导航:首页 > 网络设置 > 创建神经网络设置

创建神经网络设置

发布时间:2023-01-16 03:47:53

1. 如何在R语言中进行神经网络模型的建立

不能发链接,所以我复制过来了。

#载入程序和数据
library(RSNNS)
data(iris)
#将数据顺序打乱
iris <- iris[sample(1:nrow(iris),length(1:nrow(iris))),1:ncol(iris)]
#定义网络输入
irisValues <- iris[,1:4]
#定义网络输出,并将数据进行格式转换
irisTargets <- decodeClassLabels(iris[,5])
#从中划分出训练样本和检验样本
iris <- splitForTrainingAndTest(irisValues, irisTargets, ratio=0.15)
#数据标准化
iris <- normTrainingAndTestSet(iris)
#利用mlp命令执行前馈反向传播神经网络算法
model <- mlp(iris$inputsTrain, iris$targetsTrain, size=5, learnFunc="Quickprop", learnFuncParams=c(0.1, 2.0, 0.0001, 0.1),maxit=100, inputsTest=iris$inputsTest, targetsTest=iris$targetsTest)
#利用上面建立的模型进行预测
predictions <- predict(model,iris$inputsTest)
#生成混淆矩阵,观察预测精度
confusionMatrix(iris$targetsTest,predictions)
#结果如下:
# predictions
#targets 1 2 3
# 1 8 0 0
# 2 0 4 0
# 3 0 1 10

2. 如何创建两个隐藏层的BP神经网络

我自己的总结是:
1,隐层的神经网络算法1.1构造方法选择

首先使用三个隐藏层的数量来确定三个隐藏层数找到的最小值和最大值的值,然后从最小来验证模型的预测误差,直到它达到最大值。最后,选择模型误差最小隐藏层数。该方法适用于两个隐藏层的网络。

1.2 Delete方法

单隐层网络的非线性映射能力弱,同样的问题,以达到预定的隐层节点之间的映射一些,以增加网络的可调参数,它是适合用于删除法。

1.3黄金分割法
的主要思路:一是在[A,B]寻找理想的隐层节点,从而充分保证逼近能力和泛化能力的网络。为了满足高精度近似,在金色的原则,按照扩大搜寻范围区间,即该区间[B,C] = 0.619 *(钙)+ A)(其中B,范围[B,C]寻找最佳逼近能力更应要求隐层节点数,在实际应用中,人们可以选择。

3. matlab建立bp神经网络如何设置两个隐含层呢

题主那个newff里面的10看到没?那个就是设置1个隐含层的神经元个数,要多个隐含层就把10改成[4,10,1]就是第一个隐含层有4个神经元,第二个隐含层10个神经元,最后一层输出层1个神经元。然后你的{TF1 TF2}不用改。这样应该能用了。

然后给你一个newff的各项参数使用的介绍:

4. 如何训练神经网络

1、先别着急写代码

训练神经网络前,别管代码,先从预处理数据集开始。我们先花几个小时的时间,了解数据的分布并找出其中的规律。

Andrej有一次在整理数据时发现了重复的样本,还有一次发现了图像和标签中的错误。所以先看一眼数据能避免我们走很多弯路。

由于神经网络实际上是数据集的压缩版本,因此您将能够查看网络(错误)预测并了解它们的来源。如果你的网络给你的预测看起来与你在数据中看到的内容不一致,那么就会有所收获。

一旦从数据中发现规律,可以编写一些代码对他们进行搜索、过滤、排序。把数据可视化能帮助我们发现异常值,而异常值总能揭示数据的质量或预处理中的一些错误。

2、设置端到端的训练评估框架

处理完数据集,接下来就能开始训练模型了吗?并不能!下一步是建立一个完整的训练+评估框架。

在这个阶段,我们选择一个简单又不至于搞砸的模型,比如线性分类器、CNN,可视化损失。获得准确度等衡量模型的标准,用模型进行预测。

这个阶段的技巧有:

· 固定随机种子

使用固定的随机种子,来保证运行代码两次都获得相同的结果,消除差异因素。

· 简单化

在此阶段不要有任何幻想,不要扩增数据。扩增数据后面会用到,但是在这里不要使用,现在引入只会导致错误。

· 在评估中添加有效数字

在绘制测试集损失时,对整个测试集进行评估,不要只绘制批次测试损失图像,然后用Tensorboard对它们进行平滑处理。

· 在初始阶段验证损失函数

验证函数是否从正确的损失值开始。例如,如果正确初始化最后一层,则应在softmax初始化时测量-log(1/n_classes)。

· 初始化

正确初始化最后一层的权重。如果回归一些平均值为50的值,则将最终偏差初始化为50。如果有一个比例为1:10的不平衡数据集,请设置对数的偏差,使网络预测概率在初始化时为0.1。正确设置这些可以加速模型的收敛。

· 人类基线

监控除人为可解释和可检查的损失之外的指标。尽可能评估人的准确性并与之进行比较。或者对测试数据进行两次注释,并且对于每个示例,将一个注释视为预测,将第二个注释视为事实。

· 设置一个独立于输入的基线

最简单的方法是将所有输入设置为零,看看模型是否学会从输入中提取任何信息。

· 过拟合一个batch

增加了模型的容量并验证我们可以达到的最低损失。

· 验证减少训练损失

尝试稍微增加数据容量。

5. 神经网络的隐含层节点数怎么设置啊比如要设置18层隐含节点数!跪求,工作急用!

隐层一般是一层或两层,很少会采用三层以上,至少隐层的节点数确定,一般有以下几种方法:1、有经验的人员根据以往的经验凑试出节点个数。2、某些学术研究出固定的求节点方法,如2m+1个隐层节点,m为输入个数。3、修剪法。刚开始建立足够多的节点数,在训练过程中,根据节点数的相关程度,删除重复的节点。

6. 1.如何用MATLAB神经网络工具箱创建BP神经网络模型具体有哪些步骤请高手举实例详细解释下 2.如何把输

%人脸识别模型,脸部模型自己找吧。
function mytest()

clc;
images=[ ];
M_train=3;%表示人脸
N_train=5;%表示方向
sample=[];
pixel_value=[];
sample_number=0;

for j=1:N_train
for i=1:M_train
str=strcat('Images\',num2str(i),'_',num2str(j),'.bmp'); %读取图像,连接字符串形成图像的文件名。
img= imread(str);
[rows cols]= size(img);%获得图像的行和列值。
img_edge=edge(img,'Sobel');

%由于在分割图片中我们可以看到这个人脸的眼睛部分也就是位于分割后的第二行中,位置变化比较大,而且眼睛边缘检测效果很好

sub_rows=floor(rows/6);%最接近的最小整数,分成6行
sub_cols=floor(cols/8);%最接近的最小整数,分成8列
sample_num=M_train*N_train;%前5个是第一幅人脸的5个角度

sample_number=sample_number+1;
for subblock_i=1:8 %因为这还在i,j的循环中,所以不可以用i
block_num=subblock_i;
pixel_value(sample_number,block_num)=0;
for ii=sub_rows:(2*sub_rows)
for jj=(subblock_i-1)*sub_cols+1:subblock_i*sub_cols
pixel_value(sample_number,block_num)=pixel_value(sample_number,block_num)+img_edge(ii,jj);
end
end
end
end
end
%将特征值转换为小于1的值
max_pixel_value=max(pixel_value);
max_pixel_value_1=max(max_pixel_value);
for i=1:3
mid_value=10^i;
if(((max_pixel_value_1/mid_value)>1)&&((max_pixel_value_1/mid_value)<10))
multiple_num=1/mid_value;
pixel_value=pixel_value*multiple_num;
break;
end
end

% T 为目标矢量
t=zeros(3,sample_number);
%因为有五类,所以至少用3个数表示,5介于2的2次方和2的3次方之间
for i=1:sample_number
% if((mod(i,5)==1)||(mod(i,5)==4)||(mod(i,5)==0))
if(i<=3)||((i>9)&&(i<=12))||((i>12)&&(i<=15))
t(1,i)=1;
end
%if((mod(i,5)==2)||(mod(i,5)==4))
if((i>3)&&(i<=6))||((i>9)&&(i<=12))
t(2,i)=1;
end
%if((mod(i,5)==3)||(mod(i,5)==0))
if((i>6)&&(i<=9))||((i>12)&&(i<=15))
t(3,i)=1;
end
end

% NEWFF——生成一个新的前向神经网络
% TRAIN——对 BP 神经网络进行训练
% SIM——对 BP 神经网络进行仿真

% 定义训练样本
% P 为输入矢量
P=pixel_value'
% T 为目标矢量
T=t
size(P)
size(T)
% size(P)
% size(T)

% 创建一个新的前向神经网络
net_1=newff(minmax(P),[10,3],{'tansig','purelin'},'traingdm')

% 当前输入层权值和阈值
inputWeights=net_1.IW{1,1}
inputbias=net_1.b{1}
% 当前网络层权值和阈值
layerWeights=net_1.LW{2,1}
layerbias=net_1.b{2}

% 设置训练参数
net_1.trainParam.show = 50;
net_1.trainParam.lr = 0.05;
net_1.trainParam.mc = 0.9;
net_1.trainParam.epochs = 10000;
net_1.trainParam.goal = 1e-3;

% 调用 TRAINGDM 算法训练 BP 网络
[net_1,tr]=train(net_1,P,T);

% 对 BP 网络进行仿真
A = sim(net_1,P);
% 计算仿真误差
E = T - A;
MSE=mse(E)

x=[0.14 0 1 1 0 1 1 1.2]';
sim(net_1,x)

7. (急)如何用MATLAB建立ANN(人工神经网络模型)

问题描述:
有两个自变量,一个因变量,10个样本(这里就取少一点好了)。用实际问题来表述,假设一个股票,开盘价 x1,收盘价 x2,第二天的股价 y。 那用神经网络来预测的目的是,根据10天的开盘价和收盘价,来预测未来股价。显然,这里的y与x1和x2相关,我们要训练一个网络(net)来让他尽可能的预测一个y

MATLAB程序

clc
clear
load data input output
%input就是包含了x1和x2 10天数据的矩阵,说白了就是20个数的矩阵。output是y的一个向量,%10个数
%需要自己找一些数据赋值给input和ouput

P=input;
T=output;
%这里P和T必须是 x1 x2和y的行向量组合。对于P,x1是行向量,x2是行向量。P=[x1;x2]; T=y. y是行向量

Epochs=5000;
NodeNum=12; TypeNum=1;
TF1='logsig'; TF2='purelin';
%设置一些初始参数,Epochs是迭代上限次数,NodeNum是第一个隐藏层的神经元个数,%TypeNum是几层。TF1和TF2分别定义了几个传递函数。

net=newff(minmax(P),[NodeNum TypeNum],{TF1 TF2},'trainlm');
%建立一个神经网络,训练输入和输出数据都有了,设置隐藏层的个数。

net.trainParam.epochs=Epochs;
net.trainParam.goal=1e-4;
net.trainParam.min_grad=1e-4;
net.trainParam.show=200;
net.trainParam.time=inf;
%设置一些训练时的参数,第一个是每次训练的最大迭代次数;

net=train(net,P,T);
%开始网络训练

P_test=P;
B_test=T;
%就用原始的数据进行测试

X=sim(net,P_test);
%测试

Erro=abs(B_test-X);
sigma=std(Erro);
%计算出预测值和实际值的误差,求出方差。将来方差可以用来随机调整

阅读全文

与创建神经网络设置相关的资料

热点内容
网络语言有哪些2019 浏览:340
配置网络路由器没有连接网络 浏览:749
魅族手机怎么获得网络权限 浏览:414
济宁哪里能培训网络管理 浏览:192
检查网络为什么会这么慢 浏览:724
网络路由器远端无响应 浏览:811
网络安全性群组 浏览:622
三星s8wifi网络慢 浏览:54
京东商城网络营销分析 浏览:114
网络怎么连接另一台电脑 浏览:182
网络电视如何不用路由器联网教程 浏览:691
合肥有线网络速度如何 浏览:620
移动网络是网通吗 浏览:99
5g网络在哪个城市用起来了 浏览:161
家里有路由器为什么连不到网络 浏览:284
电脑打开网络里面是空的 浏览:251
光纤可以连接路由器但没网络 浏览:467
网络语锤铁是什么意思 浏览:156
乐视网络播放机恢复出厂设置卡死 浏览:953
网络电脑插座什么牌子好 浏览:642

友情链接