1. 如何训练一个简单的分类卷积神经网络
卷积神经网络有以下几种应用可供研究:
1、基于卷积网络的形状识别
物体的形状是人的视觉系统分析和识别物体的基础,几何形状是物体的本质特征的表现,并具有平移、缩放和旋转不变等特点,所以在模式识别领域,对于形状的分析和识别具有十分重要的意义,而二维图像作为三维图像的特例以及组成部分,因此二维图像的识别是三维图像识别的基础。
2、基于卷积网络的人脸检测
卷积神经网络与传统的人脸检测方法不同,它是通过直接作用于输入样本,用样本来训练网络并最终实现检测任务的。它是非参数型的人脸检测方法,可以省去传统方法中建模、参数估计以及参数检验、重建模型等的一系列复杂过程。本文针对图像中任意大小、位置、姿势、方向、肤色、面部表情和光照条件的人脸。
3、文字识别系统
在经典的模式识别中,一般是事先提取特征。提取诸多特征后,要对这些特征进行相关性分析,找到最能代表字符的特征,去掉对分类无关和自相关的特征。然而,这些特征的提取太过依赖人的经验和主观意识,提取到的特征的不同对分类性能影响很大,甚至提取的特征的顺序也会影响最后的分类性能。同时,图像预处理的好坏也会影响到提取的特征。
2. 怎样用python构建一个卷积神经网络
用keras框架较为方便
首先安装anaconda,然后通过pip安装keras
3. 如何使用TensorFlow实现卷积神经网络
调整cnn网络结构需要增加或者减少layer的层数,并且更改layer的类型,比如在现有的conv层和pooling层后面继续增加conv层和pooling层,目的是为了提取更高层次的特征。当然你也可以增加全连接层数目(那么做训练会变慢--、),修改激活函数和填充器类型。建议你还是使用caffe中自带的cifar10_quick和caffenet进行训练,然后针对你的数据修改相应的网络参数和solver参数。
4. 如何合理的修改卷积网络结构num
layer {
name: "conv3"
type: "Convolution"
bottom: "pool2"
top: "conv3"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 384
pad: 1
kernel_size: 3
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "relu3"
type: "ReLU"
bottom: "conv3"
top: "conv3"
}
layer {
name: "conv4"
type: "Convolution"
bottom: "conv3"
top: "conv4"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 384
pad: 1
kernel_size: 3
group: 2
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0.1
}
}
}
layer {
name: "relu4"
type: "ReLU"
bottom: "conv4"
top: "conv4"
}
layer {
name: "conv5"
type: "Convolution"
bottom: "conv4"
top: "conv5"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
group: 2
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0.1
}
}
}
layer {
name: "relu5"
type: "ReLU"
bottom: "conv5"
top: "conv5"
}
layer {
name: "pool5"
type: "Pooling"
bottom: "conv5"
top: "pool5"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
5. 如何用tensorflow搭建卷积神经网络
在MNIST数据集上,搭建一个简单神经网络结构,一个包含ReLU单元的非线性化处理的两层神经网络。在训练神经网络的时候,使用带指数衰减的学习率设置、使用正则化来避免过拟合、使用滑动平均模型来使得最终的模型更加健壮。
程序将计算神经网络前向传播的部分单独定义一个函数inference,训练部分定义一个train函数,再定义一个主函数main。
二、分析与改进设计
1. 程序分析改进
第一,计算前向传播的函数inference中需要将所有的变量以参数的形式传入函数,当神经网络结构变得更加复杂、参数更多的时候,程序的可读性将变得非常差。
第二,在程序退出时,训练好的模型就无法再利用,且大型神经网络的训练时间都比较长,在训练过程中需要每隔一段时间保存一次模型训练的中间结果,这样如果在训练过程中程序死机,死机前的最新的模型参数仍能保留,杜绝了时间和资源的浪费。
第三,将训练和测试分成两个独立的程序,将训练和测试都会用到的前向传播的过程抽象成单独的库函数。这样就保证了在训练和预测两个过程中所调用的前向传播计算程序是一致的。
2. 改进后程序设计
mnist_inference.py
该文件中定义了神经网络的前向传播过程,其中的多次用到的weights定义过程又单独定义成函数。
通过tf.get_variable函数来获取变量,在神经网络训练时创建这些变量,在测试时会通过保存的模型加载这些变量的取值,而且可以在变量加载时将滑动平均值重命名。所以可以直接通过同样的名字在训练时使用变量自身,在测试时使用变量的滑动平均值。
mnist_train.py
该程序给出了神经网络的完整训练过程。
mnist_eval.py
在滑动平均模型上做测试。
通过tf.train.get_checkpoint_state(mnist_train.MODEL_SAVE_PATH)获取最新模型的文件名,实际是获取checkpoint文件的所有内容。
6. 卷积神经网络是如何反向调整参数的
参数调整流程:
计算loss--loss是根据网络输入值和真实值求解获得,与网络参数有关
根据loss使用梯度下降法进行反向传播--梯度下降的BP算法,参考微积分链式求导法则.
结束..
可以追问的~~
7. 如何在卷积神经网络中,当识别率低的时候设置大的学习率,识别率高的时候设置小的学习率。
把学习率作为placeholder试试
8. 卷积神经网络中的learn rate是怎么设置的
学习率的作用是不断调整权值阈值。对于traingdm等函数建立的BP网络,学习速率一般取0.01-0.1之间。