导航:首页 > 网络安全 > 神经网络偏置b如何训练

神经网络偏置b如何训练

发布时间:2023-07-23 14:45:34

A. 深度神经网络是如何训练的

Coursera的Ng机器学习,UFLDL都看过。没记错的话Ng的机器学习里是直接给出公式了,虽然你可能知道如何求解,但是即使不知道完成作业也不是问题,只要照着公式写就行。反正我当时看的时候心里并没能比较清楚的明白。我觉得想了解深度学习UFLDL教程 - Ufldl是不错的。有习题,做完的话确实会对深度学习有更加深刻的理解,但是总还不是很清晰。后来看了Li FeiFei的Stanford University CS231n: Convolutional Neural Networks for Visual Recognition,我的感觉是对CNN的理解有了很大的提升。沉下心来推推公式,多思考,明白了反向传播本质上是链式法则(虽然之前也知道,但是当时还是理解的迷迷糊糊的)。所有的梯度其实都是对最终的loss进行求导得到的,也就是标量对矩阵or向量的求导。当然同时也学到了许多其他的关于cnn的。并且建议你不仅要完成练习,最好能自己也写一个cnn,这个过程可能会让你学习到许多更加细节和可能忽略的东西。这样的网络可以使用中间层构建出多层的抽象,正如我们在布尔线路中做的那样。例如,如果我们在进行视觉模式识别,那么在第一层的神经元可能学会识别边,在第二层的神经元可以在边的基础上学会识别出更加复杂的形状,例如三角形或者矩形。第三层将能够识别更加复杂的形状。依此类推。这些多层的抽象看起来能够赋予深度网络一种学习解决复杂模式识别问题的能力。然后,正如线路的示例中看到的那样,存在着理论上的研究结果告诉我们深度网络在本质上比浅层网络更加强大。

B. 从零开始用Python构建神经网络

从零开始用Python构建神经网络
动机:为了更加深入的理解深度学习,我们将使用 python 语言从头搭建一个神经网络,而不是使用像 Tensorflow 那样的封装好的框架。我认为理解神经网络的内部工作原理,对数据科学家来说至关重要。
这篇文章的内容是我的所学,希望也能对你有所帮助。
神经网络是什么?
介绍神经网络的文章大多数都会将它和大脑进行类比。如果你没有深入研究过大脑与神经网络的类比,那么将神经网络解释为一种将给定输入映射为期望输出的数学关系会更容易理解。
神经网络包括以下组成部分
? 一个输入层,x
? 任意数量的隐藏层
? 一个输出层,?
? 每层之间有一组权值和偏置,W and b
? 为隐藏层选择一种激活函数,σ。在教程中我们使用 Sigmoid 激活函数
下图展示了 2 层神经网络的结构(注意:我们在计算网络层数时通常排除输入层)

2 层神经网络的结构
用 Python 可以很容易的构建神经网络类

训练神经网络
这个网络的输出 ? 为:

你可能会注意到,在上面的等式中,输出 ? 是 W 和 b 函数。
因此 W 和 b 的值影响预测的准确率. 所以根据输入数据对 W 和 b 调优的过程就被成为训练神经网络。
每步训练迭代包含以下两个部分:
? 计算预测结果 ?,这一步称为前向传播
? 更新 W 和 b,,这一步成为反向传播
下面的顺序图展示了这个过程:

前向传播
正如我们在上图中看到的,前向传播只是简单的计算。对于一个基本的 2 层网络来说,它的输出是这样的:

我们在 NeuralNetwork 类中增加一个计算前向传播的函数。为了简单起见我们假设偏置 b 为0:

但是我们还需要一个方法来评估预测结果的好坏(即预测值和真实值的误差)。这就要用到损失函数。
损失函数
常用的损失函数有很多种,根据模型的需求来选择。在本教程中,我们使用误差平方和作为损失函数。
误差平方和是求每个预测值和真实值之间的误差再求和,这个误差是他们的差值求平方以便我们观察误差的绝对值。
训练的目标是找到一组 W 和 b,使得损失函数最好小,也即预测值和真实值之间的距离最小。
反向传播
我们已经度量出了预测的误差(损失),现在需要找到一种方法来传播误差,并以此更新权值和偏置。
为了知道如何适当的调整权值和偏置,我们需要知道损失函数对权值 W 和偏置 b 的导数。
回想微积分中的概念,函数的导数就是函数的斜率。

梯度下降法
如果我们已经求出了导数,我们就可以通过增加或减少导数值来更新权值 W 和偏置 b(参考上图)。这种方式被称为梯度下降法。
但是我们不能直接计算损失函数对权值和偏置的导数,因为在损失函数的等式中并没有显式的包含他们。因此,我们需要运用链式求导发在来帮助计算导数。

链式法则用于计算损失函数对 W 和 b 的导数。注意,为了简单起见。我们只展示了假设网络只有 1 层的偏导数。
这虽然很简陋,但是我们依然能得到想要的结果—损失函数对权值 W 的导数(斜率),因此我们可以相应的调整权值。
现在我们将反向传播算法的函数添加到 Python 代码中

为了更深入的理解微积分原理和反向传播中的链式求导法则,我强烈推荐 3Blue1Brown 的如下教程:
Youtube:https://youtu.be/tIeHLnjs5U8
整合并完成一个实例
既然我们已经有了包括前向传播和反向传播的完整 Python 代码,那么就将其应用到一个例子上看看它是如何工作的吧。

神经网络可以通过学习得到函数的权重。而我们仅靠观察是不太可能得到函数的权重的。
让我们训练神经网络进行 1500 次迭代,看看会发生什么。 注意观察下面每次迭代的损失函数,我们可以清楚地看到损失函数单调递减到最小值。这与我们之前介绍的梯度下降法一致。

让我们看看经过 1500 次迭代后的神经网络的最终预测结果:

经过 1500 次迭代训练后的预测结果
我们成功了!我们应用前向和方向传播算法成功的训练了神经网络并且预测结果收敛于真实值。
注意预测值和真实值之间存在细微的误差是允许的。这样可以防止模型过拟合并且使得神经网络对于未知数据有着更强的泛化能力。
下一步是什么?
幸运的是我们的学习之旅还没有结束,仍然有很多关于神经网络和深度学习的内容需要学习。例如:
? 除了 Sigmoid 以外,还可以用哪些激活函数
? 在训练网络的时候应用学习率
? 在面对图像分类任务的时候使用卷积神经网络
我很快会写更多关于这个主题的内容,敬请期待!
最后的想法
我自己也从零开始写了很多神经网络的代码
虽然可以使用诸如 Tensorflow 和 Keras 这样的深度学习框架方便的搭建深层网络而不需要完全理解其内部工作原理。但是我觉得对于有追求的数据科学家来说,理解内部原理是非常有益的。
这种练习对我自己来说已成成为重要的时间投入,希望也能对你有所帮助

C. 用最简单的神经网络做数据分类,展示神经网络训练过程

本文用简单的神经网络做数据分类,展示神经网络训练过程,伏薯方便理解缺锋者
神经网络模型:Y = w1 x1 + w2 x2 + b
第一步 :生成训练数据与标签

第二步 :合并数据并将数据打乱,然后将数据转换为Paddle框架基知所需要的数据类型

第三步 ,基于Paddle,构建神经网络、定义损失函数和优化器:Y = w1 x1 + w2 x2 + b

第四步 ,构建训练过程

最后一步 ,绘制训练结果

D. 卷积神经网络LeNet-5结构卷积采样中加偏置Bx的作用是什么

简单的讲吧
h(x)=f(wx+b)
上式子就是神经元所表示的函数,x表示输入,w表示权重,b表示偏置,f表示激活函数,h(x)表示输出。
训练卷积神经网络的过程就是不断调整权重w与偏置b的过程,以使其输出h(x)达到预期值。
权重w与偏置b就相当于神经元的记忆。
至于你说的为什么要偏置b可以看看这个博客http://blog.csdn.net/xwd18280820053/article/details/70681750
从其根本上讲,就是不加偏置b的话,上面的函数就必定经过原点,进行分类的适用范围就少了不是吗

阅读全文

与神经网络偏置b如何训练相关的资料

热点内容
查询方城移动网络电视维修电话 浏览:571
索尼电视装网络直播软件 浏览:902
小米手机为什么会突然没网络 浏览:547
移动魔百盒网络机顶盒怎么连接 浏览:955
新几内亚手机网络频率 浏览:233
小型无线网络示意图 浏览:390
房东网络连接配置异常 浏览:846
无线网络没有连接但有个感叹号 浏览:493
电信网络千兆路由器实测 浏览:52
移动网络电视刚打开电视没有信号 浏览:963
辽宁中医药网络药理学多少钱 浏览:353
移动电信5g网络哪个好 浏览:119
如何查看谁连接了我家的网络 浏览:623
宝卡pro免流用哪个网络连接 浏览:216
电信网络盒用户名密码 浏览:384
杭州无线网络服务口碑推荐 浏览:737
定制版路由器可以使用其他网络吗 浏览:720
网络异常金币领取失败怎么办 浏览:582
有线网络安全证书 浏览:84
联通宽带网络重新设置 浏览:651

友情链接