,每个路由器和与自己相连的路由器不断交换路由表信息,经过若干次更新后,所有的路由器最终就可以知道本自治系统中任何一个网络地址和最短下一跳路由器的地址。

路由器最主要的信息是:到某个网路的距离(最短距离),以及下一跳的地址,路由表更新的原则是找出到每个网络的 最短距离 ,这种算法又称之为 距离向量算法

每一个相邻的路由器 发送过来的RIP报文,进行以下步骤:

算法描述:其实就是求一个路由器到另一个路由器的最短距离。

例题:
已知路由器R6有表4-9(a)所表示的路由表,现在收到相邻路由器路由表R4发过来的路由更新信息,如图4-9(b)所示。试更新路由器R6的路由表。

解:首先把R4发过来的路由表中的距离都+1:

把这个表和R6的路由表进行比较:

RIP协议让每一个自治系统中的所有路由都和自己的相邻路由器定期交换路由表信息,并不断更新路由表,使得每从 每一个路由器到每一个目的网络的路由都是最短距离(也就是跳数最小)。

现在比较新的RIP协议报文格式是1998年提出的RIP2。

RIP协议使用运输层的用户数据报(UDP端口为520)进行传输。

RIP报文由首部和路由部分组成。
RIP首部占4个字节,其中的命令字段指出报文的意义。

RIP2报文中的路由部分有若干路由信息组成,每个路由信息需要用20字节。 地址标识符(又称地址列别) 字段用来标识所用的地址协议。如果采用IP地址就为2。 路由标记填入自治系统号ASN(Autonomous System Number) ,这是考虑使用RIP有可能收到本自治系统以外的路由选择信息,再后面指出某个 网络地址 下一跳路由器地址 以及 到此网络的距离 ,一个RIP报文最多可以包含25个路由,因而RIP报文的最大长度是4+20x25=504字节。如果超过,则必然再使用以恶搞RIP报文来传送。

RIP还具有简单的鉴别功能,若使用鉴别功能,则将原来写入第一个路由信息(20字节)的位置用作鉴别,这时应该将地址标识符置为全1(0xFFFF),而路由标记写入鉴别类别,剩下的16字节作为鉴别数据,在鉴别数据之后才能写入路由信息,但这时只能写入24个路由信息。

RIP存在的一个问题是 当网络出现故障的时候,要经过比较长的时间才能将信息传送到所有的路由器 ,RIP协议的这一特点是: 好消息传播的很快,而坏消息传播的很慢 ,网络出现故障的传播时间往往需要经过较长时间,这是RIP协议的一个主要缺点。

为了使坏消息传播的更快些,可以采用多种措施,例如,让路由器记录收到某特定路由信息的接口,而不是让同一个路由信息再通过此接口反方向传送。

总之,RIP协议最大的优点是 实现简单,开销较小 ,但RIP协议缺点也很明显,首先 限制了网络规模,因为路由器最大的跳数是15跳,一般中大型网络规模RIP协议就不适用了 。其次就是 路由器之间交换的路由信息是路由器中完整的路由表,因而随着网络规模变大,开销也就增加 。最后就是 好消息传播的很快,坏消息传播的很慢

B. 家里的路由器都用的是什么协议

用的是TCP协议!
局域网的话,有可能受到APR攻击,这种攻击就是发送大量数据导致网络堵塞,造成掉线等问题。安装360的APR防火墙就可以完全解决!

C. 因特网的路由协议可以分为两大类

因特网的路由协议分为两大类:

内部网关协议 (IGP,具体的协议有RIP和OSPF等)和 外部网关协议 (EGP,使用最多的是BGP)。

互联网(Internet):凡是能彼此之间通信的设备组成的网络就叫互联网。因特网(Internet):是由千万台设备组成的网络。

路由器是连接两个或多个网络的硬件设备,在网络间起网关的作用。它通过读取每一个数据包中的IP地址来决定如何传送。路由器的一个作用是连通不同的网络。

D. 自学笔记——路由及路由协议

“路由(Route)”——从某一网络设备出发去往某个目的地的路径;

路由表(Routing Table)——则是若干条路由信息的一个集合体。

路由表中的一条路由信息——也被称为一个路由项或一个路由条目。

路由表 只存在于 终端计算机和路由器(以及三层交换机) 中, 二层交换机中是不存在路由表的。

        目的地/掩码(Destination/Mask)、出接口(Interface)、下一跳IP地址(NextHop)

        display ip routing-table

                 设备自动发现 、 手工配置 、 动态路由协议生成

                直连路由(Direct Route)——设备自动发现的路由信息

                静态路由(static Route)——手工配置的路由信息

                动态路由(Dynamic Route)——运行动态路由协议而得到路由信息

                路由表Protocol列:   Direct(直连路由信息),static(静态路由信息),RIP(RIP路由协议生成)

        网络设备启动之后,当设备接口的状态为UP时,设备就能够自动发现去往与自己的接口直接相连的网络的路由。

        手工配置路由,这条路由出现在路由表中时,Protocol属性将会是static,表示是一条静态路由。

         网络设备还可以通过运行路由协议来获取路由信息。网络设备通过运行路由协议而获取到的路由被称为动态路由。

         一台路由器是可以同时运行多种路由协议的 。

        电脑是不运行任何路由协议的。计算机上只有一个IP路由表。

         不同来源的路由规定了不同的优先级(Preference) ,并规定 优先级的值越小,则路由的优先级就越高。

             路由的开销(cost) 是路由的一个非常重要的属性。指到达这条路由的目的地/掩码需要付出的代价值。

            不同的路由协议对于开销的具体定义是不同的。 不同路由协议之间的路由开销值没有可比性,也不存在换算关系。

            RIP协议只能将 “跳数( Hop Count) ” 作为开销。所谓跳数——经过的路由器的个数。

            两条路由的代价( 开销 )是 相等 的,所以它们被称为 等价路由 。在这种情况下, 一部分流量 会根据 第一条 路由来进行转发, 另一部 分流量会根据 第二条路由 来进行转发,这种情况也被称为 负载分担( LoadBalance) 。

            默认路由/缺省路由(Default Route)——目的地/掩码:0.0.0.0/0

            默认路由是由 路由协议产生的——动态默认路由;

            默认路由是由 手工配置而成的——静态默认路由。

            默认路由是 一种非常特殊的路由 ,因为任何一个待发送或待转发的IP报文都是可以和默认路由 匹配上的 ,虽然掩码匹配长度为0。

       电脑IP路由表——规模一般都很小,通常只包含一、二十条路由。不运行任何路由协议的,所以计算机的IP路由表中的路由要么是直连路由,要么是手工配置的静态路由,还有就是计算机的操作系统代替我们的手工配置而配置出来的各种路由。

        路由器IP路由表——规模大小变化很大,并且是与该路由器所运行的路由协议及该路由器在整个网络中的位置紧密相关的。路由器上的IP路由表可能包含几条至上百万条路由。可以有 直连路由 ,可以有 静态路由 ,但更多的都是通过运行路由协议而获得的动态路由。

        路由器上除了存在IP路由表外,还存在为每个运行的 路由协议专门创建并维护的路由表 。

            通过在R1和R2上配置静态路由来实现各个PC之间的互通。

        在路由器R1上配置一条静态路由,目的地/掩码为2.0.0.0/8,下一跳IP地址为R2的GE1/0/1接口的IP地址12.0.0.2,出接口为R1的GE1/0/1接口。

          在路由器R2上配置一条静态路由,目的地/掩码为1.0.0.0/8,下一跳IP地址为R1的GE1/0/1接口的IP地址12.0.0.1,出接口为R2的GE1/0/1接口。

         在路由器上配置静态路由时,需要进入到系统视图,然后执行命令 ip route-static

ip-address {mask|mask-length} { nexthop-address | interface-type interface-number [nexthop-adderss] }[ perference ]。

其中,ip-address {mask|mask-length}表示目的地/掩码,

nexthop-address 表示下一跳IP地址,

interface-type interface-number表示出接口,preference 表示路由的优先级。

       配置完成后,我们通常需要对配置好的路由进行确认。以R1为例,使用 display ip routing-table 命令查看其IP 路由表。

         从回显信息中我们可以看到,R1的IP路由表中己经有了一条关于2.0.0.0/8的静态路由。注意,静态路由的默认优先级的值为60。

E. 路由器必须实现的网络协议为

必须。
因特网中的主机和路由器,主机通常需要实现TCP协议、IP协议,路由器必须实现IP协议。
路由器(Router)是连接两个或多个网络的硬件设备,在网络间起网关的作用,是读取每一个数据包中的地址然后决定如何传送的专用智能性的网络设备。

F. 路由协议

路由器是一台网络设备,它有多张网卡。当一个入口的网络包送到路由器时,它会根据一个本地的转发信息库,来决定如何正确地转发流量,这个转发库就是常说的路由表。

一张路由表中会有多条路由规则。每一条规则至少包含这三项信息:

通过 route 命令 和 ip route 命令都可以进行查询或者配置的。例如,我们设置命令 ip route add 10.176.48.0/20 via 10.173.32.1 dev eth0 就说明要去 10.176.48.0/20 这个目标网络,要从 eth0 端口出去,经过 10.173.32.1。

此方法的核心思想是: 根据目的地址来配置路由。

当然,在真实的复杂的网络环境中,除了可以根据目的 ip 地址配置路由外,可以根据多个参数来配置路由,这就成为策略路由。

可以配置多个路由表,可以根据源 ip 地址、入口设备、TOS等选择路由表,然后在路由表中查找路由。这样可以使得不同来源的包走不同的路由。
例如,我们设置:

表示从 192.168.1.10/24 这个网段来的,使用 table 10 中的路由表,而从 192.168.2.0/24 网段来的,使用 table 20 的路由表。

在一条路由规则中,也可以走多条路径。例如,在下面中的路由规则中:

下一跳有两个地方,分别是 100.100.100.1 和 200.200.200.1,权重比分别为 1 比 2。

使用动态路由路由器,可以根据路由协议动态生成动态路由表,随着网络运行状态变化而变化。

第一大类的算法称为距离矢量路由(distance vector routing)。它基于 bellman-Ford 算法。

这种算法的基本思路是:每个路由器都保存一个路由表,包含多行,每行对应网络中的一个路由器,每一行包含两部分信息,一个要到目标路由器,从那条线出去,另一个是到目标路由器的距离。

由此可以看出,每个路由器是知道全局信息的。那这个信息如何更新呢?每个路由器都知道自己和令居之间的距离,每过几秒,每个路由器都将自己所知的所有路由器的距离告诉令居,每个路由器也能从邻居那里得到相似的信息。

每个路由器根据新收集的信息,计算和其他路由器的距离,比如自己的一个令居距离目标路由器的距离为M,而自己距离邻居是 x,则自己距离目标路由器是 x+M。

第二大类算法是链路状态路由(link state routing),基于 dijkstra 算法。

这种算法的基本思路是:当一个路由器启动的时候,首先是发现令居,向令居 say hello,邻居都回复。然后计算和邻居的距离,发送一个 echo,要求马上返回,除以 2 就是距离。然后将自己和邻居之间的链路状态包广播出去,发送到整个网络的每个路由器。这样每个路由器都能够收到它和邻居之间的关系的信息。因而,每个路由器都能构建一个自己本地的完整的图,然后针对这个图使用 Dijkstra 算法,找到两点之间的最短距离。

此算法可以最快将损坏路由器消息广播出去。

OSPF(Open shortest Path First, 开放式最短路径优先)就是这样一个基于链路状态路由协议,广泛应用在数据中心的协议。由于主要用于数据中心内部,用于路由决策,因而成为内部网关协议(interior gateway protocol,简称 IGP)。

内部网关协议的重点是找到最短的路径。在一个组织内部,路径最短往往最优。当然有时候 OSPF 可以发现多个最短的路径,可以再这多个路径中进行负载均衡,这常常称为等价路由。这可以和接入层的负载均衡 LVS 结合实现高吞吐量的接入层设计。

但是外网的路由协议,也即国家之间的有所不同,我们称之为外网路由协议(Border Gateway Protocol,简称 BGP)。

在网络世界,国家成为自治系统(Autonomous System)。自治系统分为几种类型:

BGP 又分为两类,eBGP 和 iBGP。一个用于 AS 之间,一个用于 AS 内部。

G. 路由器原理和常用的路由协议及算法的介绍

近十年来,随着计算机网络规模的不断扩大,大型互联网络(如Internet)的迅猛发展,路由技术在网络技术中已逐渐成为关键部分,路由器也随之成为最重要的网络设备。用户的需求推动着路由技术的发展和路由器的普及,人们已经不满足于仅在本地网络上共享信息,而希望最大限度地利用全球各个地区、各种类型的网络资源。而在目前的情况下,任何一个有一定规模的计算机网络(如企业网、校园网、智能大厦等),无论采用的是快速以大网技术、FDDI技术,还是ATM技术,都离不开路由器,否则就无法正常运作和管理。

1、网络互连

把自己的网络同其它的网络互连起来,从网络中获取更多的信息和向网络发布自己的消息,是网络互连的最主要的动力。网络的互连有多种方式,其中使用最多的是网桥互连和路由器互连。

1.1 网桥互连的网络

网桥工作在OSI模型中的第二层,即链路层。完成数据帧(frame)的转发,主要目的是在连接的网络间提供透明的通信。网桥的转发是依据数据帧中的源地址和目的地址来判断一个帧是否应转发和转发到哪个端口。帧中的地址称为“MAC”地址或“硬件”地址,一般就是网卡所带的地址。

网桥的作用是把两个或多个网络互连起来,提供透明的通信。网络上的设备看不到网桥的存在,设备之间的通信就如同在一个网上一样方便。由于网桥是在数据帧上进行转发的,因此只能连接相同或相似的网络(相同或相似结构的数据帧),如以太网之间、以太网与令牌环(tokenring)之间的互连,对于不同类型的网络(数据帧结构不同),如以太网与X.25之间,网桥就无能为力了。

网桥扩大了网络的规模,提高了网络的性能,给网络应用带来了方便,在以前的网络中,网桥的应用较为广泛。但网桥互连也带来了不少问题:一个是广播风暴,网桥不阻挡网络中广播消息,当网络的规模较大时(几个网桥,多个以太网段),有可能引起广播风暴(broadcastingstorm),导致整个网络全被广播信息充满,直至完全瘫痪。第二个问题是,当与外部网络互连时,网桥会把内部和外部网络合二为一,成为一个网,双方都自动向对方完全开放自己的网络资源。这种互连方式在与外部网络互连时显然是难以接受的。问题的主要根源是网桥只是最大限度地把网络沟通,而不管传送的信息是什么。

1.2 路由器互连网络

路由器互连与网络的协议有关,我们讨论限于TCP/IP网络的情况。

路由器工作在OSI模型中的第三层,即网络层。路由器利用网络层定义的“逻辑”上的网络地址(即IP地址)来区别不同的网络,实现网络的互连和隔离,保持各个网络的独立性。路由器不转发广播消息,而把广播消息限制在各自的网络内部。发送到其他网络的数据茵先被送到路由器,再由路由器转发出去。

IP路由器只转发IP分组,把其余的部分挡在网内(包括广播),从而保持各个网络具有相对的独立性,这样可以组成具有许多网络(子网)互连的大型的网络。由于是在网络层的互连,路由器可方便地连接不同类型的网络,只要网络层运行的是IP协议,通过路由器就可互连起来。

网络中的设备用它们的网络地址(TCP/IP网络中为IP地址)互相通信。IP地址是与硬件地址无关的“逻辑”地址。路由器只根据IP地址来转发数据。IP地址的结构有两部分,一部分定义网络号,另一部分定义网络内的主机号。目前,在Internet网络中采用子网掩码来确定IP地址中网络地址和主机地址。子网掩码与IP地址一样也是32bit,并且两者是一一对应的,并规定,子网掩码中数字为“1”所对应的IP地址中的部分为网络号,为“0”所对应的则为主机号。网络号和主机号合起来,才构成一个完整的IP地址。同一个网络中的主机IP地址,其网络号必须是相同的,这个网络称为IP子网。

通信只能在具有相同网络号的IP地址之间进行,要与其它IP子网的主机进行通信,则必须经过同一网络上的某个路由器或网关(gateway)出去。不同网络号的IP地址不能直接通信,即使它们接在一起,也不能通信。

路由器有多个端口,用于连接多个IP子网。每个端口的IP地址的网络号要求与所连接的IP子网的网络号相同。不同的端口为不同的网络号,对应不同的IP子网,这样才能使各子网中的主机通过自己子网的IP地址把要求出去的IP分组送到路由器上。

2、路由原理

当IP子网中的一台主机发送IP分组给同一IP子网的另一台主机时,它将直接把IP分组送到网络上,对方就能收到。而要送给不同IP于网上的主机时,它要选择一个能到达目的子网上的路由器,把IP分组送给该路由器,由路由器负责把IP分组送到目的地。如果没有找到这样的路由器,主机就把IP分组送给一个称为“缺省网关(defaultgateway)”的路由器上。“缺省网关”是每台主机上的一个配置参数,它是接在同一个网络上的某个路由器端口的IP地址。

路由器转发IP分组时,只根据IP分组目的IP地址的网络号部分,选择合适的端口,把IP分组送出去。同主机一样,路由器也要判定端口所接的是否是目的子网,如果是,就直接把分组通过端口送到网络上,否则,也要选择下一个路由器来传送分组。路由器也有它的缺省网关,用来传送不知道往哪儿送的IP分组。这样,通过路由器把知道如何传送的IP分组正确转发出去,不知道的IP分组送给“缺省网关”路由器,这样一级级地传送,IP分组最终将送到目的地,送不到目的地的IP分组则被网络丢弃了。

目前TCP/IP网络,全部是通过路由器互连起来的,Internet就是成千上万个IP子网通过路由器互连起来的国际性网络。这种网络称为以路由器为基础的网络(routerbasednetwork),形成了以路由器为节点的“网间网”。在“网间网”中,路由器不仅负责对IP分组的转发,还要负责与别的路由器进行联络,共同确定“网间网”的路由选择和维护路由表。

路由动作包括两项基本内容:寻径和转发。寻径即判定到达目的地的最佳路径,由路由选择算法来实现。由于涉及到不同的路由选择协议和路由选择算法,要相对复杂一些。为了判定最佳路径,路由选择算法必须启动并维护包含路由信息的路由表,其中路由信息依赖于所用的路由选择算法而不尽相同。路由选择算法将收集到的不同信息填入路由表中,根据路由表可将目的网络与下一站(nexthop)的关系告诉路由器。路由器间互通信息进行路由更新,更新维护路由表使之正确反映网络的拓扑变化,并由路由器根据量度来决定最佳路径。这就是路由选择协议(routingprotocol),例如路由信息协议(RIP)、开放式最短路径优先协议(OSPF)和边界网关协议(BGP)等。

转发即沿寻径好的最佳路径传送信息分组。路由器首先在路由表中查找,判明是否知道如何将分组发送到下一个站点(路由器或主机),如果路由器不知道如何发送分组,通常将该分组丢弃;否则就根据路由表的相应表项将分组发送到下一个站点,如果目的网络直接与路由器相连,路由器就把分组直接送到相应的端口上。这就是路由转发协议(routedprotocol)。

路由转发协议和路由选择协议是相互配合又相互独立的概念,前者使用后者维护的路由表,同时后者要利用前者提供的功能来发布路由协议数据分组。下文中提到的路由协议,除非特别说明,都是指路由选择协议,这也是普遍的习惯。

3、路由协议

典型的路由选择方式有两种:静态路由和动态路由。

静态路由是在路由器中设置的固定的路由表。除非网络管理员干预,否则静态路由不会发生变化。由于静态路由不能对网络的改变作出反映,一般用于网络规模不大、拓扑结构固定的网络中。静态路由的优点是简单、高效、可靠。在所有的路由中,静态路由优先级最高。当动态路由与静态路由发生冲突时,以静态路由为准。

动态路由是网络中的路由器之间相互通信,传递路由信息,利用收到的路由信息更新路由器表的过程。它能实时地适应网络结构的变化。如果路由更新信息表明发生了网络变化,路由选择软件就会重新计算路由,并发出新的路由更新信息。这些信息通过各个网络,引起各路由器重新启动其路由算法,并更新各自的路由表以动态地反映网络拓扑变化。动态路由适用于网络规模大、网络拓扑复杂的网络。当然,各种动态路由协议会不同程度地占用网络带宽和CPU资源。

静态路由和动态路由有各自的特点和适用范围,因此在网络中动态路由通常作为静态路由的补充。当一个分组在路由器中进行寻径时,路由器首先查找静态路由,如果查到则根据相应的静态路由转发分组;否则再查找动态路由。

根据是否在一个自治域内部使用,动态路由协议分为内部网关协议(IGP)和外部网关协议(EGP)。这里的自治域指一个具有统一管理机构、统一路由策略的网络。自治域内部采用的路由选择协议称为内部网关协议,常用的'有RIP、OSPF;外部网关协议主要用于多个自治域之间的路由选择,常用的是BGP和BGP-4。下面分别进行简要介绍。

3.1 RIP路由协议

RIP协议最初是为Xerox网络系统的Xeroxparc通用协议而设计的,是Internet中常用的路由协议。RIP采用距离向量算法,即路由器根据距离选择路由,所以也称为距离向量协议。路由器收集所有可到达目的地的不同路径,并且保存有关到达每个目的地的最少站点数的路径信息,除到达目的地的最佳路径外,任何其它信息均予以丢弃。同时路由器也把所收集的路由信息用RIP协议通知相邻的其它路由器。这样,正确的路由信息逐渐扩散到了全网。

RIP使用非常广泛,它简单、可靠,便于配置。但是RIP只适用于小型的同构网络,因为它允许的最大站点数为15,任何超过15个站点的目的地均被标记为不可达。而且RIP每隔30s一次的路由信息广播也是造成网络的广播风暴的重要原因之一。

3.2 OSPF路由协议

80年代中期,RIP已不能适应大规模异构网络的互连,0SPF随之产生。它是网间工程任务组织(1ETF)的内部网关协议工作组为IP网络而开发的一种路由协议。

0SPF是一种基于链路状态的路由协议,需要每个路由器向其同一管理域的所有其它路由器发送链路状态广播信息。在OSPF的链路状态广播中包括所有接口信息、所有的量度和其它一些变量。利用0SPF的路由器首先必须收集有关的链路状态信息,并根据一定的算法计算出到每个节点的最短路径。而基于距离向量的路由协议仅向其邻接路由器发送有关路由更新信息。

与RIP不同,OSPF将一个自治域再划分为区,相应地即有两种类型的路由选择方式:当源和目的地在同一区时,采用区内路由选择;当源和目的地在不同区时,则采用区间路由选择。这就大大减少了网络开销,并增加了网络的稳定性。当一个区内的路由器出了故障时并不影响自治域内其它区路由器的正常工作,这也给网络的管理、维护带来方便。

3.3 BGP和BGP-4路由协议

BGP是为TCP/IP互联网设计的外部网关协议,用于多个自治域之间。它既不是基于纯粹的链路状态算法,也不是基于纯粹的距离向量算法。它的主要功能是与其它自治域的BGP交换网络可达信息。各个自治域可以运行不同的内部网关协议。BGP更新信息包括网络号/自治域路径的成对信息。自治域路径包括到达某个特定网络须经过的自治域串,这些更新信息通过TCP传送出去,以保证传输的可靠性。

为了满足Internet日益扩大的需要,BGP还在不断地发展。在最新的BGp4中,还可以将相似路由合并为一条路由。

3.4 路由表项的优先问题

在一个路由器中,可同时配置静态路由和一种或多种动态路由。它们各自维护的路由表都提供给转发程序,但这些路由表的表项间可能会发生冲突。这种冲突可通过配置各路由表的优先级来解决。通常静态路由具有默认的最高优先级,当其它路由表表项与它矛盾时,均按静态路由转发。

4、路由算法

路由算法在路由协议中起着至关重要的作用,采用何种算法往往决定了最终的寻径结果,因此选择路由算法一定要仔细。通常需要综合考虑以下几个设计目标:

——(1)最优化:指路由算法选择最佳路径的能力。

——(2)简洁性:算法设计简洁,利用最少的软件和开销,提供最有效的功能。

——(3)坚固性:路由算法处于非正常或不可预料的环境时,如硬件故障、负载过高或操作失误时,都能正确运行。由于路由器分布在网络联接点上,所以在它们出故障时会产生严重后果。最好的路由器算法通常能经受时间的考验,并在各种网络环境下被证实是可靠的。

——(4)快速收敛:收敛是在最佳路径的判断上所有路由器达到一致的过程。当某个网络事件引起路由可用或不可用时,路由器就发出更新信息。路由更新信息遍及整个网络,引发重新计算最佳路径,最终达到所有路由器一致公认的最佳路径。收敛慢的路由算法会造成路径循环或网络中断。

——(5)灵活性:路由算法可以快速、准确地适应各种网络环境。例如,某个网段发生故障,路由算法要能很快发现故障,并为使用该网段的所有路由选择另一条最佳路径。

路由算法按照种类可分为以下几种:静态和动态、单路和多路、平等和分级、源路由和透明路由、域内和域间、链路状态和距离向量。前面几种的特点与字面意思基本一致,下面着重介绍链路状态和距离向量算法。

链路状态算法(也称最短路径算法)发送路由信息到互联网上所有的结点,然而对于每个路由器,仅发送它的路由表中描述了其自身链路状态的那一部分。距离向量算法(也称为Bellman-Ford算法)则要求每个路由器发送其路由表全部或部分信息,但仅发送到邻近结点上。从本质上来说,链路状态算法将少量更新信息发送至网络各处,而距离向量算法发送大量更新信息至邻接路由器。

由于链路状态算法收敛更快,因此它在一定程度上比距离向量算法更不易产生路由循环。但另一方面,链路状态算法要求比距离向量算法有更强的CPU能力和更多的内存空间,因此链路状态算法将会在实现时显得更昂贵一些。除了这些区别,两种算法在大多数环境下都能很好地运行。

最后需要指出的是,路由算法使用了许多种不同的度量标准去决定最佳路径。复杂的路由算法可能采用多种度量来选择路由,通过一定的加权运算,将它们合并为单个的复合度量、再填入路由表中,作为寻径的标准。通常所使用的度量有:路径长度、可靠性、时延、带宽、负载、通信成本等。

5、新一代路由器

由于多媒体等应用在网络中的发展,以及ATM、快速以太网等新技术的不断采用,网络的带宽与速率飞速提高,传统的路由器已不能满足人们对路由器的性能要求。因为传统路由器的分组转发的设计与实现均基于软件,在转发过程中对分组的处理要经过许多环节,转发过程复杂,使得分组转发的速率较慢。另外,由于路由器是网络互连的关键设备,是网络与其它网络进行通信的一个“关口”,对其安全性有很高的要求,因此路由器中各种附加的安全措施增加了CPU的负担,这样就使得路由器成为整个互联网上的“瓶颈”。

传统的路由器在转发每一个分组时,都要进行一系列的复杂操作,包括路由查找、访问控制表匹配、地址解析、优先级管理以及其它的附加操作。这一系列的操作大大影响了路由器的性能与效率,降低了分组转发速率和转发的吞吐量,增加了CPU的负担。而经过路由器的前后分组间的相关性很大,具有相同目的地址和源地址的分组往往连续到达,这为分组的快速转发提供了实现的可能与依据。新一代路由器,如IPSwitch、TagSwitch等,就是采用这一设计思想用硬件来实现快速转发,大大提高了路由器的性能与效率。

新一代路由器使用转发缓存来简化分组的转发操作。在快速转发过程中,只需对一组具有相同目的地址和源地址的分组的前几个分组进行传统的路由转发处理,并把成功转发的分组的目的地址、源地址和下一网关地址(下一路由器地址)放人转发缓存中。当其后的分组要进行转发时,茵先查看转发缓存,如果该分组的目的地址和源地址与转发缓存中的匹配,则直接根据转发缓存中的下一网关地址进行转发,而无须经过传统的复杂操作,大大减轻了路由器的负担,达到了提高路由器吞吐量的目标。

阅读全文

与网络协议路由器相关的资料

热点内容
万能wifi钥匙怎样提升网络 浏览:485
网络电视连接方法 浏览:67
黑群晖连接失败请检查网络连接 浏览:330
手机测网络情况的软件 浏览:514
投放网络广告的优势不包括哪些 浏览:505
小米手机网络不好去哪里设置 浏览:130
打开新电脑不显示无线网络 浏览:808
电脑为什么不能显示可用无线网络 浏览:308
能看小说的手表有哪些不要网络 浏览:236
网络信贷通讯异常 浏览:293
无线网络信号差用什么方法 浏览:314
手机上网络端口怎么打开 浏览:680
网络摄像头是什么品牌 浏览:801
如何去掉网络地址 浏览:832
苹果手机蜂窝数据网络中的app看不到 浏览:653
设置网络未显示图标和通知 浏览:147
衡山县信息网络化办公室在哪里 浏览:240
郑州老市区哪个运营商网络好 浏览:915
苹果4s通用里没有网络 浏览:579
华为手机8c如何忘记网络 浏览:923

友情链接