导航:首页 > 网络设置 > 神经网络设置

神经网络设置

发布时间:2022-01-10 04:49:44

㈠ 神经网络 的四个基本属性是什么

神经网络 的四个基本属性:

(1)非线性:非线性是自然界的普遍特征。脑智能是一种非线性现象。人工神经元处于两种不同的激活或抑制状态,它们在数学上是非线性的。由阈值神经元组成的网络具有更好的性能,可以提高网络的容错性和存储容量。

(2)无限制性:神经网络通常由多个连接广泛的神经元组成。一个系统的整体行为不仅取决于单个神经元的特性,而且还取决于单元之间的相互作用和互连。通过单元之间的大量连接来模拟大脑的非限制性。联想记忆是一个典型的无限制的例子。

(3)非常定性:人工神经网络具有自适应、自组织和自学习的能力。神经网络处理的信息不仅会发生变化,而且非线性动态系统本身也在发生变化。迭代过程通常用来描述动态系统的演化。

(4)非凸性:在一定条件下,系统的演化方向取决于特定的状态函数。例如,能量函数的极值对应于系统的相对稳定状态。非凸性是指函数具有多个极值,系统具有多个稳定平衡态,从而导致系统演化的多样性。

(1)神经网络设置扩展阅读:

神经网络的特点优点:

人工神经网络的特点和优越性,主要表现在三个方面:

第一,具有自学习功能。例如实现图像识别时,只在先把许多不同的图像样板和对应的应识别的结果输入人工神经网络,网络就会通过自学习功能,慢慢学会识别类似的图像。自学习功能对于预测有特别重要的意义。预期未来的人工神经网络计算机将为人类提供经济预测、市场预测、效益预测,其应用前途是很远大的。

第二,具有联想存储功能。用人工神经网络的反馈网络就可以实现这种联想。

第三,具有高速寻找优化解的能力。寻找一个复杂问题的优化解,往往需要很大的计算量,利用一个针对某问题而设计的反馈型人工神经网络,发挥计算机的高速运算能力,可能很快找到优化解。

㈡ 神经网络gradient怎么设置

梯度是计算得来的,不是“设置”的。

传统的神经网络通过前向、后向两步运算进行训练。其中最关键的就是BP算法,它是网络训练的根本方式。在运行BP的过程中,你需要先根据定义好的“代价函数”分别对每一层的参数(一般是W和b)求偏导(也就是你说的gradient),用该偏导数在每一次迭代中更新对应的W和b,直至算法收敛。

具体实现思路和细节可以参考:http://deeplearning.stanford.e/wiki/index.php/%E5%8F%8D%E5%90%91%E4%BC%A0%E5%AF%BC%E7%AE%97%E6%B3%95

㈢ 神经网络的隐层数,节点数设置。

我自己总结的:
1、神经网络算法隐含层的选取
1.1 构造法
首先运用三种确定隐含层层数的方法得到三个隐含层层数,找到最小值和最大值,然后从最小值开始逐个验证模型预测误差,直到达到最大值。最后选取模型误差最小的那个隐含层层数。该方法适用于双隐含层网络。
1.2 删除法
单隐含层网络非线性映射能力较弱,相同问题,为达到预定映射关系,隐层节点要多一些,以增加网络的可调参数,故适合运用删除法。
1.3黄金分割法
算法的主要思想:首先在[a,b]内寻找理想的隐含层节点数,这样就充分保证了网络的逼近能力和泛化能力。为满足高精度逼近的要求,再按照黄金分割原理拓展搜索区间,即得到区间[b,c](其中b=0.619*(c-a)+a),在区间[b,c]中搜索最优,则得到逼近能力更强的隐含层节点数,在实际应用根据要求,从中选取其一即可。

㈣ 运行神经网络的机器需要什么配置

你是训练还是使用训练好的网络。
若果是训练的话,就看你的训练数据的大小。 我之前10万条数据,22个输入,1个输出。用matlab训练,也是一般的家用电脑就可以了。

若果只是使用训练好的神经网络, 对配置根本谈不上要求!对每一个输入的预测只是简单的算术运算。

《神经网络之家》

㈤ 神经网络 seed 设置成多少

seed函数是对神经网络里用到的rand函数其作用的吧.设置seed为明确的值,只是不同的人或不同次运行随机函数是能产生相同的随机数,观察到相同的结果。实际运行中,设置成多少应该是无所谓的,这才是随机数。

㈥ BP神经网络中,如何设定神经元的初始连接权重以及阀值

初始连接权重关系到网络训练速度的快慢以及收敛速率,在基本的神经网络中,这个权重是随机设定的。在网络训练的过程中沿着误差减小的方向不断进行调整。针对这个权重的随机性不确定的缺点,有人提出了用遗传算法初始化BP的初始权重和阈值的想法,提出了遗传神经网络模型,并且有人预言下一代的神经网络将会是遗传神经网络。希望对你有所帮助。你可以查看这方面的文献

㈦ 神经网络中step size 怎么设置

神经网络似乎没有步长的说法,你指的是net.trainParam.show?net.trainParam.show是指显示训练迭代过程n个周期后显示一下收敛曲线的变化。
在定义了网络之后,train训练函数之前,加上下面两个语句:
net.trainParam.showWindow = false;
net.trainParam.showCommandLine = false;
亲测不会弹出提示。
这样使得我们能在较长时间的训练中,腾出电脑去做别的事。否则窗口会不停弹出来,影响使用。

㈧ BP神经网络中为什么设置阈值

你这是不是用遗传算法优化权值和阀值啊?
我不知道你x的哪里来的?所以也不知道你是如何确定初始权值和阀值。
不过我们平常写程序时这些值都是随机赋予的。

㈨ 神经网络算法中,参数的设置或者调整,有什么方法可以采用

若果对你有帮助,请点赞。
神经网络的结构(例如2输入3隐节点1输出)建好后,一般就要求神经网络里的权值和阈值。现在一般求解权值和阈值,都是采用梯度下降之类的搜索算法(梯度下降法、牛顿法、列文伯格-马跨特法、狗腿法等等),这些算法会先初始化一个解,在这个解的基础上,确定一个搜索方向和一个移动步长(各种法算确定方向和步长的方法不同,也就使各种算法适用于解决不同的问题),使初始解根据这个方向和步长移动后,能使目标函数的输出(在神经网络中就是预测误差)下降。 然后将它更新为新的解,再继续寻找下一步的移动方向的步长,这样不断的迭代下去,目标函数(神经网络中的预测误差)也不断下降,最终就能找到一个解,使得目标函数(预测误差)比较小。
而在寻解过程中,步长太大,就会搜索得不仔细,可能跨过了优秀的解,而步长太小,又会使寻解过程进行得太慢。因此,步长设置适当非常重要。
学习率对原步长(在梯度下降法中就是梯度的长度)作调整,如果学习率lr = 0.1,那么梯度下降法中每次调整的步长就是0.1*梯度,
而在matlab神经网络工具箱里的lr,代表的是初始学习率。因为matlab工具箱为了在寻解不同阶段更智能的选择合适的步长,使用的是可变学习率,它会根据上一次解的调整对目标函数带来的效果来对学习率作调整,再根据学习率决定步长。
机制如下:
if newE2/E2 > maxE_inc %若果误差上升大于阈值
lr = lr * lr_dec; %则降低学习率
else
if newE2 < E2 %若果误差减少
lr = lr * lr_inc;%则增加学习率
end
详细的可以看《神经网络之家》nnetinfo里的《[重要]写自己的BP神经网络(traingd)》一文,里面是matlab神经网络工具箱梯度下降法的简化代码

若果对你有帮助,请点赞。
祝学习愉快

㈩ matlab中BP神经网络如何设置初始权重

因为初始值(初始权值和阀值)都在x这个向量中,x(n,1)的长度n为:n=inputnum*hiddennum+hiddennum+hiddennum*outputnum+outputnum
其中inputnum*hiddennum是输入层到隐含层的权值数量,hiddennum是隐含层神经元个数(即隐含层阀值个数),hiddennum*outputnum是隐含层到输出层权值个数,outputnum是输出层神经元个数(即输出层阀值个数);

阅读全文

与神经网络设置相关的资料

热点内容
诺基亚手机怎么共享网络 浏览:83
网络上哪里可以看西藏电视台 浏览:753
租房网络无线网怎么连接 浏览:577
五g路由器网络不稳定怎么回事 浏览:627
电脑解除网络访问限制 浏览:11
华为为什么移动网络突然不能用 浏览:4
电信网络电视是什么 浏览:282
网关改无线网络 浏览:811
wifi选取网络但是连接不上 浏览:2
网络安全实战app 浏览:111
属于网络谣言的传播途径包括哪些 浏览:915
移动网络机顶盒怎么绑定手机号 浏览:576
普通智能手机可以用5g网络吗 浏览:222
软件更新时需要开启无线网络 浏览:923
华为手机北斗导航需要网络么 浏览:715
搜索无线网络图标不见了 浏览:825
这么解除路由器网络限速 浏览:615
不用网络不用数据可以听歌的软件 浏览:343
贵阳品牌网络推广费用是多少 浏览:117
安卓网络防护软件哪个好 浏览:651

友情链接