1. 神经网络的超参数
初始参数无所谓,激活函数就用logsitc或者sigmoid都可以,模拟乘法应该不难吧
2. 神经网络参数如何确定
神经网络各个网络参数设定原则:
①、网络节点 网络输入层神经元节点数就是系统的特征因子(自变量)个数,输出层神经元节点数就是系统目标个数。隐层节点选按经验选取,一般设为输入层节点数的75%。如果输入层有7个节点,输出层1个节点,那么隐含层可暂设为5个节点,即构成一个7-5-1 BP神经网络模型。在系统训练时,实际还要对不同的隐层节点数4、5、6个分别进行比较,最后确定出最合理的网络结构。
②、初始权值的确定 初始权值是不应完全相等的一组值。已经证明,即便确定 存在一组互不相等的使系统误差更小的权值,如果所设Wji的的初始值彼此相等,它们将在学习过程中始终保持相等。故而,在程序中,我们设计了一个随机发生器程序,产生一组一0.5~+0.5的随机数,作为网络的初始权值。
③、最小训练速率 在经典的BP算法中,训练速率是由经验确定,训练速率越大,权重变化越大,收敛越快;但训练速率过大,会引起系统的振荡,因此,训练速率在不导致振荡前提下,越大越好。因此,在DPS中,训练速率会自动调整,并尽可能取大一些的值,但用户可规定一个最小训练速率。该值一般取0.9。
④、动态参数 动态系数的选择也是经验性的,一般取0.6 ~0.8。
⑤、允许误差 一般取0.001~0.00001,当2次迭代结果的误差小于该值时,系统结束迭代计算,给出结果。
⑥、迭代次数 一般取1000次。由于神经网络计算并不能保证在各种参数配置下迭代结果收敛,当迭代结果不收敛时,允许最大的迭代次数。
⑦、Sigmoid参数 该参数调整神经元激励函数形式,一般取0.9~1.0之间。
⑧、数据转换。在DPS系统中,允许对输入层各个节点的数据进行转换,提供转换的方法有取对数、平方根转换和数据标准化转换。
(2)论文神经网络超参数设置扩展阅读:
神经网络的研究内容相当广泛,反映了多学科交叉技术领域的特点。主要的研究工作集中在以下几个方面:
1.生物原型
从生理学、心理学、解剖学、脑科学、病理学等方面研究神经细胞、神经网络、神经系统的生物原型结构及其功能机理。
2.建立模型
根据生物原型的研究,建立神经元、神经网络的理论模型。其中包括概念模型、知识模型、物理化学模型、数学模型等。
3.算法
在理论模型研究的基础上构作具体的神经网络模型,以实现计算机模拟或准备制作硬件,包括网络学习算法的研究。这方面的工作也称为技术模型研究。
神经网络用到的算法就是向量乘法,并且广泛采用符号函数及其各种逼近。并行、容错、可以硬件实现以及自我学习特性,是神经网络的几个基本优点,也是神经网络计算方法与传统方法的区别所在。
3. matlab 神经网络参数设置问题
net=newff(pr,[25 1],{'logsig' ,'purelin'},'traingdx','learngdm');
'logsig' 与'purelin'中间忘记加逗号了,你加上试试行不~
4. 深度学习中的神经网络参数怎么调整
根据前一次运行的情况做调整,例如出现梯度爆炸则要调低学习速率,出现过拟合则要调高正则化参数的系数。
5. 机器学习的超参数是什么
机器学习的超参数是什么
自从接触了机器学习后,在很多地方如书籍和文献中经常会看到有一类参数叫超参数(hyperparameter),其中提超参数最多的地方是在支持向量机(SVM)和深度学习(Deep Learning)中,比如支持向量机中的松弛因子:
上式中的C就是松弛因子,这个参数在支持向量机中不像参数W那样,可以通过优化学习得到。还有深度学习中的超参数,如学习率(Learning Rate),在训练深度网络时,这个学习率参数需要提前指定,比如最近设为0.09等。
那么问题来了,到底什么是超参数(hyperparameter)?在很多教材和文献中都是默认你理解超参数的定义的。如果不知道超参数的定义的话,有些文献中的话可能不好理解,比如在机器学习中,尤其是在支持向量机中,为什么有些文献要把数据集分割成训练集,验证集和测试集,而不是直接分割为训练集和测试集?只有理解了何谓超参数,才会明白某些文献中这样分割的道理。
什么是超参数呢?先来看一下超参数的学院风定义:在机器学习的上下文中,超参数是在开始学习过程之前设置值的参数,而不是通过训练得到的参数数据。通常情况下,需要对超参数进行优化,给学习机选择一组最优超参数,以提高学习的性能和效果。
超参数的通俗定义:超参数也是一种参数,它具有参数的特性,比如未知,也就是它不是一个已知常量。一种手工可配置的设置,需要为它根据已有或现有的经验指定“正确”的值,也就是人为为它设定一个值,它不是通过系统学习得到的。
下面主要看看超参数在机器学习中的定义及示例:
在机器学习的上下文中,超参数是在开始学习过程之前设置值的参数。 相反,其他参数的值通过训练得出。
超参数:
1. 定义关于模型的更高层次的概念,如复杂性或学习能力。
2. 不能直接从标准模型培训过程中的数据中学习,需要预先定义。
3. 可以通过设置不同的值,训练不同的模型和选择更好的测试值来决定
超参数的一些示例:
1. 树的数量或树的深度
2. 矩阵分解中潜在因素的数量
3. 学习率(多种模式)
4. 深层神经网络隐藏层数
5. k均值聚类中的簇数
6. 神经网络算法中,参数的设置或者调整,有什么方法可以采用
若果对你有帮助,请点赞。
神经网络的结构(例如2输入3隐节点1输出)建好后,一般就要求神经网络里的权值和阈值。现在一般求解权值和阈值,都是采用梯度下降之类的搜索算法(梯度下降法、牛顿法、列文伯格-马跨特法、狗腿法等等),这些算法会先初始化一个解,在这个解的基础上,确定一个搜索方向和一个移动步长(各种法算确定方向和步长的方法不同,也就使各种算法适用于解决不同的问题),使初始解根据这个方向和步长移动后,能使目标函数的输出(在神经网络中就是预测误差)下降。 然后将它更新为新的解,再继续寻找下一步的移动方向的步长,这样不断的迭代下去,目标函数(神经网络中的预测误差)也不断下降,最终就能找到一个解,使得目标函数(预测误差)比较小。
而在寻解过程中,步长太大,就会搜索得不仔细,可能跨过了优秀的解,而步长太小,又会使寻解过程进行得太慢。因此,步长设置适当非常重要。
学习率对原步长(在梯度下降法中就是梯度的长度)作调整,如果学习率lr = 0.1,那么梯度下降法中每次调整的步长就是0.1*梯度,
而在matlab神经网络工具箱里的lr,代表的是初始学习率。因为matlab工具箱为了在寻解不同阶段更智能的选择合适的步长,使用的是可变学习率,它会根据上一次解的调整对目标函数带来的效果来对学习率作调整,再根据学习率决定步长。
机制如下:
if newE2/E2 > maxE_inc %若果误差上升大于阈值
lr = lr * lr_dec; %则降低学习率
else
if newE2 < E2 %若果误差减少
lr = lr * lr_inc;%则增加学习率
end
详细的可以看《神经网络之家》nnetinfo里的《[重要]写自己的BP神经网络(traingd)》一文,里面是matlab神经网络工具箱梯度下降法的简化代码
若果对你有帮助,请点赞。
祝学习愉快
7. 怎么选取训练神经网络时的Batch size
选取训练神经网络时先选好batch size,再调其他的超参数。并且实践上来说,就两个原则——batch size别太小,也别太大,其他都行。
因为合适的batch size范围和训练数据规模、神经网络层数、单元数都没有显着的关系。合适的batch size范围主要和收敛速度、随机梯度噪音有关。
为什么batch size别太小。别太小的限制在于,batch size太小,会来不及收敛。
所以batch size下限主要受收敛的影响。所以在常见的setting(~100 epochs),batch size一般不会低于16。如果你要选更小的batch size,你需要给自己找到很好的理由。
为什么batch size别太大:
batch size别太大的限制在于两个点。
1、batch size太大,memory容易不够用。这个很显然,就不多说了。
2、batch size太大,深度学习的优化training loss降不下去和泛化generalization gap都会出问题。
随机梯度噪音的magnitude在深度学习的continuous-time dynamics里是正比于learning rate/batch size。batch size太大,噪音就太小了。
而大家已经知道,随机梯度噪音对于逃离saddle points[2]和sharp minima [3]都必不可少的作用。前者可以解释为什么优化出问题,后者则可以解释为什么泛化出问题。
8. 基于遗传算法的神经网络都有哪些初始参数要设置,怎么设置
神经层数,每层的神经元个数,神经元的类型、学习方式。
下面是一个用C#实现封装的库,有详细的解释和调用方法。
http://franck.fleurey.free.fr/NeuralNetwork/
9. 深度神经网络dnn怎么调节参数
深度神经网络(DNN)目前是许多现代AI应用的基础。
自从DNN在语音识别和图像识别任务中展现出突破性的成果,使用DNN的应用数量呈爆炸式增加。这些DNN方法被大量应用在无人驾驶汽车,癌症检测,游戏AI等方面。
在许多领域中,DNN目前的准确性已经超过人类。与早期的专家手动提取特征或制定规则不同,DNN的优越性能来自于在大量数据上使用统计学习方法,从原始数据中提取高级特征的能力,从而对输入空间进行有效的表示。
然而,DNN超高的准确性是以超高的计算复杂度为代价的。
通常意义下的计算引擎,尤其是GPU,是DNN的基础。因此,能够在不牺牲准确性和增加硬件成本的前提下,提高深度神经网络的能量效率和吞吐量的方法,对于DNN在AI系统中更广泛的应用是至关重要的。研究人员目前已经更多的将关注点放在针对DNN计算开发专用的加速方法。
鉴于篇幅,本文主要针对论文中的如下几部分详细介绍:
DNN的背景,历史和应用
DNN的组成部分,以及常见的DNN模型
简介如何使用硬件加速DNN运算
DNN的背景
人工智能与深度神经网络
深度神经网络,也被称为深度学习,是人工智能领域的重要分支,根据麦卡锡(人工智能之父)的定义,人工智能是创造像人一样的智能机械的科学工程。深度学习与人工智能的关系如图1所示:
图1:深度神经网络与人工智能的关系
人工智能领域内,一个大的子领域是机器学习,由Arthur Samuel在1959年定义为:让计算机拥有不需要明确编程即可学习的能力。
这意味着创建一个程序,这个程序可以被训练去学习如何去做一些智能的行为,然后这个程序就可以自己完成任务。而传统的人工启发式方法,需要对每个新问题重新设计程序。
高效的机器学习算法的优点是显而易见的。一个机器学习算法,只需通过训练,就可以解决某一领域中每一个新问题,而不是对每个新问题特定地进行编程。
在机器学习领域,有一个部分被称作brain-inspired computation。因为人类大脑是目前学习和解决问题最好的“机器”,很自然的,人们会从中寻找机器学习的方法。
尽管科学家们仍在探索大脑工作的细节,但是有一点被公认的是:神经元是大脑的主要计算单元。
人类大脑平均有860亿个神经元。神经元相互连接,通过树突接受其他神经元的信号,对这些信号进行计算之后,通过轴突将信号传递给下一个神经元。一个神经元的轴突分支出来并连接到许多其他神经元的树突上,轴突分支和树突之间的连接被称为突触。据估计,人类大脑平均有1014-1015个突触。
突触的一个关键特性是它可以缩放通过它的信号大小。这个比例因子可以被称为权重(weight),普遍认为,大脑学习的方式是通过改变突触的权重实现的。因此,不同的权重导致对输入产生不同的响应。注意,学习过程是学习刺激导致的权重调整,而大脑组织(可以被认为是程序)并不改变。
大脑的这个特征对机器学习算法有很好的启示。
神经网络与深度神经网络
神经元的计算是输入值的加权和这个概念启发了神经网络的研究。这些加权和对应于突触的缩放值以及神经元所接收的值的组合。此外,神经元并不仅仅是输入信号的加权和,如果是这样的话,级联的神经元的计算将是一种简单的线性代数运算。
相反的是,神经元组合输入的操作似乎是一种非线性函数,只有输入达到某个阈值的时候,神经元才会生成输出。因此,通过类比,我们可以知道神经网络在输入值的加权和的基础上应用了非线性函数。
图2(a)展示了计算神经网络的示意图,图的最左边是接受数值的“输入层”。这些值被传播到中间层神经元,通常也叫做网络的“隐藏层”。通过一个或更多隐藏层的加权和最终被传播到“输出层”,将神经网络的最终结果输出给用户。
图2:神经网络示意图
在神经网络领域,一个子领域被称为深度学习。最初的神经网络通常只有几层的网络。而深度网络通常有更多的层数,今天的网络一般在五层以上,甚至达到一千多层。
目前在视觉应用中使用深度神经网络的解释是:将图像所有像素输入到网络的第一层之后,该层的加权和可以被解释为表示图像不同的低阶特征。随着层数的加深,这些特征被组合,从而代表更高阶的图像特征。
例如,线可以被组合成形状,再进一步,可以被组合成一系列形状的集合。最后,再训练好这些信息之后,针对各个图像类别,网络给出由这些高阶特征组成各个对象的概率,即分类结果。
推理(Inference)与训练(Training)
既然DNN是机器学习算法中的一员,那么它的基本编程思想仍然是学习。DNN的学习即确定网络的权重值。通常,学习过程被称为训练网络(training)。一旦训练完成,程序可以使用由训练确定的权值进行计算,这个使用网络完成任务的操作被被称为推断(inference)。
接下来,如图3所示,我们用图像分类作为例子来展示如何训练一个深度神经网络。当我们使用一个DNN的时候,我们输入一幅图片,DNN输出一个得分向量,每一个分数对应一个物体分类;得到最高分数的分类意味着这幅图片最有可能属于这个分类。
训练DNN的首要目标就是确定如何设置权重,使得正确分类的得分最高(图片所对应的正确分类在训练数据集中标出),而使其他不正确分类的得分尽可能低。理想的正确分类得分与目前的权重所计算出的得分之间的差距被称为损失函数(loss)。
因此训练DNN的目标即找到一组权重,使得对一个较大规模数据集的loss最小。
图3:图像分类
权重(weight)的优化过程类似爬山的过程,这种方法被称为梯度下降(gradient decent)。损失函数对每个权值的梯度,即损失函数对每个权值求偏导数,被用来更新权值(例:第t到t+1次迭代:,其中α被称为学习率(Learning rate)。梯度值表明权值应该如何变化以减小loss。这个减小loss值的过程是重复迭代进行的。
梯度可以通过反向传播(Back-Propagation)过程很高效地进行计算,loss的影响反向通过网络来计算loss是如何被每个权重影响的。
训练权重有很多种方法。前面提到的是最常见的方法,被称为监督学习,其中所有的训练样本是有标签的。
无监督学习是另一种方法,其中所有训练样本都没有标签,最终目标是在数据中查找结构或聚类。半监督学习结合了两种方法,只有训练数据的一小部分被标记(例如,使用未标记的数据来定义集群边界,并使用少量的标记数据来标记集群)。
最后,强化学习可以用来训练一个DNN作为一个策略网络,对策略网络给出一个输入,它可以做出一个决定,使得下一步的行动得到相应的奖励;训练这个网络的过程是使网络能够做出使奖励(即奖励函数)最大化的决策,并且训练过程必须平衡尝试新行为(Exploration)和使用已知能给予高回报的行为(Exploitation)两种方法。
用于确定权重的另一种常用方法是fine-tune,使用预先训练好的模型的权重用作初始化,然后针对新的数据集(例如,传递学习)或新的约束(例如,降低的精度)调整权重。与从随机初始化开始相比,能够更快的训练,并且有时会有更好的准确性。