① 如何训练神经网络
1、先别着急写代码
训练神经网络前,别管代码,先从预处理数据集开始。我们先花几个小时的时间,了解数据的分布并找出其中的规律。
Andrej有一次在整理数据时发现了重复的样本,还有一次发现了图像和标签中的错误。所以先看一眼数据能避免我们走很多弯路。
由于神经网络实际上是数据集的压缩版本,因此您将能够查看网络(错误)预测并了解它们的来源。如果你的网络给你的预测看起来与你在数据中看到的内容不一致,那么就会有所收获。
一旦从数据中发现规律,可以编写一些代码对他们进行搜索、过滤、排序。把数据可视化能帮助我们发现异常值,而异常值总能揭示数据的质量或预处理中的一些错误。
2、设置端到端的训练评估框架
处理完数据集,接下来就能开始训练模型了吗?并不能!下一步是建立一个完整的训练+评估框架。
在这个阶段,我们选择一个简单又不至于搞砸的模型,比如线性分类器、CNN,可视化损失。获得准确度等衡量模型的标准,用模型进行预测。
这个阶段的技巧有:
· 固定随机种子
使用固定的随机种子,来保证运行代码两次都获得相同的结果,消除差异因素。
· 简单化
在此阶段不要有任何幻想,不要扩增数据。扩增数据后面会用到,但是在这里不要使用,现在引入只会导致错误。
· 在评估中添加有效数字
在绘制测试集损失时,对整个测试集进行评估,不要只绘制批次测试损失图像,然后用Tensorboard对它们进行平滑处理。
· 在初始阶段验证损失函数
验证函数是否从正确的损失值开始。例如,如果正确初始化最后一层,则应在softmax初始化时测量-log(1/n_classes)。
· 初始化
正确初始化最后一层的权重。如果回归一些平均值为50的值,则将最终偏差初始化为50。如果有一个比例为1:10的不平衡数据集,请设置对数的偏差,使网络预测概率在初始化时为0.1。正确设置这些可以加速模型的收敛。
· 人类基线
监控除人为可解释和可检查的损失之外的指标。尽可能评估人的准确性并与之进行比较。或者对测试数据进行两次注释,并且对于每个示例,将一个注释视为预测,将第二个注释视为事实。
· 设置一个独立于输入的基线
最简单的方法是将所有输入设置为零,看看模型是否学会从输入中提取任何信息。
· 过拟合一个batch
增加了模型的容量并验证我们可以达到的最低损失。
· 验证减少训练损失
尝试稍微增加数据容量。
② 人工神经网络是怎么学习的呢
1、神经网络的结构(例如2输入3隐节点1输出)建好后,一般就要求神经网络里的权值和阈值。现在一般求解权值和阈值,都是采用梯度下降之类的搜索算法(梯度下降法、牛顿法、列文伯格-马跨特法、狗腿法等等)。 2、这些算法会先初始化一个解,在这个解的基础上,确定一个搜索方向和一个移动步长(各种法算确定方向和步长的方法不同,也就使各种算法适用于解决不同的问题),使初始解根据这个方向和步长移动后,能使目标函数的输出(在神经网络中就是预测误差)下降。 3、然后将它更新为新的解,再继续寻找下一步的移动方向的步长,这样不断的迭代下去,目标函数(神经网络中的预测误差)也不断下降,最终就能找到一个解,使得目标函数(预测误差)比较小。 4、而在寻解过程中,步长太大,就会搜索得不仔细,可能跨过了优秀的解,而步长太小,又会使寻解过程进行得太慢。因此,步长设置适当非常重要。 5、学习率对原步长(在梯度下降法中就是梯度的长度)作调整,如果学习率lr = 0.1,那么梯度下降法中每次调整的步长就是0.1*梯度, 6、而在matlab神经网络工具箱里的lr,代表的是初始学习率。因为matlab工具箱为了在寻解不同阶段更智能的选择合适的步长,使用的是可变学习率,它会根据上一次解的调整对目标函数带来的效果来对学习率作调整,再根据学习率决定步长。
③ 神经网络初始化
初始化会对深斗旅度神经网络模型的训练时间和收敛性产生重大影响。简单的初始化方法可以加速训练,但使用这些方法需要注意小心常见的陷阱。本文做销伏将解释如何有效地对神经网络参数进行初始化。
要构建机器学习算法,通常要定义一个体系结构(例如逻辑回归、支持向量机、神经网络)并对其进行训练学习参数。
在优化循环的每次迭代(前向,成本,后向,更新)中,观察到当从输出层向输入层移动时,反向传播的梯度要么被放大,要么被最小化。
假设所有的激活参数都是线性的(恒等函数)。则输出激活为:
假设 ,那么输出预测为:
总而言之,使用大小不合适的值对权重进行将导致神经网络的发散或训练速度下降。 虽然我们用的是简单的对称权重矩阵来说明梯度爆炸/消失的问题,但这一现象可以推广到任何不合适的初始化值。
经验原则
在上述两个经验原则下,反向传播的梯度信号不应该在任何层中乘以太小或太大的值。梯度应该可以移动到输入层,而不会爆炸或消失。
更具体地说,对于层l,其前向传播是:
想要下式成立
确保均值为零,并保持每层输入方差值不变,可以保证信号不会爆炸或消失。该方法既适用于前向传播(用于激活),也适用于向后传播(用于关于激活的成本梯度)。这里建议使用Xavier初始化(或其派生初始化方法),对于每个层l,有:
层l中的所有权重均自正态分布中随机挑选,其中均值 ,方差 ,其中 是第 层网络中的神经元数量。偏差已初始化为零。
使用 简化为
将在方差之外提取求和
将乘积的方纯携差转换为方差的乘积并使用 and
带入假设
第一个假设导致
第二个假设导致
同样的想法
整合上述,得到
希望方差不变( )需要
根据我们如何初始化权重,我们的输出和输入的方差之间的关系会有很大的不同。 请注意以下三种情况。
在实践中,使用Xavier初始化的机器学习工程师会将权重初始化为 或 ,其中后一个分布的方差是 和 的调和平均。
Xavier初始化可以与tanh激活一起使用。此外,还有大量其他初始化方法。 例如,如果你正在使用ReLU,则通常的初始化是 He初始化 ,其初始化权重通过乘以Xavier初始化的方差2来初始化。 虽然这种初始化证明稍微复杂一些,但其思路与tanh是相同的。
④ 无需深度学习框架,如何从零开始用Python构建神
搭建由一个输入层,一个隐藏层,一个输出层组成的三层神经网络。输入层中的节点数由数据的维度来决定,也就是2个。相应的,输出层的节点数则是由类的数量来决定,也是2个。(因为我们只有一个预测0和1的输出节点,所以我们只有两类输出,实际中,两个输出节点将更易于在后期进行扩展从而获得更多类别的输出)。以x,y坐标作为输入,输出的则是两种概率,一种是0(代表女),另一种是1(代表男)。
⑤ 从零开始用Python构建神经网络
从零开始用Python构建神经网络
动机:为了更加深入的理解深度学习,我们将使用 python 语言从头搭建一个神经网络,而不是使用像 Tensorflow 那样的封装好的框架。我认为理解神经网络的内部工作原理,对数据科学家来说至关重要。
这篇文章的内容是我的所学,希望也能对你有所帮助。
神经网络是什么?
介绍神经网络的文章大多数都会将它和大脑进行类比。如果你没有深入研究过大脑与神经网络的类比,那么将神经网络解释为一种将给定输入映射为期望输出的数学关系会更容易理解。
神经网络包括以下组成部分
? 一个输入层,x
? 任意数量的隐藏层
? 一个输出层,?
? 每层之间有一组权值和偏置,W and b
? 为隐藏层选择一种激活函数,σ。在教程中我们使用 Sigmoid 激活函数
下图展示了 2 层神经网络的结构(注意:我们在计算网络层数时通常排除输入层)
2 层神经网络的结构
用 Python 可以很容易的构建神经网络类
训练神经网络
这个网络的输出 ? 为:
你可能会注意到,在上面的等式中,输出 ? 是 W 和 b 函数。
因此 W 和 b 的值影响预测的准确率. 所以根据输入数据对 W 和 b 调优的过程就被成为训练神经网络。
每步训练迭代包含以下两个部分:
? 计算预测结果 ?,这一步称为前向传播
? 更新 W 和 b,,这一步成为反向传播
下面的顺序图展示了这个过程:
前向传播
正如我们在上图中看到的,前向传播只是简单的计算。对于一个基本的 2 层网络来说,它的输出是这样的:
我们在 NeuralNetwork 类中增加一个计算前向传播的函数。为了简单起见我们假设偏置 b 为0:
但是我们还需要一个方法来评估预测结果的好坏(即预测值和真实值的误差)。这就要用到损失函数。
损失函数
常用的损失函数有很多种,根据模型的需求来选择。在本教程中,我们使用误差平方和作为损失函数。
误差平方和是求每个预测值和真实值之间的误差再求和,这个误差是他们的差值求平方以便我们观察误差的绝对值。
训练的目标是找到一组 W 和 b,使得损失函数最好小,也即预测值和真实值之间的距离最小。
反向传播
我们已经度量出了预测的误差(损失),现在需要找到一种方法来传播误差,并以此更新权值和偏置。
为了知道如何适当的调整权值和偏置,我们需要知道损失函数对权值 W 和偏置 b 的导数。
回想微积分中的概念,函数的导数就是函数的斜率。
梯度下降法
如果我们已经求出了导数,我们就可以通过增加或减少导数值来更新权值 W 和偏置 b(参考上图)。这种方式被称为梯度下降法。
但是我们不能直接计算损失函数对权值和偏置的导数,因为在损失函数的等式中并没有显式的包含他们。因此,我们需要运用链式求导发在来帮助计算导数。
链式法则用于计算损失函数对 W 和 b 的导数。注意,为了简单起见。我们只展示了假设网络只有 1 层的偏导数。
这虽然很简陋,但是我们依然能得到想要的结果—损失函数对权值 W 的导数(斜率),因此我们可以相应的调整权值。
现在我们将反向传播算法的函数添加到 Python 代码中
为了更深入的理解微积分原理和反向传播中的链式求导法则,我强烈推荐 3Blue1Brown 的如下教程:
Youtube:https://youtu.be/tIeHLnjs5U8
整合并完成一个实例
既然我们已经有了包括前向传播和反向传播的完整 Python 代码,那么就将其应用到一个例子上看看它是如何工作的吧。
神经网络可以通过学习得到函数的权重。而我们仅靠观察是不太可能得到函数的权重的。
让我们训练神经网络进行 1500 次迭代,看看会发生什么。 注意观察下面每次迭代的损失函数,我们可以清楚地看到损失函数单调递减到最小值。这与我们之前介绍的梯度下降法一致。
让我们看看经过 1500 次迭代后的神经网络的最终预测结果:
经过 1500 次迭代训练后的预测结果
我们成功了!我们应用前向和方向传播算法成功的训练了神经网络并且预测结果收敛于真实值。
注意预测值和真实值之间存在细微的误差是允许的。这样可以防止模型过拟合并且使得神经网络对于未知数据有着更强的泛化能力。
下一步是什么?
幸运的是我们的学习之旅还没有结束,仍然有很多关于神经网络和深度学习的内容需要学习。例如:
? 除了 Sigmoid 以外,还可以用哪些激活函数
? 在训练网络的时候应用学习率
? 在面对图像分类任务的时候使用卷积神经网络
我很快会写更多关于这个主题的内容,敬请期待!
最后的想法
我自己也从零开始写了很多神经网络的代码
虽然可以使用诸如 Tensorflow 和 Keras 这样的深度学习框架方便的搭建深层网络而不需要完全理解其内部工作原理。但是我觉得对于有追求的数据科学家来说,理解内部原理是非常有益的。
这种练习对我自己来说已成成为重要的时间投入,希望也能对你有所帮助
⑥ 入门 | 一文简述循环神经网络
入门 | 一文简述循环神经网络
本文简要介绍了什么是循环神经网络及其运行原理,并给出了一个 RNN 实现示例。
什么是循环神经网络(RNN)?它们如何运行?可以用在哪里呢?本文试图回答上述这些问题,还展示了一个 RNN 实现 demo,你可以根据自己的需要进行扩展。
循环神经网络架构
基础知识。Python、CNN 知识是必备的。了解 CNN 的相关知识,是为了与 RNN 进行对比:RNN 为什么以及在哪些地方比 CNN 更好。
我们首先从“循环”(Recurrent)这个词说起。为什么将其称为循环?循环的意思是:
经常或重复出现
将这类神经网络称为循环神经网络是因为它对一组序列输入重复进行同样的操作。本文后续部分将讨论这种操作的意义。
我们为什么需要 RNN?
也许你现在想的是,已经有像卷积网络这样表现非常出色的网络了,为什么还需要其他类型的网络呢?有一个需要用到 RNN 的特殊例子。为了解释 RNN,你首先需要了解序列的相关知识,我们先来讲一下序列。
序列是相互依赖的(有限或无限)数据流,比如时间序列数据、信息性的字符串、对话等。在对话中,一个句子可能有一个意思,但是整体的对话可能又是完全不同的意思。股市数据这样的时间序列数据也是,单个数据表示当前价格,但是全天的数据会有不一样的变化,促使我们作出买进或卖出的决定。
当输入数据具有依赖性且是序列模式时,CNN 的结果一般都不太好。CNN 的前一个输入和下一个输入之间没有任何关联。所以所有的输出都是独立的。CNN 接受输入,然后基于训练好的模型输出。如果你运行了 100 个不同的输入,它们中的任何一个输出都不会受之前输出的影响。但想一下如果是文本生成或文本翻译呢?所有生成的单词与之前生成的单词都是独立的(有些情况下与之后的单词也是独立的,这里暂不讨论)。所以你需要有一些基于之前输出的偏向。这就是需要 RNN 的地方。RNN 对之前发生在数据序列中的事是有一定记忆的。这有助于系统获取上下文。理论上讲,RNN 有无限的记忆,这意味着它们有无限回顾的能力。通过回顾可以了解所有之前的输入。但从实际操作中看,它只能回顾最后几步。
本文仅为了与人类大体相关联,而不会做任何决定。本文只是基于之前关于该项目的知识做出了自己的判断(我甚至尚未理解人类大脑的 0.1%)。
何时使用 RNN?
RNN 可用于许多不同的地方。下面是 RNN 应用最多的领域。
1. 语言建模和文本生成
给出一个词语序列,试着预测下一个词语的可能性。这在翻译任务中是很有用的,因为最有可能的句子将是可能性最高的单词组成的句子。
2. 机器翻译
将文本内容从一种语言翻译成其他语言使用了一种或几种形式的 RNN。所有日常使用的实用系统都用了某种高级版本的 RNN。
3. 语音识别
基于输入的声波预测语音片段,从而确定词语。
4. 生成图像描述
RNN 一个非常广泛的应用是理解图像中发生了什么,从而做出合理的描述。这是 CNN 和 RNN 相结合的作用。CNN 做图像分割,RNN 用分割后的数据重建描述。这种应用虽然基本,但可能性是无穷的。
5. 视频标记
可以通过一帧一帧地标记视频进行视频搜索。
深入挖掘
本文按照以下主题进行。每一部分都是基于之前的部分进行的,所以不要跳着读。
前馈网络循环网络循环神经元基于时间的反向传播(BPTT)RNN 实现
前馈网络入门
前馈网络通过在网络的每个节点上做出的一系列操作传递信息。前馈网络每次通过每个层直接向后传递信息。这与其他循环神经网络不同。一般而言,前馈网络接受一个输入并据此产生输出,这也是大多数监督学习的步骤,输出结果可能是一个分类结果。它的行为与 CNN 类似。输出可以是以猫狗等作为标签的类别。
前馈网络是基于一系列预先标注过的数据训练的。训练阶段的目的是减少前馈网络猜类别时的误差。一旦训练完成,我们就可以用训练后的权重对新批次的数据进行分类。
一个典型的前馈网络架构
还有一件事要注意。在前馈网络中,无论在测试阶段展示给分类器的图像是什么,都不会改变权重,所以也不会影响第二个决策。这是前馈网络和循环网络之间一个非常大的不同。
与循环网络不同,前馈网络在测试时不会记得之前的输入数据。它们始终是取决于时间点的。它们只会在训练阶段记得历史输入数据。
循环网络
也就是说,循环网络不仅将当前的输入样例作为网络输入,还将它们之前感知到的一并作为输入。
我们试着建立了一个多层感知器。从简单的角度讲,它有一个输入层、一个具备特定激活函数的隐藏层,最终可以得到输出。
多层感知器架构示例
如果在上述示例中的层数增加了,输入层也接收输入。那么第一个隐藏层将激活传递到下一个隐藏层上,依此类推。最后到达输出层。每一个隐藏层都有自己的权重和偏置项。现在问题变成了我们可以输入到隐藏层吗?
每一层都有自己的权重(W)、偏置项(B)和激活函数(F)。这些层的行为不同,合并它们从技术层面上讲也极具挑战性。为了合并它们,我们将所有层的权重和偏置项替换成相同的值。如下图所示:
现在我们就可以将所有层合并在一起了。所有的隐藏层都可以结合在一个循环层中。所以看起来就像下图:
我们在每一步都会向隐藏层提供输入。现在一个循环神经元存储了所有之前步的输入,并将这些信息和当前步的输入合并。因此,它还捕获到一些当前数据步和之前步的相关性信息。t-1 步的决策影响到第 t 步做的决策。这很像人类在生活中做决策的方式。我们将当前数据和近期数据结合起来,帮助解决手头的特定问题。这个例子很简单,但从原则上讲这与人类的决策能力是一致的。这让我非常想知道我们作为人类是否真的很智能,或者说我们是否有非常高级的神经网络模型。我们做出的决策只是对生活中收集到的数据进行训练。那么一旦有了能够在合理时间段内存储和计算数据的先进模型和系统时,是否可以数字化大脑呢?所以当我们有了比大脑更好更快的模型(基于数百万人的数据训练出的)时,会发生什么?
另一篇文章(https://deeplearning4j.org/lstm.html)的有趣观点:人总是被自己的行为所困扰。
我们用一个例子来阐述上面的解释,这个例子是预测一系列字母后的下一个字母。想象一个有 8 个字母的单词 namaskar。
namaskar(合十礼):印度表示尊重的传统问候或姿势,将手掌合起置于面前或胸前鞠躬。
如果我们在向网络输入 7 个字母后试着找出第 8 个字母,会发生什么呢?隐藏层会经历 8 次迭代。如果展开网络的话就是一个 8 层的网络,每一层对应一个字母。所以你可以想象一个普通的神经网络被重复了多次。展开的次数与它记得多久之前的数据是直接相关的。
循环神经网络的运作原理
循环神经元
这里我们将更深入地了解负责决策的实际神经元。以之前提到的 namaskar 为例,在给出前 7 个字母后,试着找出第 8 个字母。输入数据的完整词汇表是 {n,a,m,s,k,r}。在真实世界中单词或句子都会更复杂。为了简化问题,我们用的是下面这个简单的词汇表。
在上图中,隐藏层或 RNN 块在当前输入和之前的状态中应用了公式。在本例中,namaste 的字母 n 前面什么都没有。所以我们直接使用当前信息推断,并移动到下一个字母 a。在推断字母 a 的过程中,隐藏层应用了上述公式结合当前推断 a 的信息与前面推断 n 的信息。输入在网络中传递的每一个状态都是一个时间步或一步,所以时间步 t 的输入是 a,时间步 t-1 的输入就是 n。将公式同时应用于 n 和 a 后,就得到了一个新状态。
用于当前状态的公式如下所示:
h_t 是新状态,h_t-1 是前一个状态。x_t 是时间 t 时的输入。在对之前的时间步应用了相同的公式后,我们已经能感知到之前的输入了。我们将检查 7 个这样的输入,它们在每一步的权重和函数都是相同的。
现在试着以简单的方式定义 f()。我们使用 tanh 激活函数。通过矩阵 W_hh 定义权重,通过矩阵 W_xh 定义输入。公式如下所示:
上例只将最后一步作为记忆,因此只与最后一步的数据合并。为了提升网络的记忆能力,并在记忆中保留较长的序列,我们必须在方程中添加更多的状态,如 h_t-2、h_t-3 等。最后输出可以按测试阶段的计算方式进行计算:
其中,y_t 是输出。对输出与实际输出进行对比,然后计算出误差值。网络通过反向传播误差来更新权重,进行学习。本文后续部分会对反向传播进行讨论。
基于时间的反向传播算法(BPTT)
本节默认你已经了解了反向传播概念。如果需要对反向传播进行深入了解,请参阅链接:?http://cs231n.github.io/optimization-2/?。
现在我们了解了 RNN 是如何实际运作的,但是在实际工作中如何训练 RNN 呢?该如何决定每个连接的权重呢?如何初始化这些隐藏单元的权重呢?循环网络的目的是要准确地对序列输入进行分类。这要靠误差值的反向传播和梯度下降来实现。但是前馈网络中使用的标准反向传播无法在此应用。
与有向无环的前馈网络不同,RNN 是循环图,这也是问题所在。在前馈网络中可以计算出之前层的误差导数。但 RNN 的层级排列与前馈网络并不相同。
答案就在之前讨论过的内容中。我们需要展开网络。展开网络使其看起来像前馈网络就可以了。
展开 RNN
在每个时间步取出 RNN 的隐藏单元并复制。时间步中的每一次复制就像前馈网络中的一层。在时间步 t+1 中每个时间步 t 层与所有可能的层连接。因此我们对权重进行随机初始化,展开网络,然后在隐藏层中通过反向传播优化权重。通过向最低层传递参数完成初始化。这些参数作为反向传播的一部分也得到了优化。
展开网络的结果是,现在每一层的权重都不同,因此最终会得到不同程度的优化。无法保证基于权重计算出的误差是相等的。所以每一次运行结束时每一层的权重都不同。这是我们绝对不希望看到的。最简单的解决办法是以某种方式将所有层的误差合并到一起。可以对误差值取平均或者求和。通过这种方式,我们可以在所有时间步中使用一层来保持相同的权重。
RNN 实现
本文试着用 Keras 模型实现 RNN。我们试着根据给定的文本预测下一个序列。
代码地址:?https://gist.github.com/.git?
该模型是 Yash Katariya 建的。我对该模型做了一些细微的改动以适合本文的要求。
⑦ 如何建立神经网络模型
人工神经网络有很多种,我只会最常用的BP神经网络。不同的网络有不同的结构和不同的学习算法。
简单点说,人工神经网络就是一个函数。只是这个函数有别于一般的函数。它比普通的函数多了一个学习的过程。
在学习的过程中,它根据正确结果不停地校正自己的网络结构,最后达到一个满意的精度。这时,它才开始真正的工作阶段。
学习人工神经网络最好先安装MathWords公司出的MatLab软件。利用该软件,你可以在一周之内就学会建立你自己的人工神经网络解题模型。
如果你想自己编程实现人工神经网络,那就需要找一本有关的书籍,专门看神经网络学习算法的那部分内容。因为“学习算法”是人工神经网络的核心。最常用的BP人工神经网络,使用的就是BP学习算法。