❶ 神经网络参数如何确定
神经网络各个网络参数设定原则:
①、网络节点 网络输入层神经元节点数就是系统的特征因子(自变量)个数,输出层神经元节点数就是系统目标个数。隐层节点选按经验选取,一般设为输入层节点数的75%。如果输入层有7个节点,输出层1个节点,那么隐含层可暂设为5个节点,即构成一个7-5-1 BP神经网络模型。在系统训练时,实际还要对不同的隐层节点数4、5、6个分别进行比较,最后确定出最合理的网络结构。
②、初始权值的确定 初始权值是不应完全相等的一组值。已经证明,即便确定 存在一组互不相等的使系统误差更小的权值,如果所设Wji的的初始值彼此相等,它们将在学习过程中始终保持相等。故而,在程序中,我们设计了一个随机发生器程序,产生一组一0.5~+0.5的随机数,作为网络的初始权值。
③、最小训练速率 在经典的BP算法中,训练速率是由经验确定,训练速率越大,权重变化越大,收敛越快;但训练速率过大,会引起系统的振荡,因此,训练速率在不导致振荡前提下,越大越好。因此,在DPS中,训练速率会自动调整,并尽可能取大一些的值,但用户可规定一个最小训练速率。该值一般取0.9。
④、动态参数 动态系数的选择也是经验性的,一般取0.6 ~0.8。
⑤、允许误差 一般取0.001~0.00001,当2次迭代结果的误差小于该值时,系统结束迭代计算,给出结果。
⑥、迭代次数 一般取1000次。由于神经网络计算并不能保证在各种参数配置下迭代结果收敛,当迭代结果不收敛时,允许最大的迭代次数。
⑦、Sigmoid参数 该参数调整神经元激励函数形式,一般取0.9~1.0之间。
⑧、数据转换。在DPS系统中,允许对输入层各个节点的数据进行转换,提供转换的方法有取对数、平方根转换和数据标准化转换。
(1)bp神经网络学习速率如何确定扩展阅读:
神经网络的研究内容相当广泛,反映了多学科交叉技术领域的特点。主要的研究工作集中在以下几个方面:
1.生物原型
从生理学、心理学、解剖学、脑科学、病理学等方面研究神经细胞、神经网络、神经系统的生物原型结构及其功能机理。
2.建立模型
根据生物原型的研究,建立神经元、神经网络的理论模型。其中包括概念模型、知识模型、物理化学模型、数学模型等。
3.算法
在理论模型研究的基础上构作具体的神经网络模型,以实现计算机模拟或准备制作硬件,包括网络学习算法的研究。这方面的工作也称为技术模型研究。
神经网络用到的算法就是向量乘法,并且广泛采用符号函数及其各种逼近。并行、容错、可以硬件实现以及自我学习特性,是神经网络的几个基本优点,也是神经网络计算方法与传统方法的区别所在。
❷ bp神经网络中学习速率的大小如何确定
一般大家都用的是变速率的算法,直接确定需要很丰富的经验的,或者用其他算法先无缝搜索,再用bp精确搜索
❸ 有哪位大神知道BP神经网络变学习率学习算法在Matlab中怎么实现啊
额。。。
一种启发式的改进就是,为学习速率选用自适应值,它依赖于连续迭代步骤中的误差函数值。
自适应调整学习速率的梯度下降算法,在训练的过程中,力图使算法稳定,同时又使学习的步长尽量地大,学习速率则是根据局部误差曲面作出相应的调整。当误差以减小的方式趋于目标时,说明修正方向正确,于是步长(学习速率)增加,因此学习速率乘以增量因子Ir_inc,使学习速率增加;而当误差增加超过设定的值C倍时,说明修正过头,应减小步长,因此学习速率乘以减量因子Ir_dec,使学习速率减少.其他情况学习速率则不变。
Matlab 里有对应的变学习速率的函数。
bpnet=newff(x,[60,4],{'logsig','logsig'},'traingda'); %'traingda'表示自适应学习速率调整方法
bpnet.trainParam.show=50;
bpnet.trainParam.lr=0.01; %预设值的学习速率
bpnet.trainParam.epochs=3000;
bpnet.trainParam.goal=0.247;
bpnet.trainParam.Ir_inc=1.05; %增加的学习速率倍数,默认为1.05
bpnet.trainParam.Ir_dec=0.7; %减少的学习速率倍数,默认为0.7
bpnet.trainParam.max_perf_inc=1.04; %误差函数增加为迭代前的1.04时,减少学习速率。默认为1.04
[bpnet]=train(bpnet,p,t);
save bpnet;
%%%%%%%%%%%%%%%%%%%%
❹ BP神经网络方法
人工神经网络是近几年来发展起来的新兴学科,它是一种大规模并行分布处理的非线性系统,适用解决难以用数学模型描述的系统,逼近任何非线性的特性,具有很强的自适应、自学习、联想记忆、高度容错和并行处理能力,使得神经网络理论的应用已经渗透到了各个领域。近年来,人工神经网络在水质分析和评价中的应用越来越广泛,并取得良好效果。在这些应用中,纵观应用于模式识别的神经网络,BP网络是最有效、最活跃的方法之一。
BP网络是多层前向网络的权值学习采用误差逆传播学习的一种算法(Error Back Propagation,简称BP)。在具体应用该网络时分为网络训练及网络工作两个阶段。在网络训练阶段,根据给定的训练模式,按照“模式的顺传播”→“误差逆传播”→“记忆训练”→“学习收敛”4个过程进行网络权值的训练。在网络的工作阶段,根据训练好的网络权值及给定的输入向量,按照“模式顺传播”方式求得与输入向量相对应的输出向量的解答(阎平凡,2000)。
BP算法是一种比较成熟的有指导的训练方法,是一个单向传播的多层前馈网络。它包含输入层、隐含层、输出层,如图4-4所示。
图4-4 地下水质量评价的BP神经网络模型
图4-4给出了4层地下水水质评价的BP神经网络模型。同层节点之间不连接。输入信号从输入层节点,依次传过各隐含层节点,然后传到输出层节点,如果在输出层得不到期望输出,则转入反向传播,将误差信号沿原来通路返回,通过学习来修改各层神经元的权值,使误差信号最小。每一层节点的输出只影响下一层节点的输入。每个节点都对应着一个作用函数(f)和阈值(a),BP网络的基本处理单元量为非线性输入-输出的关系,输入层节点阈值为0,且f(x)=x;而隐含层和输出层的作用函数为非线性的Sigmoid型(它是连续可微的)函数,其表达式为
f(x)=1/(1+e-x) (4-55)
设有L个学习样本(Xk,Ok)(k=1,2,…,l),其中Xk为输入,Ok为期望输出,Xk经网络传播后得到的实际输出为Yk,则Yk与要求的期望输出Ok之间的均方误差为
区域地下水功能可持续性评价理论与方法研究
式中:M为输出层单元数;Yk,p为第k样本对第p特性分量的实际输出;Ok,p为第k样本对第p特性分量的期望输出。
样本的总误差为
区域地下水功能可持续性评价理论与方法研究
由梯度下降法修改网络的权值,使得E取得最小值,学习样本对Wij的修正为
区域地下水功能可持续性评价理论与方法研究
式中:η为学习速率,可取0到1间的数值。
所有学习样本对权值Wij的修正为
区域地下水功能可持续性评价理论与方法研究
通常为增加学习过程的稳定性,用下式对Wij再进行修正:
区域地下水功能可持续性评价理论与方法研究
式中:β为充量常量;Wij(t)为BP网络第t次迭代循环训练后的连接权值;Wij(t-1)为BP网络第t-1次迭代循环训练后的连接权值。
在BP网络学习的过程中,先调整输出层与隐含层之间的连接权值,然后调整中间隐含层间的连接权值,最后调整隐含层与输入层之间的连接权值。实现BP网络训练学习程序流程,如图4-5所示(倪深海等,2000)。
图4-5 BP神经网络模型程序框图
若将水质评价中的评价标准作为样本输入,评价级别作为网络输出,BP网络通过不断学习,归纳出评价标准与评价级别间复杂的内在对应关系,即可进行水质综合评价。
BP网络对地下水质量综合评价,其评价方法不需要过多的数理统计知识,也不需要对水质量监测数据进行复杂的预处理,操作简便易行,评价结果切合实际。由于人工神经网络方法具有高度民主的非线性函数映射功能,使得地下水水质评价结果较准确(袁曾任,1999)。
BP网络可以任意逼近任何连续函数,但是它主要存在如下缺点:①从数学上看,它可归结为一非线性的梯度优化问题,因此不可避免地存在局部极小问题;②学习算法的收敛速度慢,通常需要上千次或更多。
神经网络具有学习、联想和容错功能,是地下水水质评价工作方法的改进,如何在现行的神经网络中进一步吸取模糊和灰色理论的某些优点,建立更适合水质评价的神经网络模型,使该模型既具有方法的先进性又具有现实的可行性,将是我们今后研究和探讨的问题。
❺ 神经网络BP算法中,如何选择网络学习效率及阈值调整效率
学习效率一般取0~1之间的数如:0.1,0.4,网络初始化阈值赋值(0,1)区间内随机数,之后通过神经网络训练不断调整。楼主只用调整学习效率就行了
❻ 关于matlab的BP神经网络
1、数据归一化,输入的数据通常为P,输出数据通常为T,数据格式为,每列对应一个样本,归一化常用函数,是归一化后的数据,是归一化的结构体,在后面反归一化预测值;
2、建立网络并设定参数,中括号里面的是输入层数,隐槐察兄含神经元数,输出层数,设定节点传递函数的参数,训练的次数,训练的误差目标没纯值,学习速率,通常在0到1之间;
3、预测并分析,根据之前归一化的标准,对预测结果进行反归一化,得到结果,对误差进行输出,也可以作图,看预测值和真实值能否吻合,还铅袭可以在神经网络训练完成后的对话框中看MSE和R方。