1. matlab中神经网络如何设置神经元的个数我想要设置5个神经元!
net=newff([x,y],[a1,a2,...,ak],{f1,f2,...,fk})
x,y分别为列向量,存储各个样本书ude最小值和最大值。[a1,a2,...,ak]是行向量,输入神经网络各层的结点数,也就是你题目的问题。k是指神经元隐层层数。{f1,f2,...,fk}输入变量为单元式数组,对应每层神经元的传输函数类型。
如果还有什么问题再联系我吧~
2. 神经网络weight参数怎么初始化
不一定,也可设置为[-1,1]之间。事实上,必须要有权值为负数,不然只有激活神经元,没有抑制的也不行。至于为什么在[-1,1]之间就足够了,这是因为归一化和Sigmoid函数输出区间限制这两个原因。一般在编程时,设置一个矩阵为bounds=ones(S,1)*[-1,1]; %权值上下界。
在MATLAB中,可以直接使用net = init(net);来初始化。我们可以通过设定网络参数net.initFcn和net.layer{i}.initFcn这一技巧来初始化一个给定的网络。net.initFcn用来决定整个网络的初始化函数。前馈网络的缺省值为initlay,它允许每一层用单独的初始化函数。设定了net.initFcn ,那么参数net.layer{i}.initFcn 也要设定用来决定每一层的初始化函数。对前馈网络来说,有两种不同的初始化方式经常被用到:initwb和initnw。initwb函数根据每一层自己的初始化参数(net.inputWeights{i,j}.initFcn)初始化权重矩阵和偏置。前馈网络的初始化权重通常设为rands,它使权重在-1到1之间随机取值。这种方式经常用在转换函数是线性函数时。initnw通常用于转换函数是曲线函数。它根据Nguyen和Widrow[NgWi90]为层产生初始权重和偏置值,使得每层神经元的活动区域能大致平坦的分布在输入空间。
3. 神经网络算法中,参数的设置或者调整,有什么方法可以采用
若果对你有帮助,请点赞。
神经网络的结构(例如2输入3隐节点1输出)建好后,一般就要求神经网络里的权值和阈值。现在一般求解权值和阈值,都是采用梯度下降之类的搜索算法(梯度下降法、牛顿法、列文伯格-马跨特法、狗腿法等等),这些算法会先初始化一个解,在这个解的基础上,确定一个搜索方向和一个移动步长(各种法算确定方向和步长的方法不同,也就使各种算法适用于解决不同的问题),使初始解根据这个方向和步长移动后,能使目标函数的输出(在神经网络中就是预测误差)下降。 然后将它更新为新的解,再继续寻找下一步的移动方向的步长,这样不断的迭代下去,目标函数(神经网络中的预测误差)也不断下降,最终就能找到一个解,使得目标函数(预测误差)比较小。
而在寻解过程中,步长太大,就会搜索得不仔细,可能跨过了优秀的解,而步长太小,又会使寻解过程进行得太慢。因此,步长设置适当非常重要。
学习率对原步长(在梯度下降法中就是梯度的长度)作调整,如果学习率lr = 0.1,那么梯度下降法中每次调整的步长就是0.1*梯度,
而在matlab神经网络工具箱里的lr,代表的是初始学习率。因为matlab工具箱为了在寻解不同阶段更智能的选择合适的步长,使用的是可变学习率,它会根据上一次解的调整对目标函数带来的效果来对学习率作调整,再根据学习率决定步长。
机制如下:
if newE2/E2 > maxE_inc %若果误差上升大于阈值
lr = lr * lr_dec; %则降低学习率
else
if newE2 < E2 %若果误差减少
lr = lr * lr_inc;%则增加学习率
end
详细的可以看《神经网络之家》nnetinfo里的《[重要]写自己的BP神经网络(traingd)》一文,里面是matlab神经网络工具箱梯度下降法的简化代码
若果对你有帮助,请点赞。
祝学习愉快
4. 神经网络gradient怎么设置
梯度是计算得来的,不是“设置”的。
传统的神经网络通过前向、后向两步运算进行训练。其中最关键的就是BP算法,它是网络训练的根本方式。在运行BP的过程中,你需要先根据定义好的“代价函数”分别对每一层的参数(一般是W和b)求偏导(也就是你说的gradient),用该偏导数在每一次迭代中更新对应的W和b,直至算法收敛。
具体实现思路和细节可以参考:http://deeplearning.stanford.e/wiki/index.php/%E5%8F%8D%E5%90%91%E4%BC%A0%E5%AF%BC%E7%AE%97%E6%B3%95
5. BP神经网络中,如何设定神经元的初始连接权重以及阀值
初始连接权重关系到网络训练速度的快慢以及收敛速率,在基本的神经网络中,这个权重是随机设定的。在网络训练的过程中沿着误差减小的方向不断进行调整。针对这个权重的随机性不确定的缺点,有人提出了用遗传算法初始化BP的初始权重和阈值的想法,提出了遗传神经网络模型,并且有人预言下一代的神经网络将会是遗传神经网络。希望对你有所帮助。你可以查看这方面的文献
6. 神经网络BP模型
一、BP模型概述
误差逆传播(Error Back-Propagation)神经网络模型简称为BP(Back-Propagation)网络模型。
Pall Werbas博士于1974年在他的博士论文中提出了误差逆传播学习算法。完整提出并被广泛接受误差逆传播学习算法的是以Rumelhart和McCelland为首的科学家小组。他们在1986年出版“Parallel Distributed Processing,Explorations in the Microstructure of Cognition”(《并行分布信息处理》)一书中,对误差逆传播学习算法进行了详尽的分析与介绍,并对这一算法的潜在能力进行了深入探讨。
BP网络是一种具有3层或3层以上的阶层型神经网络。上、下层之间各神经元实现全连接,即下层的每一个神经元与上层的每一个神经元都实现权连接,而每一层各神经元之间无连接。网络按有教师示教的方式进行学习,当一对学习模式提供给网络后,神经元的激活值从输入层经各隐含层向输出层传播,在输出层的各神经元获得网络的输入响应。在这之后,按减小期望输出与实际输出的误差的方向,从输入层经各隐含层逐层修正各连接权,最后回到输入层,故得名“误差逆传播学习算法”。随着这种误差逆传播修正的不断进行,网络对输入模式响应的正确率也不断提高。
BP网络主要应用于以下几个方面:
1)函数逼近:用输入模式与相应的期望输出模式学习一个网络逼近一个函数;
2)模式识别:用一个特定的期望输出模式将它与输入模式联系起来;
3)分类:把输入模式以所定义的合适方式进行分类;
4)数据压缩:减少输出矢量的维数以便于传输或存储。
在人工神经网络的实际应用中,80%~90%的人工神经网络模型采用BP网络或它的变化形式,它也是前向网络的核心部分,体现了人工神经网络最精华的部分。
二、BP模型原理
下面以三层BP网络为例,说明学习和应用的原理。
1.数据定义
P对学习模式(xp,dp),p=1,2,…,P;
输入模式矩阵X[N][P]=(x1,x2,…,xP);
目标模式矩阵d[M][P]=(d1,d2,…,dP)。
三层BP网络结构
输入层神经元节点数S0=N,i=1,2,…,S0;
隐含层神经元节点数S1,j=1,2,…,S1;
神经元激活函数f1[S1];
权值矩阵W1[S1][S0];
偏差向量b1[S1]。
输出层神经元节点数S2=M,k=1,2,…,S2;
神经元激活函数f2[S2];
权值矩阵W2[S2][S1];
偏差向量b2[S2]。
学习参数
目标误差ϵ;
初始权更新值Δ0;
最大权更新值Δmax;
权更新值增大倍数η+;
权更新值减小倍数η-。
2.误差函数定义
对第p个输入模式的误差的计算公式为
中国矿产资源评价新技术与评价新模型
y2kp为BP网的计算输出。
3.BP网络学习公式推导
BP网络学习公式推导的指导思想是,对网络的权值W、偏差b修正,使误差函数沿负梯度方向下降,直到网络输出误差精度达到目标精度要求,学习结束。
各层输出计算公式
输入层
y0i=xi,i=1,2,…,S0;
隐含层
中国矿产资源评价新技术与评价新模型
y1j=f1(z1j),
j=1,2,…,S1;
输出层
中国矿产资源评价新技术与评价新模型
y2k=f2(z2k),
k=1,2,…,S2。
输出节点的误差公式
中国矿产资源评价新技术与评价新模型
对输出层节点的梯度公式推导
中国矿产资源评价新技术与评价新模型
E是多个y2m的函数,但只有一个y2k与wkj有关,各y2m间相互独立。
其中
中国矿产资源评价新技术与评价新模型
则
中国矿产资源评价新技术与评价新模型
设输出层节点误差为
δ2k=(dk-y2k)·f2′(z2k),
则
中国矿产资源评价新技术与评价新模型
同理可得
中国矿产资源评价新技术与评价新模型
对隐含层节点的梯度公式推导
中国矿产资源评价新技术与评价新模型
E是多个y2k的函数,针对某一个w1ji,对应一个y1j,它与所有的y2k有关。因此,上式只存在对k的求和,其中
中国矿产资源评价新技术与评价新模型
则
中国矿产资源评价新技术与评价新模型
设隐含层节点误差为
中国矿产资源评价新技术与评价新模型
则
中国矿产资源评价新技术与评价新模型
同理可得
中国矿产资源评价新技术与评价新模型
4.采用弹性BP算法(RPROP)计算权值W、偏差b的修正值ΔW,Δb
1993年德国 Martin Riedmiller和Heinrich Braun 在他们的论文“A Direct Adaptive Method for Faster Backpropagation Learning:The RPROP Algorithm”中,提出Resilient Backpropagation算法——弹性BP算法(RPROP)。这种方法试图消除梯度的大小对权步的有害影响,因此,只有梯度的符号被认为表示权更新的方向。
权改变的大小仅仅由权专门的“更新值”
中国矿产资源评价新技术与评价新模型
其中
权更新遵循规则:如果导数是正(增加误差),这个权由它的更新值减少。如果导数是负,更新值增加。
中国矿产资源评价新技术与评价新模型
RPROP算法是根据局部梯度信息实现权步的直接修改。对于每个权,我们引入它的
各自的更新值
于在误差函数E上的局部梯度信息,按照以下的学习规则更新
中国矿产资源评价新技术与评价新模型
其中0<η-<1<η+。
在每个时刻,如果目标函数的梯度改变它的符号,它表示最后的更新太大,更新值
为了减少自由地可调参数的数目,增大倍数因子η+和减小倍数因子η–被设置到固定值
η+=1.2,
η-=0.5,
这两个值在大量的实践中得到了很好的效果。
RPROP算法采用了两个参数:初始权更新值Δ0和最大权更新值Δmax
当学习开始时,所有的更新值被设置为初始值Δ0,因为它直接确定了前面权步的大小,它应该按照权自身的初值进行选择,例如,Δ0=0.1(默认设置)。
为了使权不至于变得太大,设置最大权更新值限制Δmax,默认上界设置为
Δmax=50.0。
在很多实验中,发现通过设置最大权更新值Δmax到相当小的值,例如
Δmax=1.0。
我们可能达到误差减小的平滑性能。
5.计算修正权值W、偏差b
第t次学习,权值W、偏差b的的修正公式
W(t)=W(t-1)+ΔW(t),
b(t)=b(t-1)+Δb(t),
其中,t为学习次数。
6.BP网络学习成功结束条件每次学习累积误差平方和
中国矿产资源评价新技术与评价新模型
每次学习平均误差
中国矿产资源评价新技术与评价新模型
当平均误差MSE<ε,BP网络学习成功结束。
7.BP网络应用预测
在应用BP网络时,提供网络输入给输入层,应用给定的BP网络及BP网络学习得到的权值W、偏差b,网络输入经过从输入层经各隐含层向输出层的“顺传播”过程,计算出BP网的预测输出。
8.神经元激活函数f
线性函数
f(x)=x,
f′(x)=1,
f(x)的输入范围(-∞,+∞),输出范围(-∞,+∞)。
一般用于输出层,可使网络输出任何值。
S型函数S(x)
中国矿产资源评价新技术与评价新模型
f(x)的输入范围(-∞,+∞),输出范围(0,1)。
f′(x)=f(x)[1-f(x)],
f′(x)的输入范围(-∞,+∞),输出范围(0,
一般用于隐含层,可使范围(-∞,+∞)的输入,变成(0,1)的网络输出,对较大的输入,放大系数较小;而对较小的输入,放大系数较大,所以可用来处理和逼近非线性的输入/输出关系。
在用于模式识别时,可用于输出层,产生逼近于0或1的二值输出。
双曲正切S型函数
中国矿产资源评价新技术与评价新模型
f(x)的输入范围(-∞,+∞),输出范围(-1,1)。
f′(x)=1-f(x)·f(x),
f′(x)的输入范围(-∞,+∞),输出范围(0,1]。
一般用于隐含层,可使范围(-∞,+∞)的输入,变成(-1,1)的网络输出,对较大的输入,放大系数较小;而对较小的输入,放大系数较大,所以可用来处理和逼近非线性的输入/输出关系。
阶梯函数
类型1
中国矿产资源评价新技术与评价新模型
f(x)的输入范围(-∞,+∞),输出范围{0,1}。
f′(x)=0。
类型2
中国矿产资源评价新技术与评价新模型
f(x)的输入范围(-∞,+∞),输出范围{-1,1}。
f′(x)=0。
斜坡函数
类型1
中国矿产资源评价新技术与评价新模型
f(x)的输入范围(-∞,+∞),输出范围[0,1]。
中国矿产资源评价新技术与评价新模型
f′(x)的输入范围(-∞,+∞),输出范围{0,1}。
类型2
中国矿产资源评价新技术与评价新模型
f(x)的输入范围(-∞,+∞),输出范围[-1,1]。
中国矿产资源评价新技术与评价新模型
f′(x)的输入范围(-∞,+∞),输出范围{0,1}。
三、总体算法
1.三层BP网络(含输入层,隐含层,输出层)权值W、偏差b初始化总体算法
(1)输入参数X[N][P],S0,S1,f1[S1],S2,f2[S2];
(2)计算输入模式X[N][P]各个变量的最大值,最小值矩阵 Xmax[N],Xmin[N];
(3)隐含层的权值W1,偏差b1初始化。
情形1:隐含层激活函数f( )都是双曲正切S型函数
1)计算输入模式X[N][P]的每个变量的范围向量Xrng[N];
2)计算输入模式X的每个变量的范围均值向量Xmid[N];
3)计算W,b的幅度因子Wmag;
4)产生[-1,1]之间均匀分布的S0×1维随机数矩阵Rand[S1];
5)产生均值为0,方差为1的正态分布的S1×S0维随机数矩阵Randnr[S1][S0],随机数范围大致在[-1,1];
6)计算W[S1][S0],b[S1];
7)计算隐含层的初始化权值W1[S1][S0];
8)计算隐含层的初始化偏差b1[S1];
9))输出W1[S1][S0],b1[S1]。
情形2:隐含层激活函数f( )都是S型函数
1)计算输入模式X[N][P]的每个变量的范围向量Xrng[N];
2)计算输入模式X的每个变量的范围均值向量Xmid[N];
3)计算W,b的幅度因子Wmag;
4)产生[-1,1]之间均匀分布的S0×1维随机数矩阵Rand[S1];
5)产生均值为0,方差为1的正态分布的S1×S0维随机数矩阵Randnr[S1][S0],随机数范围大致在[-1,1];
6)计算W[S1][S0],b[S1];
7)计算隐含层的初始化权值W1[S1][S0];
8)计算隐含层的初始化偏差b1[S1];
9)输出W1[S1][S0],b1[S1]。
情形3:隐含层激活函数f( )为其他函数的情形
1)计算输入模式X[N][P]的每个变量的范围向量Xrng[N];
2)计算输入模式X的每个变量的范围均值向量Xmid[N];
3)计算W,b的幅度因子Wmag;
4)产生[-1,1]之间均匀分布的S0×1维随机数矩阵Rand[S1];
5)产生均值为0,方差为1的正态分布的S1×S0维随机数矩阵Randnr[S1][S0],随机数范围大致在[-1,1];
6)计算W[S1][S0],b[S1];
7)计算隐含层的初始化权值W1[S1][S0];
8)计算隐含层的初始化偏差b1[S1];
9)输出W1[S1][S0],b1[S1]。
(4)输出层的权值W2,偏差b2初始化
1)产生[-1,1]之间均匀分布的S2×S1维随机数矩阵W2[S2][S1];
2)产生[-1,1]之间均匀分布的S2×1维随机数矩阵b2[S2];
3)输出W2[S2][S1],b2[S2]。
2.应用弹性BP算法(RPROP)学习三层BP网络(含输入层,隐含层,输出层)权值W、偏差b总体算法
函数:Train3BP_RPROP(S0,X,P,S1,W1,b1,f1,S2,W2,b2,f2,d,TP)
(1)输入参数
P对模式(xp,dp),p=1,2,…,P;
三层BP网络结构;
学习参数。
(2)学习初始化
1)
2)各层W,b的梯度值
(3)由输入模式X求第一次学习各层输出y0,y1,y2及第一次学习平均误差MSE
(4)进入学习循环
epoch=1
(5)判断每次学习误差是否达到目标误差要求
如果MSE<ϵ,
则,跳出epoch循环,
转到(12)。
(6)保存第epoch-1次学习产生的各层W,b的梯度值
(7)求第epoch次学习各层W,b的梯度值
1)求各层误差反向传播值δ;
2)求第p次各层W,b的梯度值
3)求p=1,2,…,P次模式产生的W,b的梯度值
(8)如果epoch=1,则将第epoch-1次学习的各层W,b的梯度值
(9)求各层W,b的更新
1)求权更新值Δij更新;
2)求W,b的权更新值
3)求第epoch次学习修正后的各层W,b。
(10)用修正后各层W、b,由X求第epoch次学习各层输出y0,y1,y2及第epoch次学习误差MSE
(11)epoch=epoch+1,
如果epoch≤MAX_EPOCH,转到(5);
否则,转到(12)。
(12)输出处理
1)如果MSE<ε,
则学习达到目标误差要求,输出W1,b1,W2,b2。
2)如果MSE≥ε,
则学习没有达到目标误差要求,再次学习。
(13)结束
3.三层BP网络(含输入层,隐含层,输出层)预测总体算法
首先应用Train3lBP_RPROP( )学习三层BP网络(含输入层,隐含层,输出层)权值W、偏差b,然后应用三层BP网络(含输入层,隐含层,输出层)预测。
函数:Simu3lBP( )。
1)输入参数:
P个需预测的输入数据向量xp,p=1,2,…,P;
三层BP网络结构;
学习得到的各层权值W、偏差b。
2)计算P个需预测的输入数据向量xp(p=1,2,…,P)的网络输出 y2[S2][P],输出预测结果y2[S2][P]。
四、总体算法流程图
BP网络总体算法流程图见附图2。
五、数据流图
BP网数据流图见附图1。
六、实例
实例一 全国铜矿化探异常数据BP 模型分类
1.全国铜矿化探异常数据准备
在全国铜矿化探数据上用稳健统计学方法选取铜异常下限值33.1,生成全国铜矿化探异常数据。
2.模型数据准备
根据全国铜矿化探异常数据,选取7类33个矿点的化探数据作为模型数据。这7类分别是岩浆岩型铜矿、斑岩型铜矿、矽卡岩型、海相火山型铜矿、陆相火山型铜矿、受变质型铜矿、海相沉积型铜矿,另添加了一类没有铜异常的模型(表8-1)。
3.测试数据准备
全国化探数据作为测试数据集。
4.BP网络结构
隐层数2,输入层到输出层向量维数分别为14,9、5、1。学习率设置为0.9,系统误差1e-5。没有动量项。
表8-1 模型数据表
续表
5.计算结果图
如图8-2、图8-3。
图8-2
图8-3 全国铜矿矿床类型BP模型分类示意图
实例二 全国金矿矿石量品位数据BP 模型分类
1.模型数据准备
根据全国金矿储量品位数据,选取4类34个矿床数据作为模型数据,这4类分别是绿岩型金矿、与中酸性浸入岩有关的热液型金矿、微细浸染型型金矿、火山热液型金矿(表8-2)。
2.测试数据准备
模型样本点和部分金矿点金属量、矿石量、品位数据作为测试数据集。
3.BP网络结构
输入层为三维,隐层1层,隐层为三维,输出层为四维,学习率设置为0.8,系统误差1e-4,迭代次数5000。
表8-2 模型数据
4.计算结果
结果见表8-3、8-4。
表8-3 训练学习结果
表8-4 预测结果(部分)
续表
7. 深度神经网络dnn怎么调节参数
深度神经网络(DNN)目前是许多现代AI应用的基础。
自从DNN在语音识别和图像识别任务中展现出突破性的成果,使用DNN的应用数量呈爆炸式增加。这些DNN方法被大量应用在无人驾驶汽车,癌症检测,游戏AI等方面。
在许多领域中,DNN目前的准确性已经超过人类。与早期的专家手动提取特征或制定规则不同,DNN的优越性能来自于在大量数据上使用统计学习方法,从原始数据中提取高级特征的能力,从而对输入空间进行有效的表示。
然而,DNN超高的准确性是以超高的计算复杂度为代价的。
通常意义下的计算引擎,尤其是GPU,是DNN的基础。因此,能够在不牺牲准确性和增加硬件成本的前提下,提高深度神经网络的能量效率和吞吐量的方法,对于DNN在AI系统中更广泛的应用是至关重要的。研究人员目前已经更多的将关注点放在针对DNN计算开发专用的加速方法。
鉴于篇幅,本文主要针对论文中的如下几部分详细介绍:
DNN的背景,历史和应用
DNN的组成部分,以及常见的DNN模型
简介如何使用硬件加速DNN运算
DNN的背景
人工智能与深度神经网络
深度神经网络,也被称为深度学习,是人工智能领域的重要分支,根据麦卡锡(人工智能之父)的定义,人工智能是创造像人一样的智能机械的科学工程。深度学习与人工智能的关系如图1所示:
图1:深度神经网络与人工智能的关系
人工智能领域内,一个大的子领域是机器学习,由Arthur Samuel在1959年定义为:让计算机拥有不需要明确编程即可学习的能力。
这意味着创建一个程序,这个程序可以被训练去学习如何去做一些智能的行为,然后这个程序就可以自己完成任务。而传统的人工启发式方法,需要对每个新问题重新设计程序。
高效的机器学习算法的优点是显而易见的。一个机器学习算法,只需通过训练,就可以解决某一领域中每一个新问题,而不是对每个新问题特定地进行编程。
在机器学习领域,有一个部分被称作brain-inspired computation。因为人类大脑是目前学习和解决问题最好的“机器”,很自然的,人们会从中寻找机器学习的方法。
尽管科学家们仍在探索大脑工作的细节,但是有一点被公认的是:神经元是大脑的主要计算单元。
人类大脑平均有860亿个神经元。神经元相互连接,通过树突接受其他神经元的信号,对这些信号进行计算之后,通过轴突将信号传递给下一个神经元。一个神经元的轴突分支出来并连接到许多其他神经元的树突上,轴突分支和树突之间的连接被称为突触。据估计,人类大脑平均有1014-1015个突触。
突触的一个关键特性是它可以缩放通过它的信号大小。这个比例因子可以被称为权重(weight),普遍认为,大脑学习的方式是通过改变突触的权重实现的。因此,不同的权重导致对输入产生不同的响应。注意,学习过程是学习刺激导致的权重调整,而大脑组织(可以被认为是程序)并不改变。
大脑的这个特征对机器学习算法有很好的启示。
神经网络与深度神经网络
神经元的计算是输入值的加权和这个概念启发了神经网络的研究。这些加权和对应于突触的缩放值以及神经元所接收的值的组合。此外,神经元并不仅仅是输入信号的加权和,如果是这样的话,级联的神经元的计算将是一种简单的线性代数运算。
相反的是,神经元组合输入的操作似乎是一种非线性函数,只有输入达到某个阈值的时候,神经元才会生成输出。因此,通过类比,我们可以知道神经网络在输入值的加权和的基础上应用了非线性函数。
图2(a)展示了计算神经网络的示意图,图的最左边是接受数值的“输入层”。这些值被传播到中间层神经元,通常也叫做网络的“隐藏层”。通过一个或更多隐藏层的加权和最终被传播到“输出层”,将神经网络的最终结果输出给用户。
图2:神经网络示意图
在神经网络领域,一个子领域被称为深度学习。最初的神经网络通常只有几层的网络。而深度网络通常有更多的层数,今天的网络一般在五层以上,甚至达到一千多层。
目前在视觉应用中使用深度神经网络的解释是:将图像所有像素输入到网络的第一层之后,该层的加权和可以被解释为表示图像不同的低阶特征。随着层数的加深,这些特征被组合,从而代表更高阶的图像特征。
例如,线可以被组合成形状,再进一步,可以被组合成一系列形状的集合。最后,再训练好这些信息之后,针对各个图像类别,网络给出由这些高阶特征组成各个对象的概率,即分类结果。
推理(Inference)与训练(Training)
既然DNN是机器学习算法中的一员,那么它的基本编程思想仍然是学习。DNN的学习即确定网络的权重值。通常,学习过程被称为训练网络(training)。一旦训练完成,程序可以使用由训练确定的权值进行计算,这个使用网络完成任务的操作被被称为推断(inference)。
接下来,如图3所示,我们用图像分类作为例子来展示如何训练一个深度神经网络。当我们使用一个DNN的时候,我们输入一幅图片,DNN输出一个得分向量,每一个分数对应一个物体分类;得到最高分数的分类意味着这幅图片最有可能属于这个分类。
训练DNN的首要目标就是确定如何设置权重,使得正确分类的得分最高(图片所对应的正确分类在训练数据集中标出),而使其他不正确分类的得分尽可能低。理想的正确分类得分与目前的权重所计算出的得分之间的差距被称为损失函数(loss)。
因此训练DNN的目标即找到一组权重,使得对一个较大规模数据集的loss最小。
图3:图像分类
权重(weight)的优化过程类似爬山的过程,这种方法被称为梯度下降(gradient decent)。损失函数对每个权值的梯度,即损失函数对每个权值求偏导数,被用来更新权值(例:第t到t+1次迭代:,其中α被称为学习率(Learning rate)。梯度值表明权值应该如何变化以减小loss。这个减小loss值的过程是重复迭代进行的。
梯度可以通过反向传播(Back-Propagation)过程很高效地进行计算,loss的影响反向通过网络来计算loss是如何被每个权重影响的。
训练权重有很多种方法。前面提到的是最常见的方法,被称为监督学习,其中所有的训练样本是有标签的。
无监督学习是另一种方法,其中所有训练样本都没有标签,最终目标是在数据中查找结构或聚类。半监督学习结合了两种方法,只有训练数据的一小部分被标记(例如,使用未标记的数据来定义集群边界,并使用少量的标记数据来标记集群)。
最后,强化学习可以用来训练一个DNN作为一个策略网络,对策略网络给出一个输入,它可以做出一个决定,使得下一步的行动得到相应的奖励;训练这个网络的过程是使网络能够做出使奖励(即奖励函数)最大化的决策,并且训练过程必须平衡尝试新行为(Exploration)和使用已知能给予高回报的行为(Exploitation)两种方法。
用于确定权重的另一种常用方法是fine-tune,使用预先训练好的模型的权重用作初始化,然后针对新的数据集(例如,传递学习)或新的约束(例如,降低的精度)调整权重。与从随机初始化开始相比,能够更快的训练,并且有时会有更好的准确性。
8. 神经网络输入的每一组离散点的离散点个数都不一致,神经网络怎么设置
以可能达到的最多离散点的个数为准,其他样本中长度不足的补零
9. 神经网络中权值初始化的方法
神经网络中权值初始化的方法
权值初始化的方法主要有:常量初始化(constant)、高斯分布初始化(gaussian)、positive_unitball初始化、均匀分布初始化(uniform)、xavier初始化、msra初始化、双线性初始化(bilinear)
常量初始化(constant)
把权值或者偏置初始化为一个常数,具体是什么常数,可以自己定义
高斯分布初始化(gaussian)
需要给定高斯函数的均值与标准差
positive_unitball初始化
让每一个神经元的输入的权值和为 1,例如:一个神经元有100个输入,让这100个输入的权值和为1. 首先给这100个权值赋值为在(0,1)之间的均匀分布,然后,每一个权值再除以它们的和就可以啦。这么做,可以有助于防止权值初始化过大,从而防止激活函数(sigmoid函数)进入饱和区。所以,它应该比较适合simgmoid形的激活函数
均匀分布初始化(uniform)
将权值与偏置进行均匀分布的初始化,用min 与 max 来控制它们的的上下限,默认为(0,1)
xavier初始化
对于权值的分布:均值为0,方差为(1 / 输入的个数) 的 均匀分布。如果我们更注重前向传播的话,我们可以选择 fan_in,即正向传播的输入个数;如果更注重后向传播的话,我们选择 fan_out, 因为在反向传播的时候,fan_out就是神经元的输入个数;如果两者都考虑的话,就选 average = (fan_in + fan_out) /2。对于ReLU激活函数来说,XavierFiller初始化也是很适合。关于该初始化方法,具体可以参考文章1、文章2,该方法假定激活函数是线性的。
msra初始化
对于权值的分布:基于均值为0,方差为( 2/输入的个数)的高斯分布;它特别适合 ReLU激活函数,该方法主要是基于Relu函数提出的,推导过程类似于xavier。
双线性初始化(bilinear)
常用在反卷积神经网络里的权值初始化
10. 神经网络的隐层数,节点数设置。
我自己总结的:
1、神经网络算法隐含层的选取
1.1 构造法
首先运用三种确定隐含层层数的方法得到三个隐含层层数,找到最小值和最大值,然后从最小值开始逐个验证模型预测误差,直到达到最大值。最后选取模型误差最小的那个隐含层层数。该方法适用于双隐含层网络。
1.2 删除法
单隐含层网络非线性映射能力较弱,相同问题,为达到预定映射关系,隐层节点要多一些,以增加网络的可调参数,故适合运用删除法。
1.3黄金分割法
算法的主要思想:首先在[a,b]内寻找理想的隐含层节点数,这样就充分保证了网络的逼近能力和泛化能力。为满足高精度逼近的要求,再按照黄金分割原理拓展搜索区间,即得到区间[b,c](其中b=0.619*(c-a)+a),在区间[b,c]中搜索最优,则得到逼近能力更强的隐含层节点数,在实际应用根据要求,从中选取其一即可。