导航:首页 > 网络安全 > 如何看懂网络通信

如何看懂网络通信

发布时间:2024-10-16 19:25:16

A. 看懂黑科技,3分钟让你读懂ZigBee无线通讯技术

全球通信产业技术的发展呈现三大趋势:无线化、宽带化和IP化。在众多的宽带技术中,无线化尤其是移动通信技术成为近年来通信技术市场的最大亮点,是构成未来通信技术的重要组成部分。

Zigbee是基于IEEE802.15.4标准的低功耗个域网协议。根据这个协议规定的技术是一种短距离、低功耗的无线通信技术。这一名称来源于蜜蜂的八字舞,由于蜜蜂(bee)是靠飞翔和“嗡嗡”(zig)地抖动翅膀的“舞蹈”来与同伴传递花粉所在方位信息,也就是说蜜蜂依靠这样的方式构成了群体中的通信网络。其特点是近距离、低复杂度、自组织、低功耗、高数据速率。主要适合用于自动控制和远程控制领域,可以嵌入各种设备。简而言之,ZigBee就是一种便宜的,低功耗的近距离无线组网通讯技术。

ZigBee的技术原理

ZigBee是一个由可多到65000个无线数传模块组成的一个无线数传网络平台,十分类似现有的移动通信的CDMA网或GSM网,每一个ZigBee网络数传模块类似移动网络的一个基站,在整个网络范围内,它们之间可以进行相互通信;每个网络节点间的距离可以从标准的75米,到扩展后的几百米,甚至几公里;另外整个ZigBee网络还可以与现有的其它的各种网络连接。例如,你可以通过互联网在北京监控云南某地的一个ZigBee控制网络。

ZigBee网络主要是为自动化控制数据传输而建立,而移动通信网主要是为语音通信而建立;每个移动基站价值一般都在百万元人民币以上,而每个ZigBee"基站"却不到1000元人民币;每个ZigBee 网络节点不仅本身可以与监控对对象,例如传感器连接直接进行数据采集和监控,它还可以自动中转别的网络节点传过来的数据资料;除此之外,每一个ZigBee网络节点(FFD)还可在自己信号覆盖的范围内,和多个不承担网络信息中转任务的孤立的子节点(RFD)无线连接。

每个ZigBee网络节点(FFD和RFD)可以可支持多到31个的传感器和受控设备,每一个传感器和受控设备终可以有8种不同的接口方式。可以采集和传输数字量和模拟量。

ZigBee技术的特点

ZigBee技术是一种近距离、低复杂度、低功耗、低速率、低成本的双向无线通讯技术。主要用于距离短、功耗低且传输速率不高的各种电子设备之间进行数据传输以及典型的有周期性数据、间歇性数据和低反应时间数据传输的应用。

自从马可尼发明无线电以来,无线通信技术一直向着不断提高数据速率和传输距离的方向发展。例如:广域网范围内的第三代移动通信网络(3G)目的在于提供多媒体无线服务,局域网范围内的标准从IEEE802.11的1Mbit/s到IEEE802.11g的54Mbit/s的数据速率。而ZigBee技术则致力于提供一种廉价的固定、便携或者移动设备使用的极低复杂度、成本和功耗的低速率无线通信技术。

这种无线通信技术具有如下特点:

1、功耗低

工作模式情况下,ZigBee技术传输速率低,传输数据量很小,因此信号的收发时间很短,其次在非工作模式时,ZigBee节点处于休眠模式。设备搜索时延一般为30ms,休眠激活时延为15ms,活动设备信道接入时延为15ms。由于工作时间较短、收发信息功耗较低且采用了休眠模式,使得ZigBee节点非常省电,ZigBee节点的电池工作时间可以长达6个月到2年左右。同时,由于电池时间取决于很多因素,例如:电池种类、容量和应用场合,ZigBee技术在协议上对电池使用也作了优化。对于典型应用,碱性电池可以使用数年,对于某些工作时间和总时间(工作时间+休眠时间)之比小于1%的情况,电池的寿命甚至可以超过10年。

2、数据传输可靠

ZigBee的媒体接入控制层(MAC层)采用talk-when-ready的碰撞避免机制。在这种完全确认的数据传输机制下,当有数据传送需求时则立刻传送,发送的每个数据包都必须等待接收方的确认信息,并进行确认信息回复,若没有得到确认信息的回复就表示发生了碰撞,将再传一次,采用这种方法可以提高系统信息传输的可靠性。同时为需要固定带宽的通信业务预留了专用时隙,避免了发送数据时的竞争和冲突。同时ZigBee针对时延敏感的应用做了优化,通信时延和休眠状态激活的时延都非常短。

3、网络容量大

ZigBee低速率、低功耗和短距离传输的特点使它非常适宜支持简单器件。ZigBee定义了两种器件:全功能器件(FFD)和简化功能器件(RFD)。对全功能器件,要求它支持所有的49个基本参数。而对简化功能器件,在最小配置时只要求它支持38个基本参数。一个全功能器件可以与简化功能器件和其他全功能器件通话,可以按3种方式工作,分别为:个域网协调器、协调器或器件。而简化功能器件只能与全功能器件通话,仅用于非常简单的应用。一个ZigBee的网络最多包括有255个ZigBee网路节点,其中一个是主控(Master)设备,其余则是从属(Slave)设备。若是通过网络协调器(Network Coordinator),整个网络最多可以支持超过64000个ZigBee网路节点,再加上各个Network Coordinator可互相连接,整个ZigBee网络节点的数目将十分可观。

4、兼容性

ZigBee技术与现有的控制网络标准无缝集成。通过网络协调器(Coordinator)自动建立网络,采用载波侦听/冲突检测(CSMA-CA)方式进行信道接入。为了可靠传递,还提供全握手协议。

5、安全性

Zigbee提供了数据完整性检查和鉴权功能,在数据传输中提供了三级安全性。第一级实际是无安全方式,对于某种应用,如果安全并不重要或者上层已经提供足够的安全保护,器件就可以选择这种方式来转移数据。对于第二级安全级别,器件可以使用接入控制清单(ACL)来防止非法器件获取数据,在这一级不采取加密措施。第三级安全级别在数据转移中采用属于高级加密标准(AES)的对称密码。AES可以用来保护数据净荷和防止攻击者冒充合法器件,各个应用可以灵活确定其安全属性。

6、实现成本低

模块的初始成本估计在6美元左右,很快就能降到1.5-2.5美元,且Zigbee协议免专利费用。目前低速低功率的UWB芯片组的价格至少为20美元。而ZigBee的价格目标仅为几美分。低成本对于ZigBee也是一个关键的因素。

7、时延短

通信时延和从休眠状态激活的时延都非常短,典型的搜索设备时延30ms,休眠激活的时延是15ms, 活动设备信道接入的时延为15ms。因此ZigBee技术适用于对时延要求苛刻的无线控制(如工业控制场合等)应用。

ZigBee与WiFi的区别

相同点:

1、二者都是短距离的无线通信技术;

2、都是使用2.4GHz频段

3、都是采用DSSS技术;

不同点:

1、传输速度不同。 ZigBee的传输速度不高(<250Kbps),但是功耗很低,使用电池供电一般能用3个月以上; WiFi,就是常说的无线局域网,速率大(11Mbps),功耗也大,一般外接电源;

2、应用场合不同。 ZigBee用于低速率、低功耗场合,比如无线传感器网络,适用于工业控制、环境监测、智能家居控制等领域。 WiFi,一般是用于覆盖一定范围(如1栋楼)的无线网络技术(覆盖范围100米左右)。表现形式就是我们常用的无线路由器。在一栋楼内布设1个无线路由器,楼内的笔记本电脑(带无线网卡),基本都可以无线上网了。

3、市场现状不同。ZigBee作为一种新兴技术,自04年发布第一个版本的标准以来,正处在高速发展和推广当中;目前因为成本、可靠性方面的原因,还没有大规模推广; WiFi,技术成熟很多,应用也很多了。 总体上说,二者的区别较大,市场定位不同,相互之间的竞争不是很大。只不过二者在技术上有共同点,二者的相互干扰还是比较大的,尤其是WiFi对于ZigBee的干扰。

二者硬件内存需求对比:ZigBee:32~64KB+;WiFi:1MB+;ZigBee硬件需求低。

二者电池供电上电可持续时间对比:ZigBee:100~1000天;WiFi:1~5天;ZigBee功耗低。 传输距离对比(一般用法,无大功率天线发射装置):ZigBee:1~1000M;WiFi:1~100M;ZigBee传输距离长。 ZigBee劣势: 网络带宽对比:ZigBee:20~250KB/s;WiFi:11000KB/s;ZigBee带宽低,传输慢。

ZigBee的技术应用

作为一种低速率的短距离无线通信技术,ZigBee有其自身的特点,因此有为它量身定做的应用,尽管在某些应用方面可能和其他技术重叠。ZigBee可能的一些应用,包括智能家庭、工业控制、自动抄表、医疗监护、传感器网络应用和电信应用。

1、智能家居

家里可能都有很多电器和电子设备,如电灯、电视机、冰箱、洗衣机、电脑、空调等等,可能还有烟雾感应、报警器和摄像头等设备,以前我们最多可能就做到点对点的控制,但如果使用了ZigBee技术,可以把这些电子电器设备都联系起来,组成一个网络,甚至可以通过网关连接到Internet,这样用户就可以方便的在任何地方监控自己家里的情况,并且省却了在家里布线的烦恼。

2、工业控制

工厂环境当中有大量的传感器和控制器,可以利用ZigBee技术把它们连接成一个网络进行监控,加强作业管理,降低成本。

3、传感器网络应用

传感器网络也是最近的一个研究热点,像货物跟踪、建筑物监测、环境保护等方面都有很好的应用前景。传感器网络要求节点低成本、低功耗,并且能够自动组网、易于维护、可靠性高。ZigBee在组网和低功耗方面的优势使得它成为传感器网络应用的一个很好的技术选择。

目前Zigbee技术还存在的问题

尽管 Zigbee技术在2004年,就被列为当今世界发展最快,最具市场前景的十大新技术之一;关于Zigbee技术的优点,大家也进行了许多讨论,到目前为止,国内外许多厂商也都开发生产了各种各样的 Zigbee产品,并在应用推广上做了大量的工作,然而,实事求是的讲,真正完全使用Zigbee技术来解决具体实际问题,有意义的案例则非常有限。

Zigbee似乎成了一种时髦,但眼下还不能做到真正实用的新技术。就其原因,除了作为一种新技术,它本身需要有一个技术改进和成熟,以及市场培育的过程外,我们在长期应用Zigbee技术来解决实际问题的实践中,还发现如下几个十分重要,而在短期内我们认为十分难以解决的问题:

1、Zigbee的核心技术之一,是动态组网和动态路由,即Zigbee网络考虑了网络中的节点增减变化,网络中的每个节点相隔一定时间,需要通过无线信号交流的方式重新组网,并在每一次将信息从一个节点发送到另一个节点时,需要扫描各种可能的路径,从最短的路经尝试起,这就涉及到无线网络的管理问题。而这些,都需要占用大量的带宽资源,并增加数据传输的时延。特别是随着网络节点数目的增加和中转次数增多。因而,尽管Zigbee的射频传输速率是250kbps, 但经过多次中转后的实际可用速率将大大降低,同时数据传输时延也将大大增加,无线网络管理也就变得越麻烦。这也就是目前Zigbee网络在数据传输时的主要问题。

2、Zigbee这个字,从英语的角度来分析,它是由“Zig”和“bee”两个字组成。前者“Zig”中文的意思是“之“字形的路径,后面一个英文单词“bee”就是蜜蜂的意思,我们的理解,Zigbee网络技术,就是模仿蜜蜂信息传递的方式,通过网络节点之间信息的相互互传,来将一个信息从一个节点传输到远处的另外一个节点。如果按一般标准Zigbee节点,在开阔空间每次数据中转平均增加50米直线传输距离计算,传输500米直线距离需要中转十次;在室内,由于Zigbee所使用的2.4 G的传输频率,一般是通过信号反射来进行传输的,由于建筑物的遮挡,要传输一定的距离,往往需要使用较多的网络节点来进行数据中转,如上述第一条中的分析,这对一个Zigbee网络来讲,并不是一件简单的事情。当然,我们也可使用放大器来增加Zigbee网络节点的传输距离,然而,这必然要大大增加网络节点的功耗和成本,失去了Zigbee低成本低功耗的本来目的。而且,在室内使用这种方法来增加传输距离,效果也有限。显然,一种通过中心点在室外,终端模块在室外的星状网网络通信结构个更加合理。

3、Zigbee的核心技术之一,是每一个网络节点,除了自身作为信息采集点和执行来自中心的命令外,它还承担着随时来自网络的数据中转任务,这样,网络节点的收发机必须随时处于收发接收状态,这就是说它的最低功耗至少在20mA左右,一般使用放大器的远距离网络节点,其耗电量一般在150mA左右。这显然很难使用电池驱动来保证网络节点的正常工作;

4、由于Zigbee中的每一个节点,都参与自动组网和动态路由的工作,因而每个网络节点的单片机也就相对复杂一些,成本自然也就高一些。另外,在Zigbee网络的基础上进行一些针对具体应用的开发工作的量也就大一些。

综上所述 ,我们认为,Zigbee网络,实际上在许多情况下,是牺牲了网络传输效率,带宽以及节点模块的功耗,来换取在许多实际应用中,并不重要的动态组网和动态路由的功能,因为,在一般情况下,我们的网络节点和数据传输途径往往都是固定不变的。因此,当前Zigbee技术尚未解决的节点耗电问题,网络数据传输的效率较低时延较长的问题,以及数据传输距离有限的问题,是当前Zigbee 技术难于得到很好推广的根本原因。

B. 一文看懂网络七层协议/OSI七层模型

本文旨在解析网络通信的核心机制,通过探讨OSI七层模型来理解网络数据传输的过程。首先,物理层负责硬件间的通信,定义了物理设备接口和传输介质标准,如网线和光纤的规格。这一层的任务是传输比特流,尽管存在干扰,通过控制协议确保数据的可靠传输。

数据链路层是传输的下一个阶段,它处理比特流,将数据封装成帧,同时确保数据帧的正确性和无差错。通过IP地址,网络层负责路径选择,让数据报文找到正确的接收地址,这催生了IP协议的出现。

传输层关注数据的完整性和服务质量,监控并确保报文的正确送达,而会话层则负责建立和管理应用程序之间的通信,提供自动收发和寻址功能。

表示层负责数据格式转换,确保上下层之间的兼容性,而应用层则是网络与用户交互的最前线,直接服务于用户的各种网络需求。

对比TCP/IP4层和5层模型,OSI七层模型更为详细,涵盖了更多层次的通信处理。通过理解这七层,我们可以更好地掌握网络通信的复杂性,提高网络服务的效率和可靠性。

C. 如何理解网络协议时水平的,有事垂直的

为了减少网络设计的复杂性,绝大多数网络采用分层设计方法。所谓分层设计方法,就是按照信息的流动过程将网络的整体功能分解为一个个的功能层,不同机器上的同等功能层之间采用相同的协议,同一机器上的相邻功能层之间通过接口进行信息传递。为了便于理解接口和协议的概念,我们首先以邮政通信系统为例进行说明。人们平常写信时,都有个约定,这就是信件的格式和内容。首先,我们写信时必须采用双方都懂的语言文字和文体,开头是对方称谓,最后是落款等。这样,对方收到信后,才可以看懂信中的内容,知道是谁写的,什么时候写的等。当然还可以有其他的一些特殊约定,如书信的编号、间谍的密写等。信写好之后,必须将信封装并交由邮局寄发,这样寄信人和邮局之间也要有约定,这就是规定信封写法并贴邮票。在中国寄信必须先写收信人地址、姓名,然后才写寄信人的地址和姓名。邮局收到信后,首先进行信件的分拣和分类,然后交付有关运输部门进行运输,如航空信交民航,平信交铁路或公路运输部门等。这时,邮局和运输部门也有约定,如到站地点、时间、包裹形式等等。信件运送到目的地后进行相反的过程,最终将信件送到收信人手中,收信人依照约定的格式才能读懂信件。如图所示,在整个过程中,主要涉及到了三个子系统、即用户子系统,邮政子系统和运输子系统。各种约定都是为了达到将信件从一个源点送到某一个目的点这个目标而设计的,这就是说,它们是因信息的流动而产生的。可以将这些约定分为同等机构间的约定,如用户之间的约定、邮政局之间的约定和运输部门之间的约定,以及不同机构间的约定,如用户与邮政局之间的约定、邮政局与运输部门之间的约定。虽然两个用户、两个邮政局、两个运输部门分处甲、乙两地,但它们都分别对应同等机构,同属一个子系统;而同处一地的不同机构则不在一个子系统内,而且它们之间的关系是服务与被服务的关系。很显然,这两种约定是不同的,前者为部门内部的约定,而后者是不同部门之间的约定。


计算机网络环境中,两台计算机中两个进程之间进行通信的过程与邮政通信的过程十分相似。用户进程对应于用户,计算机中进行通信的进程(也可以是专门的通信处理机〕对应于邮局,通信设施对应于运输部门。为了减少计算机网络设计的复杂性,人们往往按功能将计算机网络划分为多个不同的功能层。网络中同等层之间的通信规则就是该层使用的协议,如有关第N层的通信规则的集合,就是第N层的协议。而同一计算机的不同功能层之间的通信规则称为接口(interface),在第N层和第(N+1)层之间的接口称为N/(N+1)层接口。总的来说,协议是不同机器同等层之间的通信约定,而接口是同一机器相邻层之间的通信约定。不同的网络,分层数量、各层的名称和功能以及协议都各不相同。然而,在所有的网络中,每一层的目的都是向它的上一层提供一定的服务。协议层次化不同于程序设计中模块化的概念。在程序设计中,各模块可以相互独立,任意拼装或者并行,而层次则一定有上下之分,它是依数据流的流动而产生的。组成不同计算机同等层的实体称为对等进程(peerprocess)。对等进程不一定非是相同的程序,但其功能必须完全一致,且采用相同的协议。分层设计方法将整个网络通信功能划分为垂直的层次集合后,在通信过程中下层将向上层隐蔽下层的实现细节。但层次的划分应首先确定层次的集合及每层应完成的任务。划分时应按逻辑组合功能,并具有足够的层次,以使每层小到易于处理。同时层次也不能太多,以免产生难以负担的处理开销。计算机网络体系结构是网络中分层模型以及各层功能的精确定义。对网络体系结构的描述必须包括足够的信息,使实现者可以为每一功能层进行硬件设计或编写程序,并使之符合相关协议。但我们要注意的是,网络协议实现的细节不属于网络体系结构的内容,因为它们隐含在机器内部,对外部说来是不可见的。现在我们来考查一个具体的例子:在图所示的5层网络中如何向其最上层提供通信。在第5层运行的某应用进程产生了消息M,并把它交给第4层进行发送。第4层在消息M前加上一个信息头(header),信息头主要包括控制信息(如序号)以便目标机器上的第4层在低层不能保持消息顺序时,把乱序的消息按原序装配好。在有些层中,信息头还包括长度、时间和其他控制字段。在很多网络中,第4层对接收的消息长度没有限制,但在第3层通常存在一个限度。因此,第3层必须将接收的入境消息分成较小的单元如报文分组(packet),并在每个报文分组前加上一个报头。在本实例中,消息M被分成两部分:M1和M2。第3层确定使用哪一条输出线路,并将报文传给第2层。第2层不仅给每段消息加上头部信息,而且还要加上尾部信息,构成新的数据单元,通常称为帧(frame),然后将其传给第1层进行物理传输。在接收方,报文每向上递交一层,该层的报头就被剥掉,决不可能出现带有N层以下报头的报文交给接收方第N层实体的情况。要理解图1-11示意图,关键要理解虚拟通信与物理通信之间的关系,以及协议与接口之间的区别。比如,第4层的对等进程,在概念上认为它们的通信是水平方向地应用第四层协议。每一方都好像有一个叫做“发送到另一方去”的过程和一个叫做“从另一方接收”的过程,尽管实际上这些过程是跨过3/4层接口与下层通信而不是直接同另一方通信。抽象出对等进程这一概念,对网络设计是至关重要的。有了这种抽象技术,网络设计者就可以把设计完整的网络这种难以处理的大问题,划分成设计几个较小的且易于处理的问题,即分别设计各层。

阅读全文

与如何看懂网络通信相关的资料

热点内容
福州网络营销公司 浏览:208
得力考勤怎么设置网络 浏览:682
如何调整网络心理 浏览:602
苹果导苹果需要网络吗 浏览:809
海豚湾网络连接异常 浏览:110
无商城的网络游戏现在都有哪些 浏览:562
2017手机网络游戏排行榜 浏览:765
长虹无线网络机顶盒怎样可以回看 浏览:159
电锅炉网络推广哪个好 浏览:289
网络卡手机怎么上网 浏览:288
共享网络用户限制 浏览:372
电60平安装什么网络最好 浏览:125
医院wifi网络规划 浏览:638
mc网络游戏怎么和好友一起玩手机版 浏览:107
网络共享平台使用感受 浏览:107
qq语音显示网络异常自动打回去 浏览:373
如何取消360网络专享设置 浏览:228
ctl电视怎么设置网络 浏览:745
在火车上网络信号不好呢 浏览:446
方正网络机顶盒怎么投屏 浏览:808

友情链接