导航:首页 > 网络安全 > 网络是如何传输信息的示意图

网络是如何传输信息的示意图

发布时间:2024-07-07 06:42:20

❶ 局域网一般有几种传输介质,怎么分类

一般有双绞线、同轴电缆和光缆。
双绞线分为屏蔽双绞线(STP)和非屏蔽双绞线(UTP):STP 有 3 类、5 类和超 5 类几种,UTP 有 3 类、4 类、5 类和超 5 类等几种。3 类线用于语音传输及 10Mbps 的数据传输;4 类线语音传输和 16Mbps 的数据传输;5 类线用于语音传输及 100Mbps 的数据传输。双绞线每网段 100 米,接 4 个中继器后最长可达到 500 米。每干线最大节点数无限制。
同轴电缆一般分粗缆和细缆俩种。粗缆造价高、安装难度大、标准距离长、可靠性高,可用于大型局域网的主干部分。粗缆每段 500 米,最长网络范围可达 2500 米,收发器间最小 2.5 米,收发器电缆最长 50 米,每干线最大节点数 100 个。细缆造价低、安装方便、可靠性差、抗干扰能力强,用于局域网的主干连接,每段最长 185 米,最长网络范围可达 925 米,两 T 形头间最小 0.5 米,每干线最大节点数 30 个。
光缆分传输点模数类(又分单模光纤和多模光纤两类)和折射率分布类(又分跳变式光纤和渐变式光纤两类)。光缆的主要特点是,传输频带宽,通信容量大,传输距离远,抗干扰能力强,抗化学腐蚀能力强。光缆主要用于长距离传输信号,局域网主干部分,传输宽带信号。光缆的网络距离为 2000 米,每干线最大节点数无限制。

❷ 计算机网络连接的主要对象是什么

计算机网络连接的主要对象: 各种类型的计算机(如大型计算机、工作站、微型计算机等)或奇特数据终端设备(如各种计算机外部设备、终端服务器等)。

计算机网络也称计算机通信网。关于计算机网络的最简单定义是:一些相互连接的、以共享资源为目的的、自治的计算机的集合。若按此定义,则早期的面向终端的网络都不能算是计算机网络,而只能称为联机系统(因为那时的许多终端不能算是自治的计算机)。但随着硬件价格的下降,许多终端都具有一定的智能,因而“终端”和“自治的计算机”逐渐失去了严格的界限。若用微型计算机作为终端使用,按上述定义,则早期的那种面向终端的网络也可称为计算机网络。
另外,从逻辑功能上看,计算机网络是以传输信息为基础目的,用通信线路将多个计算机连接起来的计算机系统的集合,一个计算机网络组成包括传输介质和通信设备。
从用户角度看,计算机网络是这样定义的:存在着一个能为用户自动管理的网络操作系统。由它调用完成用户所调用的资源,而整个网络像一个大的计算机系统一样,对用户是透明的。
一个比较通用的定义是:利用通信线路将地理上分散的、具有独立功能的计算机系统和通信设备按不同的形式连接起来,以功能完善的网络软件及协议实现资源共享和信息传递的系统。
从整体上来说计算机网络就是把分布在不同地理区域的计算机与专门的外部设备用通信线路互联成一个规模大、功能强的系统,从而使众多的计算机可以方便地互相传递信息,共享硬件、软件、数据信息等资源。简单来说,计算机网络就是由通信线路互相连接的许多自主工作的计算机构成的集合体。
最简单的计算机网络就只有两台计算机和连接它们的一条链路,即两个节点和一条链路。

❸ 以太网的工作原理是什么

【以太网工作原理】
以太网采用共享信道的方法,即多台主机共同一个信道进行数据传输。为了解决多个计算机的信道征用问题,以太网采用IEEE802.3标准规定的CSMA/CD(载波监听多路访问/冲突检测)协议,它是控制多个用户共用一条信道的协议。 CSMA/CD的工作原理如下:
(1)载波监听(先听后发) 使用CSMA/CD协议时,总线上各个节点都在监听总线,即检测总线上是否有别的节点发送数据。如果发现总线是空闲的,既没有检测到有信号正在传送,即可立即发送数据;如果监听到总线忙,即检测到总线上有数据正在传送,这时节点要持续等待直到监听到总线空闲时才能将数据发送出去,或等待一个随机时间,再从新监听总线,一直到宗贤空现在发送数据。载波监听也称作先听后发。
(2)冲突检测 当两个或两个以上的节点同时监听到总线空闲,开始发送数据时,就会发生碰撞冲突;传输延迟可能会使第一个节点发送的数据还没有到达目标节点时,另一个要发送的数据的节点就已经监听到总线空闲,并开始发送数据,这也会带至冲突的产生。当两个帧发生冲突时,两个传输的帧就会被破坏,被损坏帧继续传输毫无意义,而且信道无法被其他站点使用,对于有限的信道来讲,这是很大的浪费。如果每个发送节点边发送边监听,并在监听到冲突之后立即停止发送,就可以提高信道的利用率。当节点检测到纵向上发生冲突时,就立即取消传输数据,随后发送一个短的干扰信,一较强冲突信号,告诉网络上的所有的节点,总线已经发生了冲突。在阻塞信号发送后,等待一个随机事件,然后再将要发的数据发送一次。如果还有冲突,则重复监听、等待和重传操作。图6-30显示了采用CSMA/CD发送数据的工作流程。 CSMA/CD采用用户访问总线时间不确定的随机竞争方式,有结构简单、轻负载时时延小等特点,但当网络通信附在增大时,由于冲突增多,网络吞吐率下降、传输演示增长,网络性能会明显下降。 从以上分析可以看出,以太网的工作方式就像没有主持人的座谈会中,所有的参会者都通过一个共同的戒指来吗相互交谈。每个参加会议的人在讲话钱,都礼貌的等到别人把话讲完。如果两个客人同时开始讲话,那么他们都停下来,分别随即等待一段时间在开始讲话,这时,如果两个客人等待的时间不同,冲突就不会出现、如果讲话超过了一次以上,将采用退避指数加强等待的时间。
【参考文献】:http://wenku..com/view/2bc7750f79563c1ec5da7187.html

❹ 28 张图详解网络基础知识:OSI、TCP/IP 参考模型(含动态图)


目录


1、网络协议


其实协议在我们生活中也能找到相应的影子。


举个例子,有 2 个男生准备追求同一个妹子,妹子来自河南,讲河南话,还会点普通话;一个男生来自胡建,讲闽南语,也会点普通话;另一个男生来自广东,只讲粤语;

协议一致,沟通自如

语言不通,无法沟通

你们猜猜?最后谁牵手成功了?答案肯定是来自胡建的那位,双方可以通过 普通话 进行沟通,表达内容都能理解。而来自广东的帅哥只会讲粤语,不会普通话,妹子表示听不懂,就无法进行沟通下了。


每个人的成长环境不同,所讲的语言、认知、理解能力也就不同。为了使来自五湖四海的朋友能沟通自如,就需要大家协商,认识某一个语言或规则,彼此能互相理解,这个语言就是普通话。


通过这个例子,大家可以这样理解:


把普通话比作“协议”、把聊天比作“通信”,把说话的内容比作“数据”。


相信这样类比,大家就知道,协议是什么了?


简单地说,就是程序员指定一些标准,使不同的通信设备能彼此正确理解、正确解析通信的内容。我们都知道计算机世界里是二进制,要么 1,要么 0,那为啥可以表达丰富多彩的内容呢?


也是因为协议,不同字段,不同组合,可以解析不同意思,这就依然协议,让协议来正确处理。


例如,我们使用手机连 WiFi 来刷抖音,使用的是 802.11(WLAN)协议,通过这个协议接入网络。如果你所连的 WIFI 是不需要手动设置 IP 地址,是通过自动获取的,就使用到了 DHCP 协议,这样你的手机算上接入了 局域网, 如果你局域网内有台 NAS 服务器,存放了某些不可描述的视频资源,你就可以访问观看了,但这时你可能无法访问互联网资源,例如,你还想刷会抖音,看看妹子扭一扭,结果出现如下画面:


出现这种画面,说明无法使用 互联网, 可能是无线路由器没有设置好相关协议,比如: NAT、PPPoE 协议(上网账号或密码设置错误了),只有设置正确了,就可以通过运营商(ISP)提供的线路把局域网接入到互联网中,实现手机可以访问互联网上的资源(服务器)。玩微信撩妹子、刷抖音看妹子。

网络协议示意图


延伸阅读

1、局域网:最显着的特点就是范围有限,行政可控的区域可以是一所高校、一个餐厅、一个园区、一栋办公楼或一个家庭的私有网络。

2、城域网:原本是介意局域网和广域网之间,实际工作中很少再刻意去区分城域网和广域网了,所以这边不再介绍。

3、广域网:简单说就是负责把多个局域网连接起来,它的传输距离长距离传输,广域网的搭建一般是由运营商来。

4、互联网:把全世界上提供资源共享的 IT 设备所在网络连接起来,接入了互联网就可以随时随地访问这些资源了。

5、物联网:把所有具有联网功能的物体都接入互联网就形成了物联网。如空调联网,就可以远程控制空调; 汽车 联网,就可以远程获取行程数据。


总结一下吧!我们可以把电脑、手机等 IT 设备比喻做来自五湖四海的人们,大家都通过多种语言(网络协议)实现沟通(通信)。所有人要一起交流,就用普通话,大家都能理解。所有胡建人在一起,就用闽南语进行沟通,彼此也能理解。这么的方言,就好比计算机网络世界里也有这么多协议,只是不同协议用在不同地方。


好奇的同学,可能就会问,那网络协议是由谁来规定呢?这就需要提到一个组织,ISO。这个组织制定了一个国际标准 ,叫做 OSI 参考模型,如下,很多厂商都会参考这个制定网络协议。

OSI 参考模型图


2、OSI 参考模型


既然是模型,就好比模范一样,大家都要向它学习,以它为原型,展开学习研究。前面我们也提到了一些协议,这么多协议如果不进行归纳,分层,大家学习起来是不是感觉很凌乱?


所以 OSI 参考模型就是将这样复杂的协议整理并进行分层,分为易于理解的 7 层,并定义每一层的 服务 内容,协议的具体内容是 规则 。上下层之间通过 接口 进行交互,同一层之间通过 协议 进行交互。相信很多网络工程师在今后工作中遇到问题,讨论协议问题还会用到这个模型展开讨论。所以说,对于计算机网络初学者来说,学习了解 OSI 参考模型就是通往成功的第一步。

OSI 参考模型分层功能


7.应用层


为应用程序提供服务并规定应用程序中通信相关的细节,OSI 的最高层。包括文件传输、Email、远程登录等协议。程序员接触这一层比较多。

应用层示例图

6.表示层


主要负责数据格式的转换,为上下层能够处理的格式。如编码、加密、解密等。

表示层示例图


5.会话层


即负责建立、管理和终止通信连接(数据流动的逻辑通路),数据分片、重组等传输的管理。

会话层示例图

4.传输层


保证可靠传输,不需要再路由器上处理,只需再通信双方节点上进行处理,如处理差错控制和流量控制。

传输层示例图


3.网络层

主要负责寻址和路由选择,将数据包传输到目的地。

网络层示例图


2.数据链路层

负责物理层面上互连、节点之间的通信传输,将0 、 1 序列比特流划分为具有意义的数据帧传输给对端。这一层有点类似网络层,网络层也是基于目的地址来传输,不同是:网络层是将数据包负责在整个网络转发,而数据链路层仅是在网段内转发,所以大家抓包会发现,源目 MAC 地址每经过一个二层网段,都会变化。

数据链路层示例图


1.物理层

负责 0、1 比特流(0、1 序列)与电压高低电平、光的闪灭之间的互相转换,为数据链路层提供物理连接。

物理层示例图



OSI 为啥最后没有得到运用呢?其实最主要的原因,是 OSI 模型出现的比 tcp/ip 出现的时间晚,在 OSI 开始使用前,TCP/IP 已经被广泛的应用了。如果要换成 OSI 模型也不太现实。其次是 OSI 是专家们讨论,最后形成的,由于没有实践,导致该协议实现起来很复杂,很多厂商不愿意用 OSI,与此相比,TCP/IP 协议比较简单,实现起来也比较容易,它是从公司中产生的,更符合市场的要求。综合各种因素,最终 OSI 没有被广泛的应用。


下面我们来看看 TCP/IP 与 OSI 分层之间的对应关系及相应的协议:

4.应用层


从上图,可以知道 TCP/IP 四层模型,把应用层、表示层、会话层集成再一起了,该层的协议有:HTTP 、 POP3 、 TELNET 、 SSH 、 FTP 、 SNMP 等。


目前,大部分基于 TCP/IP 的应用都是 客户端/服务端 架构。一般我们把提供资源服务的那一侧叫服务端, 发起访问服务资源的这一侧叫客户端。

应用层


3.传输层


主要职责就是负责两端节点间的应用程序互相通信,每个节点上可能有很多应用程序,例如,登录了微信,又打开了网页,又打开迅雷看看,那数据到达后怎么正确传送到相应的应用程序呢?那就需要 端口号 来正确识别了。传输层中最为常见的两个协议分别是传输控制协议 TCP (Transmission Control Protocol)和用户数据报协议 UDP (User Datagram Protocol)

面向连接 顾名思义,就是建立连接,什么时候建立连接呢?就是在通信之前需要先建立一条逻辑的通信链路。就跟我们平时打电话一样,得先拨通,通了之后即链路建立好了,这条链路只有你和对方可以在这条链路传播说话内容。挂电话后,这条链路也就断开了。


面向无连接 无连接,即通信之前不需要建立连接,直接发送即可。跟我们以前写信很像,不需要管对方在不在?直接写信寄过去就可以了。

面向连接传输

面向无连 接传输


2.网络层


主要职责就是将数据包从源地址发送到目的地址。

在网络传输中,每个节点会根据数据的 IP 地址信息,来判断该数据包应该由哪个接口(网卡)发送出去。各个地址会参考一个发出接口列表, MAC 寻址中所参考的这张表叫做 MAC 地址转发表 ,而 IP 寻址中所参考的叫做 路由表 。MAC 地址转发表根据自学自动生成。路由控制表则根据路由协议自动生成。MAC 地址转发表中所记录的是实际的 MAC 地址本身,而路由表中记录的 IP 地址则是集中了之后的网络号(即网络号与子网掩码)。


1.网络接口层


在 TCP/IP 把物理层和数据链路层集成为 网络接口层 。主要任务是将上层的数据封装成帧发送到网络上,数据帧通过网络到达对端,对端收到后对数据帧解封,并检查帧中包含的 MAC 地址。如果该地址就是本机的 MAC 地址或者是广播地址,则上传到网络层,否则丢弃该帧。


封装与解封装


所谓的封装,其实就跟你寄快递的时候,给物品加上纸盒包装起来或者快件到站点,快递员贴一层标签的过程。在网络上,就是上层的数据往下送的时候,下层会添加头部,不过,只有在二层,不仅会加上头部,还会在上层数据尾部添加 FCS。


封装


所谓解封装,就如同你收到快件一样,一层一层地拆外包装,直到看到快件。网络也是,一层一层地拆掉头部,往上层传送,直到看到数据内容。

解封装


我们把应用层的数据封装传输层头部后的报文,称为


把段封装网络层头部后的报文,称为


把包封装以太网头部和帧尾,称为

❺ 计算机网络(三)——网络层

网络层的 目的 是实现在任意结点间进行数据报传输,它的目的与链路层、物理层不是一样的吗?但是通过它数据可以在更大的网络中传输。

为了能使数据更好地在更大的网络中传输,网络层主要实现三个功能: 异构网络互联 路由与转发 拥塞控制

我们知道,在物理层、链路层,可以使用不同的传输介质和拓扑结构将几台、十几台主机连接在一起形成一个小型的局域网,把这些组成结构不完全相同的局域网称为异构网,因此将它们连接扩大成更大的网络,需要一个类似转接头的设备——路由器,路由器不仅仅可以连接异构网,还能隔离冲突域和广播域,依照IP地址转发。

下图对集线器、网桥、交换机和路由器能否隔离冲突域和广播域进行比较:

路由器作为连接多个网络的结点,不仅需要完成对数据的分组转发,还要选择传输路径,因此路由器主要由 路由选择 分组转发 组成。

网络层最重要的功能是 路由与转发 功能。路由也就是选择一条合适的路,转发则是在这条路上遵守协议。这有点像从某个多个国家的交界城市自驾,选其中一条路,那么就遵守这个国家的交通协议。

数据通过一个又一个路由器到达目的地址,路由器怎么知道数据应该从哪个端口出发才能到达目的地呢?这就需要构造路由表。
路由表有两种构造方式: 静态 动态

一个个小网络可以构成一个区域,足够多的区域互连成一个网络,多个网络又形成巨大的互联网。要想让数据高效在网络中传输,采用“分而治之”的理念。
将互联网分为许多较小的自治系统,系统有权决定自己内部采用什么路由协议,这便是层次路由。通过层次路由便可以采用灵活的协议传输数据。数据在自治系统内传输采用 内部网关协议 而自治系统之间则采用 外部网关协议

内部网关协议有两种协议: 路由信息协议(RIP) 开放最短路径优先协议(OSPF)

外部网关协议则是边界网关协议(BGP)。内部网关协议服务某个自治系统,范围较小,所以尽可能有效地从源站送到目的站,也就是找到一条最佳路径。而外部网关协议需要面对更大的网络范围和网络环境,因此更关注的找到比较好的路径,也就是不能兜圈子。

BGP工作原理:

将三种路由协议进行比较:

构建大规模、异构网络的互联网除了硬件的支持外,还需要建立协议以实现数据报传输服务——IP协议。
目前IP协议有两个版本:IPv4和IPv6。

现在主流的IP协议版本还是IPv4。

IP数据报主要由首部和数据部分组成,由TCP报文段封装到数据部分,再在前端加上一些描述信息的首部,其格式如下图:

IP协议使用分组转发,当报文过大时需要分片。分片的思路如下:

如果把IP数据报看作是信,那么首部中的源地址与目的地址则分别是发信地址和邮件地址。为了方便路由计算这些地址,并且使IP地址足够使用,因此将IP地址进行分类。

IP地址的格式 : {<网络号>,<主机号>},网络号标志主机所连接的网络,主机号标志该主机,每个IP地址都是唯一的。

IP地址分类 如下:

通过分类,可以计算每个网络中最大的主机数:

网络地址转换(NAT)是一种转换机制,将专用网络地址转换为公用地址,目的是为了对外隐藏内部管理的IP地址,这样不仅可以保证网络安全,还可以解决IP地址不足问题。
当路由器接收到的目的地址是私有地址则一律不进行转发,而如果是公用地址,则是用NAT转换表将源IP及端口号映射成全球IP号,然后从WAN端口发送到因特网上。

IP地址有A、B、C类网络号,如果把A类网络号分给一个广播域,那么这个广播域可以接入16,777,212台主机,然而一个广播域不可能融入这么多台主机,因为这样会导致广播域过饱和而瘫痪,而只给其分配一定数量的网络号,则会浪费大量的IP地址。因此在IP地址中增加一个“子网号字段”,将IP地址划分为三级,即IP地址={<网络号>,<子网号>,<主机号>},也就是从主机号中借用几个比特号作为子网号,这个子网号是对内划分的,对外仍旧表现为二级IP地址。

主机或路由器如何判断一个网络是否进行子网划分了呢?——利用子网掩码。

CIDR是 无分类 域间路由器选择,目的是消除A、B、C类网络划分,这样可以大幅度提高IP地址空间利用率。相比较子网掩码划分,它更加灵活。

上图中,如果R1收到前缀为206.1的IP地址,它只需要转发给R2,具体发往网络1还是网络2,则由R2计算得出。

通过IP地址,可以将数据从某个网络传输到目的网络,但是把信息发送给哪台主机呢?由于路由器的隔离,IP网路没办法使用广播方式查找MAC地址,只有通过链路层的MAC地址以广播方式寻址。
因此,IP协议还包括三个协议—— ARP、DHCP和ICMP ,共同配合完成数据转发。

IPv6是解决IP地址耗尽的根本手段。它与IPv4的报文形式差别如下图:

IPv6与IPv4地址通信示意图:

在通信过程中,如果分组过量而导致网路性能下降,会产生拥塞。

拥塞的控制方式:

❻ 常见的计算机网络拓扑结构有

1、总线型

这种网络拓扑结构中所有设备都直接与总线相连,它所采用的介质一般也是同轴电缆(包括粗缆和细缆),不过现在也有采用光缆作为总线型传输介质的,如ATM网、Cable Modem所采用的网络等都属于总线型网络结构。

总线结构是指各工作站和服务器均挂在一条总线上,各工作站地位平等,无中心节点控制,公用总线上的信息多以基带形式串行传递,其传递方向总是从发送信息的节点开始向两端扩散,如同广播电台发射的信息一样,因此又称广播式计算机网络。各节点在接受信息时都进行地址检查,看是否与自己的工作站地址相符,相符则接收网上的信息。

2、环形结构

环型结构由网络中若干节点通过点到点的链路首尾相连形成一个闭合的环,这种结构使公共传输电缆组成环型连接,数据在环路中沿着一个方向在各个节点间传输,信息从一个节点传到另一个节点。

这种结构的网络形式主要应用于令牌网中,在这种网络结构中各设备是直接通过电缆来串接的,最后形成一个闭环,整个网络发送的信息就是在这个环中传递,通常把这类网络称之为"令牌环网"。

3、星型结构

星型拓扑结构是用一个节点作为中心节点,其他节点直接与中心节点相连构成的网络。中心节点可以是文件服务器,也可以是连接设备。常见的中心节点为集线器。

星型拓扑结构的网络属于集中控制型网络,整个网络由中心节点执行集中式通行控制管理,各节点间的通信都要通过中心节点。每一个要发送数据的节点都将要发送的数据发送中心节点,再由中心节点负责将数据送到目地节点。因此,中心节点相当复杂,而各个节点的通信处理负担都很小,只需要满足链路的简单通信要求。

4、树型结构

树型结构是分级的集中控制式网络,与星型相比,它的通信线路总长度短,成本较低,节点易于扩充,寻找路径比较方便,但除了叶节点及其相连的线路外,任一节点或其相连的线路故障都会使系统受到影响。

5、分布式结构/网状结构

网状形网络如下图所示,其为分组交换网示意图。图种虚线以内部分为通信子网,每个结点上的计算机称为结点交换机。图中虚线以外的计算机(Host)和终端设备统称为数据处理子网或资源子网。

阅读全文

与网络是如何传输信息的示意图相关的资料

热点内容
电脑没有猫能连接网络吗 浏览:612
无线网络怎么改高强度密码 浏览:251
通过蓝牙共享网络怎么常开 浏览:109
贵阳地铁是如何形成网络化运营 浏览:772
酷比手机双卡如何切换4g网络 浏览:515
网络共享报错11b 浏览:827
移动网络平台扩大范围寻找孩子 浏览:951
为啥附近的网络连接不上 浏览:943
手机号怎样共享网络 浏览:669
网络书籍共享流程 浏览:506
电脑有无线网连接但是显示没网络 浏览:293
电脑上谷歌浏览器无法访问网络 浏览:901
茂名网络营销专业 浏览:326
为了提高网络安全意识 浏览:560
南通妇幼保健院的共享网络怎么用 浏览:14
网络腐是什么意思 浏览:56
小米手机网络怎么设计才不卡 浏览:97
如何吸引网络自然流量 浏览:609
监控能否改成无线网络 浏览:412
宜昌网络安全市场 浏览:38

友情链接