导航:首页 > 网络安全 > 如何做神经网络模型

如何做神经网络模型

发布时间:2023-07-10 14:00:19

1. 如何建立神经网络模型

人工神经网络有很多种,我只会最常用的BP神经网络。不同的网络有不同的结构和不同的学习算法。
简单点说,人工神经网络就是一个函数。只是这个函数有别于一般的函数。它比普通的函数多了一个学习的过程。
在学习的过程中,它根据正确结果不停地校正自己的网络结构,最后达到一个满意的精度。这时,它才开始真正的工作阶段。
学习人工神经网络最好先安装MathWords公司出的MatLab软件。利用该软件,你可以在一周之内就学会建立你自己的人工神经网络解题模型。
如果你想自己编程实现人工神经网络,那就需要找一本有关的书籍,专门看神经网络学习算法的那部分内容。因为“学习算法”是人工神经网络的核心。最常用的BP人工神经网络,使用的就是BP学习算法。

2. (急)如何用MATLAB建立ANN(人工神经网络模型)

问题描述:
有两个自变量,一个因变量,10个样本(这里就取少一点好了)。用实际问题来表述,假设一个股票,开盘价 x1,收盘价 x2,第二天的股价 y。 那用神经网络来预测的目的是,根据10天的开盘价和收盘价,来预测未来股价。显然,这里的y与x1和x2相关,我们要训练一个网络(net)来让他尽可能的预测一个y

MATLAB程序

clc
clear
load data input output
%input就是包含了x1和x2 10天数据的矩阵,说白了就是20个数的矩阵。output是y的一个向量,%10个数
%需要自己找一些数据赋值给input和ouput

P=input;
T=output;
%这里P和T必须是 x1 x2和y的行向量组合。对于P,x1是行向量,x2是行向量。P=[x1;x2]; T=y. y是行向量

Epochs=5000;
NodeNum=12; TypeNum=1;
TF1='logsig'; TF2='purelin';
%设置一些初始参数,Epochs是迭代上限次数,NodeNum是第一个隐藏层的神经元个数,%TypeNum是几层。TF1和TF2分别定义了几个传递函数。

net=newff(minmax(P),[NodeNum TypeNum],{TF1 TF2},'trainlm');
%建立一个神经网络,训练输入和输出数据都有了,设置隐藏层的个数。

net.trainParam.epochs=Epochs;
net.trainParam.goal=1e-4;
net.trainParam.min_grad=1e-4;
net.trainParam.show=200;
net.trainParam.time=inf;
%设置一些训练时的参数,第一个是每次训练的最大迭代次数;

net=train(net,P,T);
%开始网络训练

P_test=P;
B_test=T;
%就用原始的数据进行测试

X=sim(net,P_test);
%测试

Erro=abs(B_test-X);
sigma=std(Erro);
%计算出预测值和实际值的误差,求出方差。将来方差可以用来随机调整

3. 如何用MATLAB神经网络工具箱创建BP神经网络模型

1. 常用的前馈型BP网络的转移函数有logsig,tansig,有时也会用到线性函数purelin。当网络的最后一层采用曲线函数时,输出被限制在一个很小的范围内,如果采用线性函数则输出可为任意值。以上三个函数是BP网络中最常用到的函数,但是如果需要的话你也可以创建其他可微的转移函数。
2. 在BP网络中,转移函数可求导是非常重要的,tansig、logsig和purelin都有对应的导函数dtansig、dlogsig和dpurelin。为了得到更多转移函数的导函数,可以带字符"deriv"的转移函数:tansig('deriv')

4. 神经网络BP模型

一、BP模型概述

误差逆传播(Error Back-Propagation)神经网络模型简称为BP(Back-Propagation)网络模型。

Pall Werbas博士于1974年在他的博士论文中提出了误差逆传播学习算法。完整提出并被广泛接受误差逆传播学习算法的是以Rumelhart和McCelland为首的科学家小组。他们在1986年出版“Parallel Distributed Processing,Explorations in the Microstructure of Cognition”(《并行分布信息处理》)一书中,对误差逆传播学习算法进行了详尽的分析与介绍,并对这一算法的潜在能力进行了深入探讨。

BP网络是一种具有3层或3层以上的阶层型神经网络。上、下层之间各神经元实现全连接,即下层的每一个神经元与上层的每一个神经元都实现权连接,而每一层各神经元之间无连接。网络按有教师示教的方式进行学习,当一对学习模式提供给网络后,神经元的激活值从输入层经各隐含层向输出层传播,在输出层的各神经元获得网络的输入响应。在这之后,按减小期望输出与实际输出的误差的方向,从输入层经各隐含层逐层修正各连接权,最后回到输入层,故得名“误差逆传播学习算法”。随着这种误差逆传播修正的不断进行,网络对输入模式响应的正确率也不断提高。

BP网络主要应用于以下几个方面:

1)函数逼近:用输入模式与相应的期望输出模式学习一个网络逼近一个函数;

2)模式识别:用一个特定的期望输出模式将它与输入模式联系起来;

3)分类:把输入模式以所定义的合适方式进行分类;

4)数据压缩:减少输出矢量的维数以便于传输或存储。

在人工神经网络的实际应用中,80%~90%的人工神经网络模型采用BP网络或它的变化形式,它也是前向网络的核心部分,体现了人工神经网络最精华的部分。

二、BP模型原理

下面以三层BP网络为例,说明学习和应用的原理。

1.数据定义

P对学习模式(xp,dp),p=1,2,…,P;

输入模式矩阵X[N][P]=(x1,x2,…,xP);

目标模式矩阵d[M][P]=(d1,d2,…,dP)。

三层BP网络结构

输入层神经元节点数S0=N,i=1,2,…,S0;

隐含层神经元节点数S1,j=1,2,…,S1;

神经元激活函数f1[S1];

权值矩阵W1[S1][S0];

偏差向量b1[S1]。

输出层神经元节点数S2=M,k=1,2,…,S2;

神经元激活函数f2[S2];

权值矩阵W2[S2][S1];

偏差向量b2[S2]。

学习参数

目标误差ϵ;

初始权更新值Δ0

最大权更新值Δmax

权更新值增大倍数η+

权更新值减小倍数η-

2.误差函数定义

对第p个输入模式的误差的计算公式为

中国矿产资源评价新技术与评价新模型

y2kp为BP网的计算输出。

3.BP网络学习公式推导

BP网络学习公式推导的指导思想是,对网络的权值W、偏差b修正,使误差函数沿负梯度方向下降,直到网络输出误差精度达到目标精度要求,学习结束。

各层输出计算公式

输入层

y0i=xi,i=1,2,…,S0;

隐含层

中国矿产资源评价新技术与评价新模型

y1j=f1(z1j),

j=1,2,…,S1;

输出层

中国矿产资源评价新技术与评价新模型

y2k=f2(z2k),

k=1,2,…,S2。

输出节点的误差公式

中国矿产资源评价新技术与评价新模型

对输出层节点的梯度公式推导

中国矿产资源评价新技术与评价新模型

E是多个y2m的函数,但只有一个y2k与wkj有关,各y2m间相互独立。

其中

中国矿产资源评价新技术与评价新模型

中国矿产资源评价新技术与评价新模型

设输出层节点误差为

δ2k=(dk-y2k)·f2′(z2k),

中国矿产资源评价新技术与评价新模型

同理可得

中国矿产资源评价新技术与评价新模型

对隐含层节点的梯度公式推导

中国矿产资源评价新技术与评价新模型

E是多个y2k的函数,针对某一个w1ji,对应一个y1j,它与所有的y2k有关。因此,上式只存在对k的求和,其中

中国矿产资源评价新技术与评价新模型

中国矿产资源评价新技术与评价新模型

设隐含层节点误差为

中国矿产资源评价新技术与评价新模型

中国矿产资源评价新技术与评价新模型

同理可得

中国矿产资源评价新技术与评价新模型

4.采用弹性BP算法(RPROP)计算权值W、偏差b的修正值ΔW,Δb

1993年德国 Martin Riedmiller和Heinrich Braun 在他们的论文“A Direct Adaptive Method for Faster Backpropagation Learning:The RPROP Algorithm”中,提出Resilient Backpropagation算法——弹性BP算法(RPROP)。这种方法试图消除梯度的大小对权步的有害影响,因此,只有梯度的符号被认为表示权更新的方向。

权改变的大小仅仅由权专门的“更新值”

确定

中国矿产资源评价新技术与评价新模型

其中

表示在模式集的所有模式(批学习)上求和的梯度信息,(t)表示t时刻或第t次学习。

权更新遵循规则:如果导数是正(增加误差),这个权由它的更新值减少。如果导数是负,更新值增加。

中国矿产资源评价新技术与评价新模型

RPROP算法是根据局部梯度信息实现权步的直接修改。对于每个权,我们引入它的

各自的更新值

,它独自确定权更新值的大小。这是基于符号相关的自适应过程,它基

于在误差函数E上的局部梯度信息,按照以下的学习规则更新

中国矿产资源评价新技术与评价新模型

其中0<η-<1<η+

在每个时刻,如果目标函数的梯度改变它的符号,它表示最后的更新太大,更新值

应由权更新值减小倍数因子η-得到减少;如果目标函数的梯度保持它的符号,更新值应由权更新值增大倍数因子η+得到增大。

为了减少自由地可调参数的数目,增大倍数因子η+和减小倍数因子η被设置到固定值

η+=1.2,

η-=0.5,

这两个值在大量的实践中得到了很好的效果。

RPROP算法采用了两个参数:初始权更新值Δ0和最大权更新值Δmax

当学习开始时,所有的更新值被设置为初始值Δ0,因为它直接确定了前面权步的大小,它应该按照权自身的初值进行选择,例如,Δ0=0.1(默认设置)。

为了使权不至于变得太大,设置最大权更新值限制Δmax,默认上界设置为

Δmax=50.0。

在很多实验中,发现通过设置最大权更新值Δmax到相当小的值,例如

Δmax=1.0。

我们可能达到误差减小的平滑性能。

5.计算修正权值W、偏差b

第t次学习,权值W、偏差b的的修正公式

W(t)=W(t-1)+ΔW(t)

b(t)=b(t-1)+Δb(t)

其中,t为学习次数。

6.BP网络学习成功结束条件每次学习累积误差平方和

中国矿产资源评价新技术与评价新模型

每次学习平均误差

中国矿产资源评价新技术与评价新模型

当平均误差MSE<ε,BP网络学习成功结束。

7.BP网络应用预测

在应用BP网络时,提供网络输入给输入层,应用给定的BP网络及BP网络学习得到的权值W、偏差b,网络输入经过从输入层经各隐含层向输出层的“顺传播”过程,计算出BP网的预测输出。

8.神经元激活函数f

线性函数

f(x)=x,

f′(x)=1,

f(x)的输入范围(-∞,+∞),输出范围(-∞,+∞)。

一般用于输出层,可使网络输出任何值。

S型函数S(x)

中国矿产资源评价新技术与评价新模型

f(x)的输入范围(-∞,+∞),输出范围(0,1)。

f′(x)=f(x)[1-f(x)],

f′(x)的输入范围(-∞,+∞),输出范围(0,

]。

一般用于隐含层,可使范围(-∞,+∞)的输入,变成(0,1)的网络输出,对较大的输入,放大系数较小;而对较小的输入,放大系数较大,所以可用来处理和逼近非线性的输入/输出关系。

在用于模式识别时,可用于输出层,产生逼近于0或1的二值输出。

双曲正切S型函数

中国矿产资源评价新技术与评价新模型

f(x)的输入范围(-∞,+∞),输出范围(-1,1)。

f′(x)=1-f(x)·f(x),

f′(x)的输入范围(-∞,+∞),输出范围(0,1]。

一般用于隐含层,可使范围(-∞,+∞)的输入,变成(-1,1)的网络输出,对较大的输入,放大系数较小;而对较小的输入,放大系数较大,所以可用来处理和逼近非线性的输入/输出关系。

阶梯函数

类型1

中国矿产资源评价新技术与评价新模型

f(x)的输入范围(-∞,+∞),输出范围{0,1}。

f′(x)=0。

类型2

中国矿产资源评价新技术与评价新模型

f(x)的输入范围(-∞,+∞),输出范围{-1,1}。

f′(x)=0。

斜坡函数

类型1

中国矿产资源评价新技术与评价新模型

f(x)的输入范围(-∞,+∞),输出范围[0,1]。

中国矿产资源评价新技术与评价新模型

f′(x)的输入范围(-∞,+∞),输出范围{0,1}。

类型2

中国矿产资源评价新技术与评价新模型

f(x)的输入范围(-∞,+∞),输出范围[-1,1]。

中国矿产资源评价新技术与评价新模型

f′(x)的输入范围(-∞,+∞),输出范围{0,1}。

三、总体算法

1.三层BP网络(含输入层,隐含层,输出层)权值W、偏差b初始化总体算法

(1)输入参数X[N][P],S0,S1,f1[S1],S2,f2[S2];

(2)计算输入模式X[N][P]各个变量的最大值,最小值矩阵 Xmax[N],Xmin[N];

(3)隐含层的权值W1,偏差b1初始化。

情形1:隐含层激活函数f( )都是双曲正切S型函数

1)计算输入模式X[N][P]的每个变量的范围向量Xrng[N];

2)计算输入模式X的每个变量的范围均值向量Xmid[N];

3)计算W,b的幅度因子Wmag

4)产生[-1,1]之间均匀分布的S0×1维随机数矩阵Rand[S1];

5)产生均值为0,方差为1的正态分布的S1×S0维随机数矩阵Randnr[S1][S0],随机数范围大致在[-1,1];

6)计算W[S1][S0],b[S1];

7)计算隐含层的初始化权值W1[S1][S0];

8)计算隐含层的初始化偏差b1[S1];

9))输出W1[S1][S0],b1[S1]。

情形2:隐含层激活函数f( )都是S型函数

1)计算输入模式X[N][P]的每个变量的范围向量Xrng[N];

2)计算输入模式X的每个变量的范围均值向量Xmid[N];

3)计算W,b的幅度因子Wmag;

4)产生[-1,1]之间均匀分布的S0×1维随机数矩阵Rand[S1];

5)产生均值为0,方差为1的正态分布的S1×S0维随机数矩阵Randnr[S1][S0],随机数范围大致在[-1,1];

6)计算W[S1][S0],b[S1];

7)计算隐含层的初始化权值W1[S1][S0];

8)计算隐含层的初始化偏差b1[S1];

9)输出W1[S1][S0],b1[S1]。

情形3:隐含层激活函数f( )为其他函数的情形

1)计算输入模式X[N][P]的每个变量的范围向量Xrng[N];

2)计算输入模式X的每个变量的范围均值向量Xmid[N];

3)计算W,b的幅度因子Wmag

4)产生[-1,1]之间均匀分布的S0×1维随机数矩阵Rand[S1];

5)产生均值为0,方差为1的正态分布的S1×S0维随机数矩阵Randnr[S1][S0],随机数范围大致在[-1,1];

6)计算W[S1][S0],b[S1];

7)计算隐含层的初始化权值W1[S1][S0];

8)计算隐含层的初始化偏差b1[S1];

9)输出W1[S1][S0],b1[S1]。

(4)输出层的权值W2,偏差b2初始化

1)产生[-1,1]之间均匀分布的S2×S1维随机数矩阵W2[S2][S1];

2)产生[-1,1]之间均匀分布的S2×1维随机数矩阵b2[S2];

3)输出W2[S2][S1],b2[S2]。

2.应用弹性BP算法(RPROP)学习三层BP网络(含输入层,隐含层,输出层)权值W、偏差b总体算法

函数:Train3BP_RPROP(S0,X,P,S1,W1,b1,f1,S2,W2,b2,f2,d,TP)

(1)输入参数

P对模式(xp,dp),p=1,2,…,P;

三层BP网络结构;

学习参数。

(2)学习初始化

1)

2)各层W,b的梯度值

初始化为零矩阵。

(3)由输入模式X求第一次学习各层输出y0,y1,y2及第一次学习平均误差MSE

(4)进入学习循环

epoch=1

(5)判断每次学习误差是否达到目标误差要求

如果MSE<ϵ,

则,跳出epoch循环,

转到(12)。

(6)保存第epoch-1次学习产生的各层W,b的梯度值

(7)求第epoch次学习各层W,b的梯度值

1)求各层误差反向传播值δ;

2)求第p次各层W,b的梯度值

3)求p=1,2,…,P次模式产生的W,b的梯度值

的累加。

(8)如果epoch=1,则将第epoch-1次学习的各层W,b的梯度值

设为第epoch次学习产生的各层W,b的梯度值

(9)求各层W,b的更新

1)求权更新值Δij更新;

2)求W,b的权更新值

3)求第epoch次学习修正后的各层W,b。

(10)用修正后各层W、b,由X求第epoch次学习各层输出y0,y1,y2及第epoch次学习误差MSE

(11)epoch=epoch+1,

如果epoch≤MAX_EPOCH,转到(5);

否则,转到(12)。

(12)输出处理

1)如果MSE<ε,

则学习达到目标误差要求,输出W1,b1,W2,b2

2)如果MSE≥ε,

则学习没有达到目标误差要求,再次学习。

(13)结束

3.三层BP网络(含输入层,隐含层,输出层)预测总体算法

首先应用Train3lBP_RPROP( )学习三层BP网络(含输入层,隐含层,输出层)权值W、偏差b,然后应用三层BP网络(含输入层,隐含层,输出层)预测。

函数:Simu3lBP( )。

1)输入参数:

P个需预测的输入数据向量xp,p=1,2,…,P;

三层BP网络结构;

学习得到的各层权值W、偏差b。

2)计算P个需预测的输入数据向量xp(p=1,2,…,P)的网络输出 y2[S2][P],输出预测结果y2[S2][P]。

四、总体算法流程图

BP网络总体算法流程图见附图2。

五、数据流图

BP网数据流图见附图1。

六、实例

实例一 全国铜矿化探异常数据BP 模型分类

1.全国铜矿化探异常数据准备

在全国铜矿化探数据上用稳健统计学方法选取铜异常下限值33.1,生成全国铜矿化探异常数据。

2.模型数据准备

根据全国铜矿化探异常数据,选取7类33个矿点的化探数据作为模型数据。这7类分别是岩浆岩型铜矿、斑岩型铜矿、矽卡岩型、海相火山型铜矿、陆相火山型铜矿、受变质型铜矿、海相沉积型铜矿,另添加了一类没有铜异常的模型(表8-1)。

3.测试数据准备

全国化探数据作为测试数据集。

4.BP网络结构

隐层数2,输入层到输出层向量维数分别为14,9、5、1。学习率设置为0.9,系统误差1e-5。没有动量项。

表8-1 模型数据表

续表

5.计算结果图

如图8-2、图8-3。

图8-2

图8-3 全国铜矿矿床类型BP模型分类示意图

实例二 全国金矿矿石量品位数据BP 模型分类

1.模型数据准备

根据全国金矿储量品位数据,选取4类34个矿床数据作为模型数据,这4类分别是绿岩型金矿、与中酸性浸入岩有关的热液型金矿、微细浸染型型金矿、火山热液型金矿(表8-2)。

2.测试数据准备

模型样本点和部分金矿点金属量、矿石量、品位数据作为测试数据集。

3.BP网络结构

输入层为三维,隐层1层,隐层为三维,输出层为四维,学习率设置为0.8,系统误差1e-4,迭代次数5000。

表8-2 模型数据

4.计算结果

结果见表8-3、8-4。

表8-3 训练学习结果

表8-4 预测结果(部分)

续表

5. 如何在R语言中进行神经网络模型的建立

不能发链接,所以我复制过来了。

#载入程序和数据
library(RSNNS)
data(iris)
#将数据顺序打乱
iris <- iris[sample(1:nrow(iris),length(1:nrow(iris))),1:ncol(iris)]
#定义网络输入
irisValues <- iris[,1:4]
#定义网络输出,并将数据进行格式转换
irisTargets <- decodeClassLabels(iris[,5])
#从中划分出训练样本和检验样本
iris <- splitForTrainingAndTest(irisValues, irisTargets, ratio=0.15)
#数据标准化
iris <- normTrainingAndTestSet(iris)
#利用mlp命令执行前馈反向传播神经网络算法
model <- mlp(iris$inputsTrain, iris$targetsTrain, size=5, learnFunc="Quickprop", learnFuncParams=c(0.1, 2.0, 0.0001, 0.1),maxit=100, inputsTest=iris$inputsTest, targetsTest=iris$targetsTest)
#利用上面建立的模型进行预测
predictions <- predict(model,iris$inputsTest)
#生成混淆矩阵,观察预测精度
confusionMatrix(iris$targetsTest,predictions)
#结果如下:
# predictions
#targets 1 2 3
# 1 8 0 0
# 2 0 4 0
# 3 0 1 10

6. 如何建立bp神经网络预测 模型

建立BP神经网络预测 模型,可按下列步骤进行:

1、提供原始数据

2、训练数据预测数据提取及归一化

3、BP网络训练

4、BP网络预测

5、结果分析

现用一个实际的例子,来预测2015年和2016年某地区的人口数。

已知2009年——2014年某地区人口数分别为3583、4150、5062、4628、5270、5340万人

执行BP_main程序,得到

[ 2015, 5128.631704710423946380615234375]

[ 2016, 5100.5797325642779469490051269531]

代码及图形如下。

7. 如何用matlab构建一个三层bp神经网络模型,用于预测温度。

第0节、引例
本文以Fisher的Iris数据集作为神经网络程序的测试数据集。Iris数据集可以在http://en.wikipedia.org/wiki/Iris_flower_data_set 找到。这里简要介绍一下Iris数据集:
有一批Iris花,已知这批Iris花可分为3个品种,现需要对其进行分类。不同品种的Iris花的花萼长度、花萼宽度、花瓣长度、花瓣宽度会有差异。我们现有一批已知品种的Iris花的花萼长度、花萼宽度、花瓣长度、花瓣宽度的数据。
一种解决方法是用已有的数据训练一个神经网络用作分类器。
如果你只想用C#或Matlab快速实现神经网络来解决你手头上的问题,或者已经了解神经网络基本原理,请直接跳到第二节——神经网络实现。

第一节、神经网络基本原理
1. 人工神经元( Artificial Neuron )模型
人工神经元是神经网络的基本元素,其原理可以用下图表示:

图1. 人工神经元模型

图中x1~xn是从其他神经元传来的输入信号,wij表示表示从神经元j到神经元i的连接权值,θ表示一个阈值 ( threshold ),或称为偏置( bias )。则神经元i的输出与输入的关系表示为:

图中 yi表示神经元i的输出,函数f称为激活函数 ( Activation Function )或转移函数 ( Transfer Function ) ,net称为净激活(net activation)。若将阈值看成是神经元i的一个输入x0的权重wi0,则上面的式子可以简化为:

若用X表示输入向量,用W表示权重向量,即:
X = [ x0 , x1 , x2 , ....... , xn ]

则神经元的输出可以表示为向量相乘的形式:

若神经元的净激活net为正,称该神经元处于激活状态或兴奋状态(fire),若净激活net为负,则称神经元处于抑制状态。
图1中的这种“阈值加权和”的神经元模型称为M-P模型 ( McCulloch-Pitts Model ),也称为神经网络的一个处理单元( PE, Processing Element )。

2. 常用激活函数
激活函数的选择是构建神经网络过程中的重要环节,下面简要介绍常用的激活函数。
(1) 线性函数 ( Liner Function )

(2) 斜面函数 ( Ramp Function )

(3) 阈值函数 ( Threshold Function )

以上3个激活函数都属于线性函数,下面介绍两个常用的非线性激活函数。
(4) S形函数 ( Sigmoid Function )

该函数的导函数:

(5) 双极S形函数

该函数的导函数:

S形函数与双极S形函数的图像如下:

图3. S形函数与双极S形函数图像
双极S形函数与S形函数主要区别在于函数的值域,双极S形函数值域是(-1,1),而S形函数值域是(0,1)。
由于S形函数与双极S形函数都是可导的(导函数是连续函数),因此适合用在BP神经网络中。(BP算法要求激活函数可导)
具体http://blog.csdn.net/gongxq0124/article/details/7681000/

8. 2.搭建一个神经网络模型训练MNIST手写体数字数据集中遇到的问题及解决方法

批量输入后,如何使用numpy矩阵计算的方法计算各权值梯度,提高计算速度

def backprop(self, x, y): #x为多维矩阵。每列为一个x值。 y为多维矩阵。每列为一个y值。

batch_num=x.shape[1]

#print(x.shape)

#print(y.shape)

"""创建两个变量,用来存储所有b值和所有w值对应的梯度值。初始化为0.nabla_b为一个list,形状与biases的形状完全一致。nabla_w 为一个list,形状与weights的形状完全一致。

"""

nabla_b = [np.zeros(b.shape) for b in self.biases]

nabla_w = [np.zeros(w.shape) for w in self.weights]

# feedforward

"""activations,用来所有中间层和输出层在一次前向计算过程中的最终输出值,即a值。该值记录下来,以供后期使用BP算法求每个b和w的梯度。

"""

activation = x #x为本批多个x为列组成的矩阵。

activations = [x] # list to store all the activations, layer by layer

"""zs,用来所有中间层和输出层在一次前向计算过程中的线性输出值,即z值。该值记录下来,以供后期使用BP算法求每个b和w的梯度。

"""

zs = [] # list to store all the z vectors, layer by layer ,zs的每个元素为本batch的x对应的z为列构成的矩阵。


"""

通过一次正向计算,将中间层和输出层所有的z值和a值全部计算出来,并存储起来。供接下来求梯度使用。

"""

for b, w in zip(self.biases, self.weights):

#print(w.shape)

#print(np.dot(w, activation).shape)

#print(b.shape)

z = np.dot(w, activation)+b #z为本batch的x对应的z为列构成的矩阵。

zs.append(z)

activation = sigmoid(z)

activations.append(activation)


"""

以下部分是采用BP算法求解每个可训练参数的计算方法。是权重更新过程中的关键。

"""

# backward pass

# 求出输出层的delta值

delta = ((activations[-1]-y) * sigmoid_prime(zs[-1]))

nabla_b[-1] = delta.mean(axis=1).reshape(-1, 1)

nabla_w[-1] =np.dot(delta,activations[-2].transpose())/batch_num

# Note that the variable l in the loop below is used a little

# differently to the notation in Chapter 2 of the book. Here,

# l = 1 means the last layer of neurons, l = 2 is the

# second-last layer, and so on. It's a renumbering of the

# scheme in the book, used here to take advantage of the fact

# that Python can use negative indices in lists.

for l in range(2, self.num_layers):

z = zs[-l]

sp = sigmoid_prime(z)

delta = (np.dot(self.weights[-l+1].transpose(), delta) * sp)

nabla_b[-l] = delta.mean(axis=1).reshape(-1, 1)

nabla_w[-l] =np.dot(delta,activations[-l-1].transpose())/batch_num

return (nabla_b, nabla_w)


##梯度计算后,如何更新各权值


def update_mini_batch(self, mini_batch, eta):

"""Update the network's weights and biases by applying

gradient descent using backpropagation to a single mini batch.

The ``mini_batch`` is a list of tuples ``(x, y)``, and ``eta``

is the learning rate."""

""" 初始化变量,去存储各训练参数的微分和。

"""

nabla_b = [np.zeros(b.shape) for b in self.biases]

nabla_w = [np.zeros(w.shape) for w in self.weights]

""" 循环获取batch中的每个数据,获取各训练参数的微分,相加后获得各训练参数的微分和。

"""

x_batch=None

y_batch=None

for x, y in mini_batch:

if( x_batch is None):

x_batch=x

else:

x_batch=np.append(x_batch,x,axis=1)

if( y_batch is None):

y_batch=y

else:

y_batch=np.append(y_batch,y,axis=1)

delta_nabla_b, delta_nabla_w = self.backprop(x_batch, y_batch)

nabla_b = [nb+dnb for nb, dnb in zip(nabla_b, delta_nabla_b)]

nabla_w = [nw+dnw for nw, dnw in zip(nabla_w, delta_nabla_w)]

""" 使用各训练参数的平均微分和与步长的乘积,去更新每个训练参数

"""

self.weights = [w-eta*nw

for w, nw in zip(self.weights, nabla_w)]

self.biases = [b-eta*nb

for b, nb in zip(self.biases, nabla_b)]

阅读全文

与如何做神经网络模型相关的资料

热点内容
路由器联系网络供应商 浏览:760
电脑网络断网重启后正常 浏览:554
路由器没开就有网络 浏览:961
路由器与网络连接 浏览:839
光猫怎么更换无线网络 浏览:558
网络麻将怎么打 浏览:682
网络用语dgjj什么意思 浏览:912
怎样找到电脑网络账号 浏览:16
苹果手机打开软件网络特别卡 浏览:719
网络安全保障人员培训 浏览:40
网络宽带上行下行调多少 浏览:1001
降档什么意思网络语 浏览:930
设置了dns网络快了好多 浏览:910
老路由器网络卡顿怎么办 浏览:66
亿联网络股票是哪个板块 浏览:291
计算机网络支撑技术包括 浏览:135
vpm苹果网络加速 浏览:902
苹果6怎么修改网络 浏览:955
全球手机网络最贵的国家是 浏览:543
计算机网络空间技术是干什么的 浏览:447

友情链接