A. 一文看懂卷积神经网络-CNN(基本原理+独特价值+实际应用)
在 CNN 出现之前,图像对于人工智能来说是一个难题,有2个原因:
图像需要处理的数据量太大,导致成本很高,效率很低
图像在数字化的过程中很难保留原有的特征,导致图像处理的准确率不高
下面就详细说明一下这2个问题:
图像是由像素构成的,每个像素又是由颜色构成的。
现在随随便便一张图片都是 1000×1000 像素以上的, 每个像素都有RGB 3个参数来表示颜色信息。
假如我们处理一张 1000×1000 像素的图片,我们就需要处理3百万个参数!
1000×1000×3=3,000,000
这么大量的数据处理起来是非常消耗资源的,而且这只是一张不算太大的图片!
卷积神经网络 – CNN 解决的第一个问题就是“将复杂问题简化”,把大量参数降维成少量参数,再做处理。
更重要的是:我们在大部分场景下,降维并不会影响结果。比如1000像素的图片缩小成200像素,并不影响肉眼认出来图片中是一只猫还是一只狗,机器也是如此。
图片数字化的传统方式我们简化一下,就类似下图的过程:
假如有圆形是1,没有圆形是0,那么圆形的位置不同就会产生完全不同的数据表达。但是从视觉的角度来看, 图像的内容(本质)并没有发生变化,只是位置发生了变化 。
所以当我们移动图像中的物体,用传统的方式的得出来的参数会差异很大!这是不符合图像处理的要求的。
而 CNN 解决了这个问题,他用类似视觉的方式保留了图像的特征,当图像做翻转,旋转或者变换位置时,它也能有效的识别出来是类似的图像。
那么卷积神经网络是如何实现的呢?在我们了解 CNN 原理之前,先来看看人类的视觉原理是什么?
深度学习的许多研究成果,离不开对大脑认知原理的研究,尤其是视觉原理的研究。
1981 年的诺贝尔医学奖,颁发给了 David Hubel(出生于加拿大的美国神经生物学家) 和TorstenWiesel,以及 Roger Sperry。前两位的主要贡献,是“ 发现了视觉系统的信息处理 ”,可视皮层是分级的。
人类的视觉原理如下:从原始信号摄入开始(瞳孔摄入像素 Pixels),接着做初步处理(大脑皮层某些细胞发现边缘和方向),然后抽象(大脑判定,眼前的物体的形状,是圆形的),然后进一步抽象(大脑进一步判定该物体是只气球)。下面是人脑进行人脸识别的一个示例:
对于不同的物体,人类视觉也是通过这样逐层分级,来进行认知的:
我们可以看到,在最底层特征基本上是类似的,就是各种边缘,越往上,越能提取出此类物体的一些特征(轮子、眼睛、躯干等),到最上层,不同的高级特征最终组合成相应的图像,从而能够让人类准确的区分不同的物体。
那么我们可以很自然的想到:可以不可以模仿人类大脑的这个特点,构造多层的神经网络,较低层的识别初级的图像特征,若干底层特征组成更上一层特征,最终通过多个层级的组合,最终在顶层做出分类呢?
答案是肯定的,这也是许多深度学习算法(包括CNN)的灵感来源。
典型的 CNN 由3个部分构成:
卷积层
池化层
全连接层
如果简单来描述的话:
卷积层负责提取图像中的局部特征;池化层用来大幅降低参数量级(降维);全连接层类似传统神经网络的部分,用来输出想要的结果。
下面的原理解释为了通俗易懂,忽略了很多技术细节,如果大家对详细的原理感兴趣,可以看这个视频《 卷积神经网络基础 》。
卷积层的运算过程如下图,用一个卷积核扫完整张图片:
这个过程我们可以理解为我们使用一个过滤器(卷积核)来过滤图像的各个小区域,从而得到这些小区域的特征值。
在具体应用中,往往有多个卷积核,可以认为,每个卷积核代表了一种图像模式,如果某个图像块与此卷积核卷积出的值大,则认为此图像块十分接近于此卷积核。如果我们设计了6个卷积核,可以理解:我们认为这个图像上有6种底层纹理模式,也就是我们用6中基础模式就能描绘出一副图像。以下就是25种不同的卷积核的示例:
总结:卷积层的通过卷积核的过滤提取出图片中局部的特征,跟上面提到的人类视觉的特征提取类似。
池化层简单说就是下采样,他可以大大降低数据的维度。其过程如下:
上图中,我们可以看到,原始图片是20×20的,我们对其进行下采样,采样窗口为10×10,最终将其下采样成为一个2×2大小的特征图。
之所以这么做的原因,是因为即使做完了卷积,图像仍然很大(因为卷积核比较小),所以为了降低数据维度,就进行下采样。
总结:池化层相比卷积层可以更有效的降低数据维度,这么做不但可以大大减少运算量,还可以有效的避免过拟合。
这个部分就是最后一步了,经过卷积层和池化层处理过的数据输入到全连接层,得到最终想要的结果。
经过卷积层和池化层降维过的数据,全连接层才能”跑得动”,不然数据量太大,计算成本高,效率低下。
典型的 CNN 并非只是上面提到的3层结构,而是多层结构,例如 LeNet-5 的结构就如下图所示:
卷积层 – 池化层- 卷积层 – 池化层 – 卷积层 – 全连接层
在了解了 CNN 的基本原理后,我们重点说一下 CNN 的实际应用有哪些。
卷积神经网络 – CNN 很擅长处理图像。而视频是图像的叠加,所以同样擅长处理视频内容。下面给大家列一些比较成熟的应用�:
图像分类、检索
图像分类是比较基础的应用,他可以节省大量的人工成本,将图像进行有效的分类。对于一些特定领域的图片,分类的准确率可以达到 95%+,已经算是一个可用性很高的应用了。
典型场景:图像搜索…
目标定位检测
可以在图像中定位目标,并确定目标的位置及大小。
典型场景:自动驾驶、安防、医疗…
目标分割
简单理解就是一个像素级的分类。
他可以对前景和背景进行像素级的区分、再高级一点还可以识别出目标并且对目标进行分类。
典型场景:美图秀秀、视频后期加工、图像生成…
人脸识别
人脸识别已经是一个非常普及的应用了,在很多领域都有广泛的应用。
典型场景:安防、金融、生活…
骨骼识别
骨骼识别是可以识别身体的关键骨骼,以及追踪骨骼的动作。
典型场景:安防、电影、图像视频生成、游戏…
今天我们介绍了 CNN 的价值、基本原理和应用场景,简单总结如下:
CNN 的价值:
能够将大数据量的图片有效的降维成小数据量(并不影响结果)
能够保留图片的特征,类似人类的视觉原理
CNN 的基本原理:
卷积层 – 主要作用是保留图片的特征
池化层 – 主要作用是把数据降维,可以有效的避免过拟合
全连接层 – 根据不同任务输出我们想要的结果
CNN 的实际应用:
图片分类、检索
目标定位检测
目标分割
人脸识别
骨骼识别
本文首发在 easyAI - 人工智能知识库
《 一文看懂卷积神经网络-CNN(基本原理+独特价值+实际应用) 》
B. GCN图卷积网络入门详解
在这篇文章中,我们将仔细研究一个名为GCN的着名图神经网络。首先,我们先直观的了解一下它的工作原理,然后再深入了解它背后的数学原理。
字幕组双语原文: 【GCN】图卷积网络(GCN)入门详解
英语原文: Graph Convolutional Networks (GCN)
翻译: 听风1996 、 大表哥
许多问题的本质上都是图。在我们的世界里,我们看到很多数据都是图,比如分子、社交网络、论文引用网络。
图的例子。(图片来自[1])
在图中,我们有节点特征(代表节点的数据)和图的结构(表示节点如何连接)。
对于节点来说,我们可以很容易地得到每个节点的数据。但是当涉及到图的结构时,要从中提取有用的信息就不是一件容易的事情了。例如,如果2个节点彼此距离很近,我们是否应该将它们与其他对节点区别对待呢?高低度节点又该如何处理呢?其实,对于每一项具体的工作,仅仅是特征工程,即把图结构转换为我们的特征,就会消耗大量的时间和精力。
图上的特征工程。(图片来自[1])
如果能以某种方式同时得到图的节点特征和结构信息作为输入,让机器自己去判断哪些信息是有用的,那就更好了。
这也是为什么我们需要图表示学习的原因。
我们希望图能够自己学习 "特征工程"。(图片来自[1])
论文 :基于图神经网络的半监督分类 (2017)[3]
GCN是一种卷积神经网络,它可以直接在图上工作,并利用图的结构信息。
它解决的是对图(如引文网络)中的节点(如文档)进行分类的问题,其中仅有一小部分节点有标签(半监督学习)。
在Graphs上进行半监督学习的例子。有些节点没有标签(未知节点)。
就像"卷积"这个名字所指代的那样,这个想法来自于图像,之后引进到图(Graphs)中。然而,当图像有固定的结构时,图(Graphs)就复杂得多。
从图像到图形的卷积思想。 (图片来自[1])
GCN的基本思路:对于每个节点,我们从它的所有邻居节点处获取其特征信息,当然也包括它自身的特征。假设我们使用average()函数。我们将对所有的节点进行同样的操作。最后,我们将这些计算得到的平均值输入到神经网络中。
在下图中,我们有一个引文网络的简单实例。其中每个节点代表一篇研究论文,同时边代表的是引文。我们在这里有一个预处理步骤。在这里我们不使用原始论文作为特征,而是将论文转换成向量(通过使用NLP嵌入,例如tf-idf)。NLP嵌入,例如TF-IDF)。
让我们考虑下绿色节点。首先,我们得到它的所有邻居的特征值,包括自身节点,接着取平均值。最后通过神经网络返回一个结果向量并将此作为最终结果。
GCN的主要思想。我们以绿色节点为例。首先,我们取其所有邻居节点的平均值,包括自身节点。然后,将平均值通过神经网络。请注意,在GCN中,我们仅仅使用一个全连接层。在这个例子中,我们得到2维向量作为输出(全连接层的2个节点)。
在实际操作中,我们可以使用比average函数更复杂的聚合函数。我们还可以将更多的层叠加在一起,以获得更深的GCN。其中每一层的输出会被视为下一层的输入。
2层GCN的例子:第一层的输出是第二层的输入。同样,注意GCN中的神经网络仅仅是一个全连接层(图片来自[2])。
让我们认真从数学角度看看它到底是如何起作用的。
首先,我们需要一些注解
我们考虑图G,如下图所示。
从图G中,我们有一个邻接矩阵A和一个度矩阵D。同时我们也有特征矩阵X。
那么我们怎样才能从邻居节点处得到每一个节点的特征值呢?解决方法就在于A和X的相乘。
看看邻接矩阵的第一行,我们看到节点A与节点E之间有连接,得到的矩阵第一行就是与A相连接的E节点的特征向量(如下图)。同理,得到的矩阵的第二行是D和E的特征向量之和,通过这个方法,我们可以得到所有邻居节点的向量之和。
计算 "和向量矩阵 "AX的第一行。
在问题(1)中,我们可以通过在A中增加一个单位矩阵I来解决,得到一个新的邻接矩阵Ã。
取lambda=1(使得节点本身的特征和邻居一样重要),我们就有Ã=A+I,注意,我们可以把lambda当做一个可训练的参数,但现在只要把lambda赋值为1就可以了,即使在论文中,lambda也只是简单的赋值为1。
通过给每个节点增加一个自循环,我们得到新的邻接矩阵
对于问题(2): 对于矩阵缩放,我们通常将矩阵乘以对角线矩阵。在当前的情况下,我们要取聚合特征的平均值,或者从数学角度上说,要根据节点度数对聚合向量矩阵ÃX进行缩放。直觉告诉我们这里用来缩放的对角矩阵是和度矩阵D̃有关的东西(为什么是D̃,而不是D?因为我们考虑的是新邻接矩阵Ã 的度矩阵D̃,而不再是A了)。
现在的问题变成了我们要如何对和向量进行缩放/归一化?换句话说:
我们如何将邻居的信息传递给特定节点?我们从我们的老朋友average开始。在这种情况下,D̃的逆矩阵(即,D̃^{-1})就会用起作用。基本上,D̃的逆矩阵中的每个元素都是对角矩阵D中相应项的倒数。
例如,节点A的度数为2,所以我们将节点A的聚合向量乘以1/2,而节点E的度数为5,我们应该将E的聚合向量乘以1/5,以此类推。
因此,通过D̃取反和X的乘法,我们可以取所有邻居节点的特征向量(包括自身节点)的平均值。
到目前为止一切都很好。但是你可能会问加权平均()怎么样?直觉上,如果我们对高低度的节点区别对待,应该会更好。
但我们只是按行缩放,但忽略了对应的列(虚线框)。
为列增加一个新的缩放器。
新的缩放方法给我们提供了 "加权 "的平均值。我们在这里做的是给低度的节点加更多的权重,以减少高度节点的影响。这个加权平均的想法是,我们假设低度节点会对邻居节点产生更大的影响,而高度节点则会产生较低的影响,因为它们的影响力分散在太多的邻居节点上。
在节点B处聚合邻接节点特征时,我们为节点B本身分配最大的权重(度数为3),为节点E分配最小的权重(度数为5)。
因为我们归一化了两次,所以将"-1 "改为"-1/2"
例如,我们有一个多分类问题,有10个类,F 被设置为10。在第2层有了10个维度的向量后,我们将这些向量通过一个softmax函数进行预测。
Loss函数的计算方法很简单,就是通过对所有有标签的例子的交叉熵误差来计算,其中Y_{l}是有标签的节点的集合。
层数是指节点特征能够传输的最远距离。例如,在1层的GCN中,每个节点只能从其邻居那里获得信息。每个节点收集信息的过程是独立进行的,对所有节点来说都是在同一时间进行的。
当在第一层的基础上再叠加一层时,我们重复收集信息的过程,但这一次,邻居节点已经有了自己的邻居的信息(来自上一步)。这使得层数成为每个节点可以走的最大跳步。所以,这取决于我们认为一个节点应该从网络中获取多远的信息,我们可以为#layers设置一个合适的数字。但同样,在图中,通常我们不希望走得太远。设置为6-7跳,我们就几乎可以得到整个图,但是这就使得聚合的意义不大。
例: 收集目标节点 i 的两层信息的过程
在论文中,作者还分别对浅层和深层的GCN进行了一些实验。在下图中,我们可以看到,使用2层或3层的模型可以得到最好的结果。此外,对于深层的GCN(超过7层),反而往往得到不好的性能(虚线蓝色)。一种解决方案是借助隐藏层之间的残余连接(紫色线)。
不同层数#的性能。图片来自论文[3]
论文作者的说明
该框架目前仅限于无向图(加权或不加权)。但是,可以通过将原始有向图表示为一个无向的两端图,并增加代表原始图中边的节点,来处理有向边和边特征。
对于GCN,我们似乎可以同时利用节点特征和图的结构。然而,如果图中的边有不同的类型呢?我们是否应该对每种关系进行不同的处理?在这种情况下如何聚合邻居节点?最近有哪些先进的方法?
在图专题的下一篇文章中,我们将研究一些更复杂的方法。
如何处理边的不同关系(兄弟、朋友、......)?
[1] Excellent slides on Graph Representation Learning by Jure Leskovec (Stanford): https://drive.google.com/file/d//view?usp=sharing
[2] Video Graph Convolutional Networks (GCNs) made simple: https://www.youtube.com/watch?v=2KRAOZIULzw
[3] Paper Semi-supervised Classification with Graph Convolutional Networks (2017): https://arxiv.org/pdf/1609.02907.pdf
[4] GCN source code: https://github.com/tkipf/gcn
[5] Demo with StellarGraph library: https://stellargraph.readthedocs.io/en/stable/demos/node-classification/gcn-node-classification.html
雷锋字幕组是一个由AI爱好者组成的翻译团队,汇聚五五多位志愿者的力量,分享最新的海外AI资讯,交流关于人工智能技术领域的行业转变与技术创新的见解。
团队成员有大数据专家,算法工程师,图像处理工程师,产品经理,产品运营,IT咨询人,在校师生;志愿者们来自IBM,AVL,Adobe,阿里,网络等知名企业,北大,清华,港大,中科院,南卡罗莱纳大学,早稻田大学等海内外高校研究所。
如果,你也是位热爱分享的AI爱好者。欢迎与雷锋字幕组一起,学习新知,分享成长。
C. 如何利用卷积神经网络提取图像特征
卷积神经网络有以下几种应用可供研究: 1、基于卷积网络的形状识别 物体的形状是人的视觉系统分析和识别物体的基础,几何形状是物体的本质特征的表现,并具有平移、缩放和旋转不变等特点,所以在模式识别领域,对于形状的分析和识别具有十分重要的意义,而二维图像作为三维图像的特例以及组成部分,因此二维图像的识别是三维图像识别的基础。 2、基于卷积网络的人脸检测 卷积神经网络与传统的人脸检测方法不同,它是通过直接作用于输入样本,用样本来训练网络并最终实现检测任务的。它是非参数型的人脸检测方法,可以省去传统方法中建模、参数估计以及参数检验、重建模型等的一系列复杂过程。本文针对图像中任意大小、位置、姿势、方向、肤色、面部表情和光照条件的人脸。 3、文字识别系统 在经典的模式识别中,一般是事先提取特征。提取诸多特征后,要对这些特征进行相关性分析,找到最能代表字符的特征,去掉对分类无关和自相关的特征。然而,这些特征的提取太过依赖人的经验和主观意识,提取到的特征的不同对分类性能影响很大,甚至提取的特征的顺序也会影响最后的分类性能。同时,图像预处理的好坏也会影响到提取的特征。
D. 深度卷积网络
LeNet网络的结构如下图所示,可以看出,LeNet网络并没有使用padding,每进行一次卷积,图像的高度和宽度都会缩小,而通道数会一直增加。在全连接层中有400个节点,每个极点都有120个神经元,有时还会从这400个节点抽取一部分节点构建一个全连接层,即有两个全连接层。在该网络中,最后一步就是利用84个特征得到最后的输出,该网络刚开始使用的是 sigmoid 函数 tanh 函数,而现在常常倾向于使用 softmax 函数。需要注意的是,LeNet-5网络进行图像分类时,输入的图像是单通道的灰度图像。
AlexNet是以论文第一作者的名字命名的,该网络的结构,如下图所示,该网络的输出层使用了 softmax 函数。AlexNet网络比LeNet网络规模更大,大约有6000万个参数,用于训练图像和数据集时,能够处理非常相似的基本构造模块,这些模块中包含着大量的隐藏单元,并且与LeNet网络不同的是,该网络使用了ReLu的激活函数。
VGG-16网络没有太多的超参数,这是一种专注于构建卷积层的简单网络。如下图所示,该网络首先利用64个过滤器进行了两次卷积,接着在池化层将输入图像压缩,接着又是128个过滤器进行两次卷积,接着载池化。继续用256个过滤器进行3次卷积,再池化,接着再利用512个过滤器卷积3次,再池化,将稍后得到的特征图进行全连接操作,再进 softmax 激活。
由于存在梯度消失和梯度爆炸的原因,深层次的神经网络是很难训练的,如果采用一种跳跃连接的方式,即从某一层网络层获取激活,然后迅速反馈给另外一层,甚至是神经网络的更深层。这种利用跳跃连接构建的深度神经网络ResNets,深度能够超过100层
一个简单的两层神经网络示例,如下图所示:
常规的输出和输出之间的关系可以用如下的公式表示:
如上公式所述,这是一条神经网络的主路径。如果将 的输入直接到深层的激活函数之前,此时,神经网络有了一条副路径,其对应输出将有公式(5)变成如下所示的公式(6)
此时的输入除了原先的输入 外,多了一个 项,即由于 产生了一个残差块。
构建一个ResNet网络就是将很多这样的残差块堆积在一起,形成一个深度神经网络,如下所示:
使用传统的标准优化算法训练一个网络,随着网络深度的增加,训练误差会先减小再增加,随着网络层数的增加,优化算法会越难以训练,训练误差也会越来越多。但是,使用ResNet网络,能够有效地避免这种情况。
如上所述,加入残差网络之后,其输出计算公式如公式(6)所示,展开这个公式,则有:
如果使用L2正则化或者权重衰减,则会压缩权重参数 的值,如果参数 和参数 等于0,其输出将由公式(7)变成 ,假定使用ReLU激活函数,则有:
由于残差网络存在的这种跳跃连接,很容易得出以上等式,这意味着,即使给神经网络增加两层,但是其效率并不逊色与更简单的神经网络。并且由于存在以上恒等式,使得网络学习隐藏层的单元的信息更加容易。而普通网络,随着网络层数的增加,学习参数会变得很困难。
此外,关于残差网络,如公式(6)所示,假设 与 具有相同的维度,由于ResNets使用了许多same卷积, 的维度等于输出层的维度。如果输入和输出具有不同的维度,可以再增加一个矩阵 ,使得 和 具有相同的维度。而 的维度可以通过0值填充调节。
在卷积网络的架构设计中,一种有趣的想法是会使用到1×1的过滤矩阵,实际上,对于单通道的图像而言,1×1的过滤矩阵,意义不大,但是,对于多通道的图像而言,1×1的过滤矩阵能够有效减少图像卷积之后的通道数量。
根据卷积和池化的基本知识,随着神经网络层数的增加,图像的通道数量会逐渐增加,采用1×1的过滤矩阵卷积之后,可以有效减少图像的通道数量,一个简单的示例,如下所示:
假设有一个6×6×32的图片,使用1×1×32的过滤矩阵进行卷积运算,整个运算过程将会遍历36个单元格,并计算过滤矩阵所覆盖区域的元素积之和,将其应用到ReLu非线性函数,会得到一个输出值。此计算过程中,可能会用到多个1×1×32的过滤器,那么,通过以上计算会得到一个 6×6×过滤器数量 的矩阵。
构建卷积神经网络时,有时会很难决定过滤器的大小,而Inception网络的引入,却能很好的解决这个问题。
Inception网络的作用就是代替人工确定选择卷积层的过滤器类型。如下图所示,对于一个多通道图像,可以使用不同的过滤矩阵或者池化层,得到不同的输出,将这些输出堆积起来。
有了如上图所示的Inception块,最终输出为32+32+64+128=256,而Inception模块的输入为28×28×192,其整个计算成本,以5×5的过滤矩阵为例,其乘法的计算次数为:28×28×32×5×5×192,整个计算次数超过了1.2亿次。而如果使用如下所示的优化计算方法,则可以有效减少计算量。
如果利用1×1的过滤器,将输入矩阵的通道减少至16,则可以有效减少计算量,如下所示:
如上图所示的价格中,整个网络的运算次数为:28×28×192×16+28×28×32×5×5×16=1240万,整个计算成本降低至原来的十分之一。而,通过1×1×192过滤器卷积得到的这个网络层被称之为瓶颈层。
如上,所示,可以给每一个非1×1的卷积层之前,加入一个1×1的瓶颈层,就可以构建一个基本的inception模块了,如下图所示:
而一个inception网络就是多个Inception模块连接起来,如下图所示:
事实上,以上网络中,还存在一些分支,如编号1所示,这些分支就是全连接层,而全连接层之后就是一个softmax层用于预测。又如分支2所示,包含一些隐藏层(编号3),通过全连接层和softmax进行预测。这些分支结构能够确保,即使是隐藏层和中间层也参与了特征计算,并且也能够预测图片的分类。这种做法能够有效避免网络过拟合。
对于计算机视觉领域而言,神经网络的训练可能需要大量的数据,但是当数据量有限时,可以通过数据增强来实现数据量的扩充,以提高系统的鲁棒性,具体的数据增强方法如下所示:
除了以上三种数据增强的方法外,更多的数据增强方法和实现可以参考 图像数据增强
数据增强可以利用计算机多线程实现,一个线程用来实现加载数据,实现数据增强,其他线程可以训练这些数据以加快整体的运算速度。
E. 卷积神经网络CNN(Convolutional Neural Network)
上图计算过程为,首先我们可以将右边进行卷积的可以称为过滤器也可以叫做核,覆盖到左边第一个区域,然后分别按照对应位置相乘再相加,3*1+1*1+2*1+0*0+0*0+0*0+1*(-1)+8*(-1)+2*(-1)=-5;
按照上述的计算方法逐步按右移一个步长(步长可以设定为1,2,...等),然后按往下移,逐渐计算相应的值,得出最终的值。
如上图显示,对于第一个图像矩阵对应的图,一边是白色,一边是黑色,那么中间就会存在一个垂直的边缘,我们可以选择一个垂直边缘检测过滤器,如乘法右边的矩阵,那么两者做卷积后得出的图会显示如等号右边的结果矩阵对应的灰度图中间会有一个白色的中间带,也就是检测出来的边缘,那为什么感觉中间边缘带会比较宽呢?而不是很细的一个局域呢?原因是我们输入的图像只有6*6,过于小了,如果我们选择输出更大的尺寸的图,那么结果来说就是相对的一个细的边缘检测带,也就将我们的垂直边缘特征提取出来了。
上述都是人工选择过滤器的参数,随着神经网络的发展我们可以利用反向传播算法来学习过滤器的参数
我们可以将卷积的顾虑器的数值变成一个参数,通过反向传播算法去学习,这样学到的过滤器或者说卷积核就能够识别到很多的特征,而不是依靠手工选择过滤器。
- padding 操作,卷积经常会出现两个问题:
1.每经过一次卷积图像都会缩小,如果卷积层很多的话,后面的图像就缩的很小了;
2.边缘像素利用次数只有一次,很明显少于位于中间的像素,因此会损失边缘图像信息。
为了解决上述的问题,我们可以在图像边缘填充像素,也就是 padding 操作了。
如果我们设置在图像边缘填充的像素数为p,那么经过卷积后的图像是:(n+2p-f+1)x(n+2p-f+1).
如何去选择p呢
通常有两种选择:
-Valid:也就是说不填充操作(no padding),因此如果我们有nxn的图像,fxf的过滤器,那么我们进行卷积nxn fxf=(n-f+1)x(n-f+1)的输出图像;
-Same:也就是填充后是输出图像的大小的与输入相同,同样就有(n+2p)x(n+2p) fxf=nxn,那么可以算,n+2p-f+1=n,得到p=(f-1)/2。
通常对于过滤器的选择有一个默认的准则就是选择过滤器的尺寸是奇数的过滤器。
- 卷积步长设置(Strided COnvolution)
卷积步长也就是我们进行卷积操作时,过滤器每次移动的步长,上面我们介绍的卷积操作步长默认都是1,也就是说每次移动过滤器时我们是向右移动一格,或者向下移动一格。
但是我们可以对卷积进行步长的设置,也就是我们能够对卷积移动的格数进行设置。同样假如我们的图像是nxn,过滤器是fxf,padding设置是p,步长strided设置为s,那么我们进行卷积操作后输出的图像为((n+2p-f)/s+1)x((n+2p-f)/s+1),那么这样就会出现一个问题,如果计算结果不是整数怎么办?
一般是选择向下取整,也就是说明,只有当我们的过滤器完全在图像上能够覆盖时才对它进行计算,这是一个惯例。
实际上上述所述的操作在严格数学角度来说不是卷积的定义,卷积的定义上我们计算的时候在移动步长之前也就是对应元素相乘之前是需要对卷积核或者说我们的过滤器进行镜像操作的,经过镜像操作后再把对应元素进行相乘这才是严格意义上的卷积操作,在数学角度上来说这个操作不算严格的卷积操作应该是属于互相关操作,但是在深度学习领域中,大家按照惯例都省略了反转操作,也把这个操作叫做卷积操作
我们知道彩色图像有RGB三个通道,因此对于输入来说是一个三维的输入,那么对三维输入的图像如何进行卷积操作呢?
例子,如上图我们输入图像假设为6×6×3,3代表有RGB三个通道channel,或者可以叫depth深度,过滤器的选择为3×3×3,其中需要规定的是,顾虑器的channel必须与输入图像的channel相同,长宽没有限制,那么计算过程是,我们将过滤器的立体覆盖在输入,这样对应的27个数对应相乘后相加得到一个数,对应到我们的输出,因此这样的方式进行卷积后我们得出的输出层为4×4×1。如果我们有多个过滤器,比如我们分别用两个过滤器一个提取垂直特征,一个提取水平特征,那么输出图4×4×2 。也就是代表我们输出的深度或者说通道与过滤器的个数是相等的。
第l层的卷积标记如下:
加入我们的过滤器是3×3×3规格的,如果我们设定10个过滤器,那么需要学习的参数总数为每个过滤器为27个参数然后加上一个偏差bias那么每个过滤器的参数为28个,所以十个过滤器的参数为280个。从这里也就可以看出,不管我们输入的图片大小是多大,我们都只需要计算这些参数,因此参数共享也就很容易理解了。
为了缩减模型的大小,提高计算速度,同时提高所提取特征的鲁棒性,我们经常会使用池化层。池化层的计算方式与卷积类似,只是我们需要对每一个通道都进行池化操作。
池化的方式一般有两种:Max Pooling和Average Pooling。
上面为Max Pooling,那么计算方法与卷积类似,首先设定超参数比如过滤器的大小与步长,然后覆盖到对应格子上面,用最大值取代其值作为输出的结果,例如上图为过滤器选择2×2,步长选择为2,因此输出就是2×2的维度,每个输出格子都是过滤器对应维度上输入的最大值。如果为平均池化,那么就是选择其间的平均值作为输出的值。
因此从上面的过程我们看到,通过池化操作能够缩小模型,同时能让特征值更加明显,也就提高了提取特征的鲁棒性。
F. 卷积神经网络(CNN)基础
在七月初七情人节,牛郎织女相见的一天,我终于学习了CNN(来自CS231n),感觉感触良多,所以赶快记下来,别忘了,最后祝大家情人节快乐5555555.正题开始!
CNN一共有卷积层(CONV)、ReLU层(ReLU)、池化层(Pooling)、全连接层(FC(Full Connection))下面是各个层的详细解释。
卷积,尤其是图像的卷积,需要一个滤波器,用滤波器对整个图像进行遍历,我们假设有一个32*32*3的原始图像A,滤波器的尺寸为5*5*3,用w表示,滤波器中的数据就是CNN的参数的一部分,那么在使用滤波器w对A进行滤波的话,可以用下面的式子表示:
其中x为原始图像的5*5*3的一部分,b是偏置项置为1。在对A进行滤波之后,产生的是一个28*28*1的数据。那么假设我们存在6个滤波器,这六个滤波器之间彼此是独立的,也就是他们内部的数据是不同的且没有相关性的。可以理解为一个滤波器查找整幅图像的垂直边缘,一个查找水平边缘,一个查找红色,一个查找黑色这样。那么我就可以产生6个28*28*1的数据,将它们组合到一起就可以产生28*28*6的数据,这就是卷积层主要做的工作。
CNN可以看作一系列的卷积层和ReLU层对原始数据结构进行处理的神经网络,处理的过程可以用下面这幅图表示
特别要注意的是滤波器的深度一定要与上一层传来的数据的深度相同,就像上图的第二个卷积层在处理传来的28*28*6的数据时要使用5*5*6的滤波器.
滤波器在图像上不断移动对图像滤波,自然存在步长的问题,在上面我们举的例子都是步长为1的情况,如果步长为3的话,32*32*3的图像经过5*5*3的滤波器卷积得到的大小是(32-5)/3+1=10, 注:步长不能为2因为(32-5)/2+1=14.5是小数。
所以当图像大小是N,滤波器尺寸为F时,步长S,那么卷积后大小为(N-F)/S+1
我们从上面的图中可以看到图像的长和宽在逐渐的减小,在经过超过5层之后极可能只剩下1*1的空间尺度,这样是十分不好的,而且也不利于我们接下来的计算,所以我们想让卷积层处理完之后图像在空间尺度上大小不变,所以我们引入了pad the border的操作。pad其实就是在图像周围补0,扩大图像的尺寸,使得卷积后图像大小不变。在CNN中,主要存在4个超参数,滤波器个数K,滤波器大小F,pad大小P和步长S,其中P是整数,当P=1时,对原始数据的操作如图所示:
那么在pad操作后卷积后的图像大小为:(N-F+2*P)/S+1
而要想让卷积层处理后图像空间尺度不变,P的值可以设为P=(F-1)/2
卷积层输入W 1 *H 1 *D 1 大小的数据,输出W 2 *H 2 *D 2 的数据,此时的卷积层共有4个超参数:
K:滤波器个数
P:pad属性值
S:滤波器每次移动的步长
F:滤波器尺寸
此时输出的大小可以用输入和超参计算得到:
W 2 =(W 1 -F+2P)/S+1
H 2 =(H 1 -F+2P)/S+1
D 2 =D 1
1*1的滤波器也是有意义的,它在深度方向做卷积,例如1*1*64的滤波器对56*56*64的数据卷积得到56*56的数据
F通常是奇数,这样可以综合考虑上下左右四个方向的数据。
卷积层从神经元的角度看待可以有两个性质: 参数共享和局域连接 。对待一个滤波器,例如5*5*3的一个滤波器,对32*32*3的数据卷积得到28*28的数据,可以看作存在28*28个神经元,每个对原图像5*5*3的区域进行计算,这28*28个神经元由于使用同一个滤波器,所以参数相同,我们称这一特性为 参数共享 。
针对不同的滤波器,我们可以看到他们会看到同一区域的图像,相当于在深度方向存在多个神经元,他们看着相同区域叫做 局域连接
参数共享减少了参数的数量,防止了过拟合
局域连接为查找不同特征更丰富的表现图像提供了可能。
卷积就像是对原图像的另一种表达。
激活函数,对于每一个维度经过ReLU函数输出即可。不改变数据的空间尺度。
通过pad操作,输出图像在控件上并没有变化,但是深度发生了变化,越来越庞大的数据给计算带来了困难,也出现了冗余的特征,所以需要进行池化操作,池化不改变深度,只改变长宽,主要有最大值和均值两种方法,一般的池化滤波器大小F为2步长为2,对于最大值池化可以用下面的图像清晰的表示:
卷积层输入W 1 *H 1 *D 1 大小的数据,输出W 2 *H 2 *D 2 的数据,此时的卷积层共有2个超参数:
S:滤波器每次移动的步长
F:滤波器尺寸
此时输出的大小可以用输入和超参计算得到:
W 2 =(W 1 -F)/S+1
H 2 =(H 1 -F)/S+1
D 2 =D 1
将最后一层(CONV、ReLU或Pool)处理后的数据输入全连接层,对于W 2 *H 2 *D 2 数据,我们将其展成1*1*W 2 *H 2 *D 2 大小的数据,输入层共有W 2 *H 2 *D 2 个神经元,最后根据问题确定输出层的规模,输出层可以用softmax表示。也就是说,全连接层就是一个常见的BP神经网络。而这个网络也是参数最多的部分,是接下来想要去掉的部分。完整的神经网络可以用下面的图表示:
[(CONV-ReLU)*N-POOL?]*M-(FC-RELU)*K,SoftMax
1.更小的滤波器与更深的网络
2.只有CONV层而去掉池化与全链接
最早的CNN,用于识别邮编,结构为:
CONV-POOL-CONV-POOL-CONV-FC
滤波器大小5*5,步长为1,池化层2*2,步长为2
2012年由于GPU技术所限,原始AlexNet为两个GPU分开计算,这里介绍合起来的结构。
输入图像为227*227*3
1.首次使用ReLU
2.使用Norm layers,现在已经抛弃,因为效果不大
3.数据经过预处理(例如大小变化,颜色变化等)
4.失活比率0.5
5.batch size 128
6.SGD Momentum 参数0.9(SGD和Momentum见我的其他文章)
7.学习速率 0.01,准确率不在提升时减少10倍,1-2次后达到收敛
8.L2权重减少0.0005
9.错误率15.4%
改进自AlexNet,主要改变:
1.CONV1的滤波器从11*11步长S=4改为7*7步长为2.
2.CONV3,4,5滤波器数量有384,384,256改为512,1024,512(滤波器数量为2的n次幂有利于计算机计算可以提高效率)
错误率:14.8%后继续改进至11.2%
当前最好的最易用的CNN网络,所有卷积层滤波器的大小均为3*3,步长为1,pad=1,池化层为2*2的最大值池化,S=2。
主要参数来自全连接层,这也是想要去掉FC的原因。
具有高度的统一性和线性的组合,易于理解,十分方便有VGG-16,VGG-19等多种结构。
错误率7.3%
完全移除FC层,参数只有500万,使用Inception模块(不太理解,有时间继续看)
准确率6.67%
准确率3.6%
拥有极深的网络结构,且越深准确率越高。是传统CNN不具备的特点,传统CNN并非越深越准确。需要训练时间较长但是快于VGG
1.每个卷积层使用Batch Normalization
2.Xavier/2初始化
3.SGD+Momentum(0.9)
4.Learning rate:0.1,准确率不变减小10倍(因为Batch Normalization所以比AlexNet大)
5.mini-batch size 256
6.Weight decay of 0.00001
7.不适用失活(因为Batch Normalization)
具体的梯度过程学完ResNet再说吧。