‘壹’ 大数据分析应用案例四网络营销行业的大数据分析通过使用什么大数据分析工具实
专业的大数据分析工具
2、各种Python数据可视化第三方库
3、其它语言的数据可视化框架
一、专业的大数据分析工具
1、FineReport
FineReport是一款纯Java编写的、集数据展示(报表)和数据录入(表单)功能于一身的企业级web报表工具,只需要简单的拖拽操作便可以设计复杂的中国式报表,搭建数据决策分析系统。
2、FineBI
FineBI是新一代自助大数据分析的商业智能产品,提供了从数据准备、自助数据处理、数据分析与挖掘、数据可视化于一体的完整解决方案,也是我比较推崇的可视化工具之一。
FineBI的使用感同Tableau类似,都主张可视化的探索性分析,有点像加强版的数据透视表。上手简单,可视化库丰富。可以充当数据报表的门户,也可以充当各业务分析的平台。
二、Python的数据可视化第三方库
Python正慢慢地成为数据分析、数据挖掘领域的主流语言之一。在Python的生态里,很多开发者们提供了非常丰富的、用于各种场景的数据可视化第三方库。这些第三方库可以让我们结合Python语言绘制出漂亮的图表。
1、pyecharts
Echarts(下面会提到)是一个开源免费的javascript数据可视化库,它让我们可以轻松地绘制专业的商业数据图表。当Python遇上了Echarts,pyecharts便诞生了,它是由chenjiandongx等一群开发者维护的Echarts Python接口,让我们可以通过Python语言绘制出各种Echarts图表。
2、Bokeh
Bokeh是一款基于Python的交互式数据可视化工具,它提供了优雅简洁的方法来绘制各种各样的图形,可以高性能地可视化大型数据集以及流数据,帮助我们制作交互式图表、可视化仪表板等。
三、其他数据可视化工具
1、Echarts
前面说过了,Echarts是一个开源免费的javascript数据可视化库,它让我们可以轻松地绘制专业的商业数据图表。
大家都知道去年春节以及近期央视大规划报道的网络大数据产品,如网络迁徙、网络司南、网络大数据预测等等,这些产品的数据可视化均是通过ECharts来实现的。
2、D3
D3(Data Driven Documents)是支持SVG渲染的另一种JavaScript库。但是D3能够提供大量线性图和条形图之外的复杂图表样式,例如Voronoi图、树形图、圆形集群和单词云等。
回答于 2021-08-19
赞同1
1
魔镜 大数据-提供电商行业和品牌数据_申请免费试用
我们覆盖主流电商平台2万+细分行业,40万+品牌。魔镜市场情报为您提供专业高品质的数据服务
魔镜洞察广告
淘宝-数据分析师要考的证书,优质产品,超低价格,太好逛了吧!
数据分析师要考的证书,买东西上淘宝,放心挑好货,购物更省心。超多品牌,超多优惠,快捷生活,一站搞定!淘!我喜欢!
杭州易宏广告有限公司广告
大数据分析工具有哪些,有什么特点
一、hadoop Hadoop 是一个能够对大量数据进行分布式处理的软件框架。但是 Hadoop 是以一种可靠、高效、可伸缩的方式进行处理的。Hadoop 是可靠的,因为它假设计算元素和存储会失败,因此它维护多个工作数据副本,确保能够针对失败的节点重新分布处理。Hadoop 是高效的,因为它以并行的方式工作,通过并行处理加快处理速度。Hadoop 还是可伸缩的,能够处理 PB 级数据。此外,Hadoop 依赖于社区服务器,因此它的成本比较低,任何人都可以使用。 Hadoop带有用 Java 语言编写的框架,因此运行在 Linux 生产平台上是非常理想的。Hadoop 上的应用程序也可以使用其他语言编写,比如 C++。 二、HPCC HPCC,High Performance Computing and Communications(高性能计算与通信)的缩写。1993年,由美国科学、工程、技术联邦协调理事会向国会提交了“重大挑战项目:高性能计算与 通信”的报告,也就是被称为HPCC计划的报告,即美国总统科学战略项目,其目的是通过加强研究与开发解决一批重要的科学与技术挑战问题。HPCC是美国实施信息高速公路而上实施的计划,该计划的实施将耗资百亿美元,其主要目标要达到:开发可扩展的计算系统及相关软件,以支持太位级网络传输性能,开发千兆 比特网络技术,扩展研究和教育机构及网络连接能力。 三、Storm Storm是自由的开源软件,一个分布式的、容错的实时计算系统。Storm可以非常可靠的处理庞大的数据流,用于处理Hadoop的批量数据。Storm很简单,支持许多种编程语言,使用起来非常有趣。Storm由Twitter开源而来,其它知名的应用企业包括Groupon、淘宝、支付宝、阿里巴巴、乐元素、 Admaster等等。 Storm有许多应用领域:实时分析、在线机器学习、不停顿的计算、分布式RPC(远过程调用协议,一种通过网络从远程计算机程序上请求服务)、 ETL(Extraction-Transformation-Loading的汽车行业数据分析找哪家?可以咨询麦柯莱依斯,麦柯莱依斯信息咨询(上海)有限公司,提供汽车行业相关企业共同需要的世界各国供应商信息 ,如采购、配套、工厂情况、动态、汽车产销量数据、技术、市场调研报告、还有预测型市场投放计划等,节省企业在信息收集上花费的时间与成本。麦柯莱依斯通过新闻发布、个别调查,从外部机构购买,与企业合作等方式,独立取材,集中收集、整合并分析数据信息,构建数据库,面向汽车行业专业人士,提供数据服务。期待您的来电!
广告
一般用哪些工具做大数据分析
大数据图表分析的工具其实有很多,关键要看题主的是在什么样的业务场景下。一般情况下,Excel就可以满足日常的使用需求,当然前提在于你对Excel足够熟练。当然,如果你懂代码,可以用:Echarts ,如果你懂设计,可以用:Ai。这些都可以做大数据图表分析出来。可是从题主的描述中,我看到两个关键词:数据积累多、领导看。这就注定了Excel很难担此重任。所以在制作统计图表方面,你可能就需要使用一些更为灵活的软件。作为业务人员或者分析师,你可能需要用到商业智能类的软件,比如:永洪BI对于BI类产品来说,进行大数据图表分析简直就是小菜一碟,而永洪BI在国内的厂商中应该是做的最好的了。进行大数据图表分析的时候,只需要把数据导入产品中,通过拖拖拽拽就可以生成统计图表了,而且完全不用担心数据量大的问题。以下是几张有代表性的:使用BI软件可以解决统计图表制作的问题,但是大数据图表分析的过程中,如何让图表表达更清楚的含义,有以下几个原则可以借鉴:越简单越好,专注于表达核心信息;在需要表达细节的时候,可以放更多的信息;差异越大越好,这样会使得你的统计图表更明显,易于理解;
亚浩科技
0浏览
更多专家
大数据分析一般用什么工具分析
专家1对1在线解答问题
5分钟内响应 | 万名专业答主
马上提问
最美的花火 咨询一个电子数码问题,并发表了好评
lanqiuwangzi 咨询一个电子数码问题,并发表了好评
garlic 咨询一个电子数码问题,并发表了好评
188****8493 咨询一个电子数码问题,并发表了好评
篮球大图 咨询一个电子数码问题,并发表了好评
动物乐园 咨询一个电子数码问题,并发表了好评
AKA 咨询一个电子数码问题,并发表了好评
一般用哪些工具做大数据分析?
大数据工具:数据建模工具SPSS:主要用于数据建模工作,功能稳定且强大,能够满足中小企业在业务模型建立过程中的需求。 大数据工具:数据可视化分析工具亿信华辰一站式数据分析平台ABI,提供ETL数据处理、数据建模以及一系列的数据分析服务,提供的数据分析工具丰富:除了中国式复杂报表、dashboard、大屏报表外,ABI还支持自助式分析,包括拖拽式多维分析、看板和看板集,业务用户通过简单拖拽即可随心所欲的进行探索式自助分析。同时,类word即席报告、幻灯片报告,让汇报展示更加出彩。
网络网友4801fe5
78浏览
全部
‘贰’ 移动互联网应用数据分析基础体系
移动互联网应用数据分析基础体系
在2012年洞宽及2013年诸多大型互联网公司其移动端的流量已经超越PC端的流量,很多大型互联网企业PC业务用户往移动端迁移,呈现出PC业务增长放缓,移动业务增长迅速的态势。从第三方数据机构统计的数据来看,网民中使用手机上网的人群占比进一步提升,由2013年12月的81.0%提升至2015年6月的88.9%,即中国网民中,接近9成的用户在使用手机上网,达到接近6亿的规模。如果一个互联网企业没有在移动端的拳头产品,将很快被移动互联网的浪潮颠覆。在未来的两三年内,得移动互联网得天下。
从数据看出,移动互联网是互联网发展最重要的方向,因此,对于拥抱互联网的企业来说,设计和运营好移动互联网应用(下文称APP)成为移动互联网时代最重要的任务。而在移动互联网的设计和运营过程中,数据分析起到很基础但也很重要的作用。在互联网企业,任何一个APP都要事先规划好数据体系,才允许上线运营,有了数据才可以更好的科学运营。因此本文将为大家介绍APP的基础数据指标体系。
APP的数据指标体系主要分为五个维度,包括用户规模与质量、参与度分析、渠道分析、功能分析以用户属性分析。用户规模和质量维度主要是分析用户规模指标,这类指标一般为产品考核的重点指标;参与度分析主要分析用户的活跃度;渠道分析主要分析渠道推广效果;功能分析主要分析功能活跃情况、页面访问路径以及转化率;用户属性分析主要分析用户特征。本文穗羡将详述这五大维度。
一、用户规模和质量
用户规模和质量的分析包括活跃用户、新增用户、用户构成、用户留存率、每个用户总活跃天数五个常见指标。用户规模和质量是APP分析最重要的维度,其指标也是相对其他维度最多,产品负责人要重点关注这个维度的指标。
(1)活跃用户指标
活跃用户指在某统计周期内启动过应用(APP)的用户。活跃用户数一般按照设备维度统计,即统计一段周期内启动过的设备(如手机、平板电脑)数量。活跃用户是衡量应用用户规模的指标。通常,一个产品是否成功,如果只看一个指标,那么这个指标一定是活跃用户数。很多互联网企业对产品负责人的KPI考核指标都以活跃用户数作为考核指标。活跃用户数根据不同统计周期可以分为日活跃数(DAU)、周活跃数(WAU)、月活跃数(MAU)。大多数希望用户每天都打开的应用如新闻APP、社交APP、音乐APP等,其产品的KPI考核指标均为日活跃用户数(DAU)。为什么?如果这些APP考核的指标是月活跃用户数,那么会出现什么状况?月活跃用户只要求用户在一个月内启动应用一次既可以计算为月活跃用户,所以,一个本应该每天都要启动的应用,如果用月活跃用户数作为KPI来考核,那么会出现产品运营负责人“偷懒”的情况,产品运营人员只需要每月想办法让用户启动一次即可,也许向用户推送两三个活动就可以实现,这样的考核会导致产品不够吸引力甚至是不健康。如果用日活跃用户来作为KPI来考核这个产品,那么产品运营负责人一定会设计让用户每天都想用的功能或者更新每天用户都想看的内容来吸引用户来使用。
(2)新增用户指标
新增用户是指安装应用后,首次启动应用的用户。按照统计时间跨度不同分为日、周、月新增用户。新增用户量指标主要是衡量营销推广渠道效果的最基础指标;另一方面,新增用户占活跃用户的比例也可以用来用于衡量产品健康度。如果某产品新用户占比过高,那说明该产品的活跃是靠推广得来,这种情况非常值得关注,尤其是关注用户的留存率情况。
(3)用户构成指标
用户构成是对周活跃用户或者月活跃用户的构成进行分析,有助于通过新老用户结构了解活跃用户健康度。以周活跃用户为例,周活跃用户包括以下几类用户,包括本周回流用户、连续活跃n周用户、忠诚用户、连续活跃用户。本周回流用户是指上周未启动过应用,本周启动应用的用户;连续活跃n周用户是指连续n周,每周至少启动过一次应用的活跃用户;忠诚用户是指连续活跃5周及以上的用户;连续活跃用户是指连续活跃2周及以上的用户;近期流失用户是指连续n周(大约等于1周,但小于等于4周)没有启动过应用但用户。
(4)用户留存率指标
用户留纳族亮存率是指在某一统计时段内的新增用户数中再经过一段时间后仍启动该应用的用户比例。用户留存率可重点关注次日、7日、14日以及30日留存率。次日留存率即某一统计时段(如今天)新增用户在第二天(如明天)再次启动应用的比例;7 日留存率即某一统计时段(如今天)新增用户数在第 7 天再次启动该应用的比例;14日和30日留存率以此类推。用户留存率是验证产品用户吸引力很重要的指标。通常,我们可以利用用户留存率对比同一类别应用中不同应用的用户吸引力。如果对于某一个应用,在相对成熟的版本情况下,如果用户留存率有明显变化,则说明用户质量有明显变化,很可能是因为推广渠道质量的变化所引起的。
(5)每个用户总活跃天数指标
每个用户的总活跃天数指标(TAD,Total Active Days per User)是在统计周期内,平均每个用户在应用的活跃天数。如果统计周期比较长,如统计周期一年以上,那么,每个用户的总活跃天数基本可以反映用户在流失之前在APP上耗费的天数,这是反映用户质量尤其是用户活跃度很重要的指标。
二、参与度分析
参与度分析的常见分析包括启动次数分析、使用时长分析、访问页面分析和使用时间间隔分析。参与度分析主要是分析用户的活跃度。
(1)启动次数指标
启动次数是指在某一统计周期内用户启动应用的次数。在进行数据分析时,一方面要关注启动次数的总量走势,另一方面,则需要关注人均启动次数,即同一统计周期的启动次数与活跃用户数的比值,如人均日启动次数,则为日启动次数与日活跃用户数的比值,反映的是每天每用户平均启动次数。通常,人均启动次数和人均使用时长可以结合一起分析。
(2)使用时长
使用总时长是指在某一统计统计周期内所有从APP启动到结束使用的总计时长。使用时长还可以从人均使用时长、单次使用时长等角度进行分析。人均使用时长是同一统计周期内的使用总时长和活跃用户数的比值;单次使用时长是同一统计周期内使用总时长和启动次数的比值。使用时长相关的指标也是衡量产品活跃度、产品质量的重要指标,道理很简单,用户每天的时间是有限的且宝贵的,如果用户愿意在你的产品投入更多的时间,证明你的应用对用户很重要。启动次数和使用时长可以结合一起分析,如果用户启动次数高,使用时长高,该APP则为用户质量非常高,用户粘性好的应用,比如现在很流行的社交应用。
(3)访问页面
访问页面数指用户一次启动访问的页面数。我们通常要分析访问页面数分布,即统计一定周期内(如1天、7天或30天)应用的访问页面数的活跃用户数分布,如访问1-2页的活跃用户数、3-5页的活跃用户数、6-9页的活跃用户数、10-29页的活跃用户数、30-50页的活跃用户数,以及50页以上的活跃用户数。同时,我们可以通过不同统计周期(但统计跨度相同,如都为7天)的访问页面分布的差异,以便于发现用户体验的问题。
(4)使用时间间隔
使用时间间隔是指同一用户相邻两次启动的时间间隔。我们通常要分析使用时间间隔分布,一般统计一个月内应用的用户使用时间间隔的活跃用户数分布,如使用时间间隔在1一天内、1天、2天……7天、8-14天、15-30天的活跃用户数分布。同时,我们可以通过不同统计周期(但统计跨度相同,如都为30天)的使用时间间隔分布的差异,以便于发现用户体验的问题。
三、渠道分析
渠道分析主要是分析个渠道在相关的渠道质量的变化和趋势,以科学评估渠道质量,优化渠道推广策略。渠道分析需要渠道推广负责人重点关注,尤其是目前移动应用市场渠道作弊较为盛行的情况下,渠道推广的分析尤其是要重点关注渠道作弊的分析。
渠道分析包括新增用户、活跃用户、启动次数、单次使用时长和留存率等指标。这些指标均在上文阐述过,在此就不在赘述。以上提到的只是渠道质量评估的初步维度,如果还需要进一步研究渠道,尤其是研究到渠道防作弊层面,指标还需要更多,包括:判断用户使用行为是否正常的指标,如关键操作活跃量占总活跃的占比,用户激活APP的时间是否正常;判断用户设备是否真实,如机型、操作系统等集中度的分析。
总之,如果要深入研究渠道作弊,算法的核心思想是研究推广渠道所带来的用户是否是真的“人”在用,从这个方向去设计相关的评估指标和算法,如某渠道带来的用户大部分集中在凌晨2点使用APP,我们就认为这种渠道所带来的用户很可能不是正常人在使用,甚至是机器在作弊。
四、功能分析
功能分析主要分析功能活跃情况、页面访问路径以及转化率。这些指标需要功能运营的产品经理重点关注。
(1)功能活跃指标
功能活跃指标主要关注某功能的活跃人数、某功能新增用户数、某功能用户构成、某功能用户留存。这些指标的定义与本文第一部分的“用户规模与质量”的指标类似。只是,本部分只关注某一功能模块,而不是APP整体。
(2)页面访问路径分析
APP页面访问路径统计用户从打开应用到离开应用整个过程钟每一步的页面访问和跳转情况。页面访问路径分析的目的是在达到APP商业目标之下帮助APP用户在使用APP的不同阶段完成任务,并且提高任务完成的效率。APP页面访问路径分析需要考虑以下三方面问题:(a)APP用户身份的多样性,用户可能是你的会员或者潜在会员,有可能是你的同事或者竞争对手等;(b)APP用户目的多样性,不同用户使用APP的目的有所不同;(c)APP用户访问路径的多样性,即时是身份类似、使用目的类似,但访问路径也很可能不同。因此,我们在做APP页面访问路径分析的时候,需要对APP用户做细分,然后再进行APP页面访问路径分析。最常用的细分方法是按照APP的使用目的来进行用户分类,如汽车APP的用户便可以细分为关注型、意向型、购买型用户,并对每类用户进行基于不同访问任务的进行路径分析,比如意向型的用户,他们进行不同车型的比较都有哪些路径,存在什么问题。还有一种方法是利用算法,基于用户所有访问路径进行聚类分析,基于访问路径的相似性对用户进行分类,再对每类用户进行分析。
(3)漏斗模型
漏斗模型是用于分析产品中关键路径的转化率,以确定产品流程的设计是否合理,分析用户体验问题。转化率是指进入下一页面的人数(或页面浏览量)与当前页面的人数(或页面浏览量)的比值。用户从刚进入到完成产品使用的某关键任务时(如购物),不同步骤之间的转换会发生损耗。如用户进入某电商网站,到浏览商品,到把商品放入购物车,最后到支付,每一个环节都有很多的用户流失损耗。通过分析转化率,我们可以比较快定位用户使用产品的不同路径中,那一路径是否存在问题。当然,对于产品经理,其实不用每天都看转化率报表,我们可以对每天的转化率进行连续性的监控,一旦转化率出现较大的波动,便发告警邮件给到相应的产品负责人,以及时发现产品问题。
五、用户属性分析
用户属性分析主要从用户使用的设备终端、网络及运营商分析和用户画像角度进行分析。
(1)设备终端分析
设备终端的分析维度包括机型分析、分辨率分析和操作系统系统分析,在分析的时候,主要针对这些对象进行活跃用户、新增用户数、启动次数的分析。即分析不同机型的活跃用户数、新增用户数和启动次数,分析不同分辨率设备的活跃用户数、新增用户数和启动次数,分析不同操作系统设备的活跃用户数、新增用户数和启动次数。
(2)网络及运营商分析
网络及运营商主要分析用户联网方式和使用的电信运营商,主要针对这些对象进行活跃用户、新增用户数、启动次数的分析。即分析联网方式(包括wifi、2G、3G、4G)的活跃用户数、新增用户数和启动次数,分析不同运营商(中国移动、中国电信、中国联通等)的活跃用户数、新增用户数和启动次数。
(3)地域分析
主要分析不同区域,包括不同省市和国家的活跃用户数、新增用户数和启动次数。
(4)用户画像分析
用户画像分析包括人口统计学特征分析、用户个人兴趣分析、用户商业兴趣分析。人口统计学特征包括性别、年龄、学历、收入、支出、职业、行业等;用户个人兴趣指个人生活兴趣爱好的分析,如听音乐、看电影、健身、养宠物等;用户商业兴趣指房产、汽车、金融等消费领域的兴趣分析。用户画像这部分的数据需要进行相相关的画像数据采集,才可以支撑比较详细的画像分析。
本文主要介绍了APP基础的数据分析体系,还有更多的指标体系需要根据APP的特性进行特殊设计,比如,搜索APP需要关注与其特性相关的指标如搜索关键词数、人均搜索关键词数等。另外,还有一个非常值得关注的是,很多产品经理或者运营人员认为本文提到的很多指标,产品上线后便自然可以看到,这是一个非常常见的误区。因为,本文提到的大多数指标,如果不进行数据打点上报,并进行相关的数据开发统计,就不能看不到相关的数据报表。所以,产品经理在产品上线前一定要规划好自己所负责的产品的数据体系,驱动开发进行相关的数据采集上报,并在运营过程中,动态优化和丰富数据体系。
‘叁’ 网络营销:如何进行营销数据分析
网络营销:如何进行营销数据分析
主要关注几点:
1、什么样的数据(销售?发展预估?等等)首先你要弄清楚。
2、每月的销售数据变化情况。
3、数据变化方向。
4、分析数据中的要素。
5、对比本身的数据得出结论。
市场营销是为创造实现个人和组织的交易,而规划和实施创意、产品、服务构想、定价、促销和分销的过程。网络营销是人类经济、科技、文化发展的必然产物,网络营销不受时间和空间限制,在很大程度上改变了传统营销形态和业态。
网络营销对企业来讲,提高了工作效率,降低了成本,扩大了市场,给企业带来社会效益和经济效益。相对于传统营销,网络营销具有国际化、信息化和无纸化,已经成为各国营销发展的趋势。为了促进网络营销在我国的普及和发展,对网络营销进行战略分析具有重要意义。
一、网络营销产生的分析
网络营销的产生,是科学技术的发展、消费者价值观的变革和商业竞争等综合因素所促成的。网络营销产生的科技基础,21世纪是信息世纪,科技、经济和社会的发展正在迎接这个时代的到来。计算机网络的发展,使信息社会的内涵有了进一步改变。
在信息网络时代,网络技术的应用改变了信息的分配和接收方式,改变了人们的生活、工作和学习、合作和交流的环境。企业也正在利用网络新技术的快速便车,促进企业飞速发展。
网络营销是以互联网为媒体,以新的方式、方法和理念实施营销活动,更有效地促进个人和组织交易活动的实现。
企业如何在如此潜力巨大的市场上开展网络营销、占领新兴市场,对企业既是机遇又是挑战。
网络营销也产生于消费者价值观的变革:满足消费者的需求,是企业经营永恒的核心。利用网络这一科技制高点为消费者提供各种类型的服务,是取得未来竞争优势的重要途径。
当市场经济发展到今天,多数产品无论在数量还是在品种上都已极为丰富。消费者能够以个人心理愿望为基础挑选和购买商品和服务。他们的需求越多,需求的变化更快。消费者会主动通过各种可能渠道获取与商品有关信息进行比较,增加对产品的信任和争取心理上的满足感。
网络营销还产生于商业的竞争,随着市场竞争的日益激烈化,为了在竞争中占有优势,各企业都使出了浑身的解数想方设法地吸引顾客,很难说还有什么新颖独特的方法出奇胜。
开展网络营销,可以节约大量昂贵的店面租金,可以减少库存商品资金占用,可使经营规模不受场地的制约,可便于采集客户信息等等。这些都可以使得企业经营的成本和费用降低,运作周期变短,从根本上增强企业的竞争优势,增加盈利。
二、网络营销基本特征的分析
公平性:在网络营销中,所有的企业都站在同一条起跑线上。公平性只是意味给不同的公司、不同的个人提供了平等的竞争机会,并不意味者财富分配上的平等。
虚拟性:由于互联使得传统的空间概念发生变化,出现了有别于实际地理空间的虚拟空间或虚拟社会。
对称性:在网络营销中,互联性使信息的非对称性大大减少。消费者可以从网上搜索自己想要掌握的任何信息,并能得到有关专家的适时指导。
模糊性:由于互联使许多人们习以为常的边界变得模糊。其中,最显着的是企业边界的模糊,生产者和消费者的模糊、产品和服务的模糊。
复杂性:由于网络营销的模糊性,使经济活动变得扑朔迷离,难以分辨。垄断性:网络营销的垄断是由创造性破坏形成的垄断,是短期存在的,因为新技术的不断出现,会使新的垄断者不断取代旧的垄断者。
多重性:在网络营销中,一项交易往往涉及到多重买卖关系。
快捷性:由于互联,使经济活动产生了快速运行的特征,你可以讯速搜索到所需要的任何信息,对市场作出即时反应。
正反馈性:在网络营销中,由于信息传递的快捷性,人们之间产生了频繁、迅速、剧烈的交互作用,从而形成不断强化的正反馈机制。
全球性:由于互联,超越了国界和地区的限制,使得整个世界的经济活动都紧紧联系在一起。信息、货币、商品和服务的快速流动,大大促进了世界经济一体化的进程。
三、网络营销竞争优势的分析
成本费用控制:开展网络营销给企业带来的最直接的竞争优势是企业成本费用的控制。
网络营销采取的是新的营销管理模式。它通过因特网改造传统的企业营销管理组织结构与运作模式,并通过整合其他相关部门如生产部门、采购部门,实现企业成本费用最大限度的控制。利用互联网降低管理中交通、通讯、人工、财务和办公室租金等成本费用,可最大限度地提高管理效益。
许多在网上创办企业也正是因为网上企业的管理成本比较低廉,才有可能独自创业和需求发展机会。创造市场机会:互联网上没有时间和空间限制,它的触角可以延伸到世界每一个地方。利用互联网从事市场营销活动可以远及过去靠人工进行销售或者传统销售所不能的达到的市场,网络营销可以为企业创造更多新的市场机会。
让顾客满意:在激烈的市场竞争中,没有比让顾客满意更重要。利用互联网企业可以将企业中的产品介绍、技术支持和订货情况等信息放到网上,顾客可以随时随地根据自己需求有选择性的了解有关信息。这样克服了在为顾客提供服务时的时间和空间限制。
满足消费者个性化需求:网络营销是一种以消费者为导向,强调个性化的营销方式;网络营销具有企业和消费者的极强的互动性,从根本上提高消费者的满意度;网络营销能满足消费者对购物方便性的需求,省去了去商场购物的距离和时间的消耗,提高消费者的购物效率;由于网络营销能为企业节约巨额的促销和流通费用,使产品成本和价格的降低成为可能,可以实现以更低的价格购买。
四、网络营销竞争原则的分析
在网络营销中,企业必须顺应环境的变化,采用新的竞争原则,才能在激烈的竞争中取胜。
个人市场原则:在网络营销中,可以借助于计算机和网络,适应个人的需要,有针对地提供低成本、高质量的产品或服务。
适应性原则:由于互联性的存在,市场竞争在全球范围内进行,市场呈现出瞬息万变之势。公司产品能适应消费者不断变化的个人需要,公司行为要适应市场的急剧变化,企业组织要富于弹性,能适应市场的变化而伸缩自如。
价值链原则:一种产品的生产经营会有多个环节,每个环节都有可能增值。我们将其整体称作价值链。公司不应只着眼于价值链某个分支的增值,而应着眼于价值链的整和,着眼于整个价值链增值。
特定化原则:首先找出具有代表性的个人习惯、偏好和品位,据此生产出符合个人需要的产品。然后,公司找出同类型的大量潜在客户,把他们视作一个独立的群体,向他们出售产品。
主流化原则:为了赢得市场最大份额而赠送第一代产品的做法被称之为主流化原则。尽管企业最初建立数字产品和基础设施的费用很大,但继续扩张的成本却很小,由此产生了新的规模经济。
五、网络营销竞争战略的分析
网络营销的企业必须加强自身能力,改变企业与其他竞争者之间的竞争对比力量。
巩固公司现有竞争优势:利用网络营销的公司可以对现在的顾客的要求和潜在需求有较深了解,对公司的潜在顾客的需求也有一定了解,制定的营销策略和营销计划具有一定的针对性和科学性,便于实施和控制,顺利完成营销目标。公司在数据库帮助下,营销策略具有很强针对性,在营销费用减少的同时还提高了销售收入。
加强与顾客的沟通:网络营销以顾客为中心,其中数据库中存储了大量现在顾客和潜在顾客的相关数据资料。公司可以根据顾客需求提供特定的产品和服务,具有很强的针对性和时效性,可大大地满足顾客需求。顾客的理性和知识性,要求对产品的设计和生产进行参与,从而最大限度地满足自己需求。通过互联网和大型数据库,公司可以以低廉成本为顾客提供个性化服务。
为入侵者设置障碍:设计和建立一个有效和完善的网络营销系统是一个长期的系统性工程,需要大量人力物力和财力。一旦某个公司已经实现有效的网络营销,竞争者就很难进入该公司的目标市场。因为竞争者要用相当多的成本建立一个类似的数据库,而且几乎是不可能的。
网络营销系统是公司的难以模仿的竞争能力和可以获取收益的无形资产。
提高新产品开发和服务能力:公司开展网络营销,可以从与顾客的交互过程中了解顾客需求,甚至由顾客直接提出需求,因此很容易确定顾客需求的特征、功能、应用、特点和收益。通过网络数据库营销更容易直接与顾客进行交互式沟通,更容易产生新的产品概念。对于现有产品,通过网络营销容易取得顾客对产品的评价和意见,从而准确决定产品所需要的改进方面和换代产品的主要特征。
稳定与供应商的关系:供应商是向公司及其竞争者提供产品和服务的公司和个人。公司在选择供应商时,一方面考虑生产的需要,另一方面考虑空间上的需要,即计划供应量要根据市场需求,将满足要求的供应品在恰当时机送到指定地点进行生产,以最大限度地节约成本和控制质量。
公司如果实行网络营销,就可以对市场销售进行预测,确定合理的计划供应量,保证满足公司的目标市场需求;另一方面,公司可以了解竞争者的供应量,制定合理的采购计划,在供应紧缺时能预先订购,确保竞争优势。
六、网络营销战略实施与控制的分析
公司实施网络营销必须考虑公司的目标、公司的规模、顾客的数量和购买频率、产品的类型、产品的周期以及竞争地位等;还要考虑公司是否能支持技术投资,决策时技术发展状况和应用情况等。
网络营销战略的制订要经历三个阶段:
一是确定目标优势,分析实施网络营销能否促进本企业的市场增长,通过改进实施策略实现收入增长和降低营销成本;
二是分析计算收益时要考虑战略性需求和未来收益;
三是综合评价网络营销战略。公司在决定采取网络营销战略后,要组织战略的规划和执行,网络营销是通过新技术来改造和改进目前的营销渠道和方法,它涉及公司的组织、文化和管理各个方面。如果不进行有效规划和执行,该战略可能只是一种附加的营销方法,不能体现战略的竞争优势。
策略规划分为:
目标规划,即在确定使用该战略的同时,识别与之相联系的营销渠道和组织,提出改进的目标和方法;
技术规划,即网络营销很重要的一点是要有强大的技术投入和支持,因此资金投入和系统购买安装,以及人员培训都应统筹安排;
组织规划,即实现数据库营销后,公司的组织需要进行调整以配合该策略的实施,如增加技术支持部门、数据采集处理部门,同时调整原有的推销部门等;
以上是小编为大家分享的关于网络营销:如何进行营销数据分析的相关内容,更多信息可以关注环球青藤分享更多干货
‘肆’ 大数据在网络优化中大有可为
大数据在网络优化中大有可为
网络优化是确保网络质量,提升网络资源利用率的有效手段。近年来,随着网络容量的不断提升、网络用户数的不断增加、网络设备的多样化,用新技术和新方法替代传统网络优化手段成为一种趋势,尤其是在大数据分析技术的兴起下,其在网络优化中的作用日渐突出。
网络优化的传统手段
网络优化是通过对现已投入运营的网络进行话务数据分析、现场测试数据采集、参数分析、硬件检查等,找出影响网络质量的原因,并且通过参数的修改、网络结构的调整、设备配置的调整和采取某些技术手段,确保系统高质量的运行,使现有网络资源获得最佳效益,以最经济的投入获得最大的收益。一般而言,传统的网络优化有以下几种方法:
一、话务统计分析法:通过话务统计报告中的各项指标,可以了解和分析基站的话务分布及变化情况,分析出网络逻辑或物理参数设置的不合理、网络结构的不合理、话务量不均、频率干扰及硬件故障等问题。
二、DT&CQT测试法:从用户的角度,借助测试仪表对网络进行驱车和定点测试。可分析空中接口的信令、覆盖服务、基站分布、呼叫失败、干扰、掉话等现象,定位异常事件的原因,为制定网络优化方案和实施网络优化提供依据。
三、用户投诉:通过用户投诉了解网络质量。即通过无处不在的用户通话发现的问题,进一步了解网络服务状况。
四、信令分析法:主要针对A接口、Abis等接口的数据进行跟踪分析。发现和定位切换局数据不全、信令负荷、硬件故障及话务量不均以及上、下行链路路径损耗过大的问题,还可以发现小区覆盖、一些无线干扰及隐性硬件故障等问题。
五、数据库核查与参数分析:对网络规划数据和现网配置参数、网络结构数据进行核查,找出网络数据中明显的数据错误,对参数设置策略进行合理性分析和总结。
六、网络设备告警的排查处理:硬件故障告警一般具有突发性,为了减小对用户的影响,需要快速的响应和处理。通过告警检查处理设备问题,保障设备的可用性,避免因设备告警导致网络性能问题。
在实际工作中,这几种方法都是相辅相成、互为印证的关系。网络优化就是利用上述几种方法,围绕接通率、掉话率、拥塞率和切换成功率等指标,通过性能统计测试数据分析制定实施优化方案系统调整重新制定优化目标性能统计测试的螺旋式循环上升,达到网络质量明显改善的目的。
网络优化亟待创新
当前,随着用户数的不断增长,随着网络容量的不断增加,随着网络复杂度的不断提升,以及网络设备的多样化,网络优化工作的难度正在不断提升,网络优化的方法和手段亟待创新。
首先,网络优化是一项技术难度大、涉及范围广、人员素质要求较高的工作,涉及的技术领域有交换技术、无线技术、频率配置、切换和和信令、话务统计分析等。传统网络优化工作多依赖于技术人员的经验,依赖人工进行统计分析。网络优化的自动化程度较低,优化过程需耗费大量的时间、人力、物力,造成了大量的资源浪费,影响网络问题解决的时效性。另外,优化工程师借助于个人经验对网络数据进行分析和对比,而非根据网络相关的数据综合得出优化方案,存在一定的局限性。
其次,随着我国移动通信事业迅速发展,我国移动互联网发展已正式进入全民时代,截至2014年1月,我国手机网民规模已达5亿。网络结构日益复杂,数据业务已经成为移动通信网络主要承载的业务,用户通过智能终端的即时互联通信行为,使移动网络成为大数据储存和流动的载体。高速变化的数据业务速率和巨大的网络吞吐量以及覆盖范围的动态实时变化,在很大程度上改变了现有网络规划和优化的模型,在网络优化工作中引入大数据是非常迫切和必要的。
最后,全球数据信息成为企业战略资产,市场竞争和政策管制要求越来越多的数据被长期保存。对于运营商的网络优化来说,也需要保存各类数据,以便进行用户行为分析和市场研究,通过大数据实践应用提升网络优化质量并助力市场决策,实现精细化营销策略,提升企业的核心竞争力。
面对上述挑战,运营商正尝试进行网络优化工作的创新,尝试在网络优化中引入新技术和新方法。而正在全球兴起的大数据分析技术,开始在网络优化中大显身手。
网络优化拥抱大数据
大数据(Big Data),或称巨量资料,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理、整理成为帮助企业经营决策目的的资讯。大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。大数据具有数据量巨大、数据种类繁多、价值密度低及处理速度快的特点,同时具备规模性、高速性、多样性、价值性四大特征。
一般而言,利用大数据技术进行网络优化的过程可分为三个阶段:数据来源和获取、数据存储、数据分析。
数据来源和获取—对于运营商而言,通过现有网络可以收集大量的网络优化相关信令资源(含电路域、分组域)、DT测试&CQT测试数据,这些数据大都以用户的角度记录了终端与网络的信令交互,内含大量有价值的信息。如终端类型、小区位置、LAC、imsi、tmsi、用户业务使用行为、用户位置信息、通话相关信息、业务或信令、信令中包含的各种参数值。
设备层包含基站、BSC、核心网、传输网等配置参数和网络性能统计指标(呼叫成功率、掉话率、切换成功率、拥塞率、交换系统接通率等)、客户投诉数据等。
采集到的数据一般而言,经过IP骨干网传输到数据中心,进行存储。随着云计算技术的发展,未来数据中心将具备小型化、高性能、可靠性、可扩展性及绿色节能等特点。
数据存储—网络优化中涉及巨大的数据存储,包括信令层面的数据信息和设备存在的数据信息,这些数据只有妥善存储和长期运营,才能进一步挖掘其价值。传统数据仓库难以满足非结构化数据的处理需求。Google提出了GFS、BigTable、MapRece三项关键技术,推动了云计算的发展和运用。
源于云计算的虚拟资源池和并发计算能力,受到重视。2011年以来,中国移动、中国电信、中国联通相继推出“大云计划”、“天翼云”和“互联云”,大大缓解了数据中心IT资源的存储压力。
数据分析—数据的核心是发现价值,而驾驭数据的核心是分析,分析是大数据实践研究的最关键环节,尤其对于传统难以应对的非结构化数据。运营商利用自身在运营网络平台的优势,发展大数据在网络优化中的应用,可提高运营商在企业和个人用户中的影响力。
电信级的大数据分析可实现如下功能:第一,了解网络现状,包括网络的资源配置和使用情况,用户行为分析,用户分布等;第二,优化网络资源配置和使用,有针对性地进行网络维护优化和调整,提升网络运行质量,改善用户感知;第三,实施网络建设规划、网络优化性能预测,确保网络覆盖和资源利用最大化。对用户行为进行预测,提升用户体验,实现精细化网络运营。
网络优化相关的工具种类很多,针对不同的优化领域,常用的工具包括:路测数据分析软件、频率规划与优化软件、信令分析软件、话统数据分析平台、话单分析处理软件等。这些软件给网络优化工作带来了很大的便利,但往往只是针对网络优化过程中特定的领域,而网络优化是一个涉及全局的综合过程,因此需要引入大数据分析平台对这些优化工具所反映出来的问题进行集合并综合分析和判断,输出相关优化建议。
目前,大数据技术已经在网络优化工作中得到应用。中国电信就已经建设了引入大数据技术的网优平台,该平台可实现数据采集和获取、数据存储、数据分析,帮助中国电信利用分析结果优化网络质量并助力市场决策,实现精细化营销策略。利用信令数据支撑终端、网络、业务平台关联性分析,优化网络,实现网络价值的最大化。
总工点评
综合全球来看,对大数据认识、研究和应用还都处于初期阶段。中国三大电信运营商都在结合自身业务情况,积极推进大数据应用工作,目前还处于探索阶段,在数据采集、处理、应用方面仍处于初级阶段。电信运营商在国内拥有庞大的用户群和市场,利用自身海量的数据资源优势,探索以大数据为基础的网络优化解决方案,是推动产业升级、实现效率提升、提升企业核心竞争力、应对激烈市场竞争的重要手段。利用大数据将无线网、数据网、核心网、业务网优化进行整合,可以完整地优化整个业务生命期的所有网元,改善用户感知,是未来网络优化的趋势。
以上是小编为大家分享的关于大数据在网络优化中大有可为的相关内容,更多信息可以关注环球青藤分享更多干货
‘伍’ 网络优化的其他
介绍
无线网络优化是通过对现已运行的网络进行话务数据分析、现场测试数据采集、参数分析、硬件检查等手段,找出影响网络质量的原因,并且通过参数的修改、网络结构的调整、设备配置的调整和采取某些技术手段(采用MRP的规划办法等),确保系统高质量的运行,使现有网络资源获得最佳效益,以最经济的投入获得最大的收益。
网优是“无线网络优化”的简称,指通信网络建成之后,在此基础上进行各种优化(包括软件、硬件、配置等);网规是“网络规划”的简称,指在建设通信网络之前根据建网目标、用户需求、当地实际情况等对网络建设进行规划。
“网优”也指的是从事无线网络优化的人群,因为需要长期出差,从业者一般为年轻的大学毕业生,男性较多,并且从业时间较短,大多数人员合同期满后会选择离职,一般从业5年内的人群较多,5年以上的人员较少,因此网优的工资水平较高,属于高薪职业,其中分级较明显,高级工程师月薪可达1.5万以上,初级工程师也可达到4千左右。网优的工作时间相对稳定,与其他行业一样有双休和节假日正常休息,但是由于工作性质的原因会经常出现双休日加班情况,但也都会在项目进行中进行调休串休,网优主要从事的工作为DT测试及分析,CQT测试及分析,天馈调整(RF优化),后台参数修改调整,KPI监控与提升,质差小区处理等等,其主要目的就是了解当前无线网络覆盖情况,通过网优专业手段进行优化,使用户在使用手机时能够在保持移动性的同时正常通话,不会出现短音,掉话,未接通等问题。目前国内3G普及,网优公司不断增加,网优人员短缺,因此网优也是朝阳产业。
网优是一种职业,指的是无线网络优化,也指从事这一行业的人员,无线网络优化工程师,分为2G和较火的3G网络优化。网优是一个要求技术性和经验并存的职业,技术水平越高,工作经验越多,自然薪酬待遇也就越多,很多都是需要在项目中自己学习和积累。就市场来看网优的待遇参差不齐,有些工作时间不短,但技术水平有限,始终做一些初级的工作,工资待遇也同样停滞,有些工作时间不长,但学习能力强,善于积累经验,成长很快,工资待遇自然同步增长。
总之,网优的工作刚开始会很辛苦,素质要求也高,不仅要有专业的知识和技术,要有一定心理和抗压能力。刚毕业的大学生可以做几年锻炼锻炼,但要做好准备,并结合自身的性格特点来决定。 网络优化的方法很多,在网络优化的初期,常通过对OMC-R数据的分析和路测的结果,制定网络调整的方案。在采用图1的流程经过几个循环后,网络质量有了大幅度的提高。但仅采用上述方法较难发现和解决问题,这时通常会结合用户投诉和CQT测试办法来发现问题,结合信令跟踪分析法、话务统计分析法及路测分析法,分析查找问题的根源。在实际优化中,尤其以分析OMC-R话务统计报告,并辅以七号信令仪表进行A接口或Abis接口跟踪分析,作为网络优化最常用的手段。网络优化最重要的一步是如何发现问题,下面就是几种常用的方法:
1.话务统计分析法:OMC话务统计是了解网络性能指标的一个重要途径,它反映了无线网络的实际运行状态。它是我们大多数网络优化基础数据的主要根据。通过对采集到的参数分类处理,形成便于分析网络质量的报告。通过话务统计报告中的各项指标(呼叫成功率、掉话率、切换成功率、每时隙话务量、无线信道可用率、话音信道阻塞率和信令信道的可用率、掉话率及阻塞率等),可以了解到无线基站的话务分布及变化情况,从而发现异常,并结合其它手段,可分析出网络逻辑或物理参数设置的不合理、网络结构的不合理、话务量不均、频率干扰及硬件故障等问题。同时还可以针对不同地区,制定统一的参数模板,以便更快地发现问题,并且通过调整特定小区或整个网络的参数等措施,使系统各小区的各项指标得到提高,从而提高全网的系统指标。
2.DT (驱车测试):在汽车以一定速度行驶的过程中,借助测试仪表、测试手机,对车内信号强度是否满足正常通话要求,是否存在拥塞、干扰、掉话等现象进行测试。通常在DT中根据需要设定每次呼叫的时长,分为长呼(时长不限,直到掉话为止)和短呼(一般取60秒左右,根据平均用户呼叫时长定)两种(可视情况调节时长),为保证测试的真实性,一般车速不应超过40公里/小时。路测分析法主要是分析空中接口的数据及测量覆盖,通过DT测试,可以了解:基站分布、覆盖情况,是否存在盲区;切换关系、切换次数、切换电瓶是否正常;下行链路是否有同频、邻频干扰;是否有孤岛效应;是否有乒乓效应;是否有远近效应;扇区是否错位;天线下倾角、方位角及天线高度是否合理;分析呼叫接通情况,找出呼叫不通及掉话的原因,为制定网络优化方案和实施网络优化提供依据。
3.CQT (呼叫质量测试或定点网络质量测试):在服务区中选取多个测试点,进行一定数量的拨打呼叫,以用户的角度反映网络质量。测试点一般选择在通信比较集中的场合,如酒店、机场、车站、重要部门、写字楼、集会场所等。它是DT测试的重要补充手段。通常还可完成DT所无法测试的深度室内覆盖及高楼等无线信号较复杂地区的测试,是场强测试方法的一种简单形式。
4.用户投诉:通过用户投诉了解网络质量。尤其在网络优化进行到一定阶段时,通过路测或数据分析已较难发现网络中的个别问题,此时通过可能无处不在的用户通话所发现的问题,使我们进一步了解网络服务状况。结合场强测试或简单的CQT测试,我们就可以发现问题的根源。该方法具有发现问题及时,针对性强等特点。
5.信令分析法:信令分析主要是对有疑问的站点的A接口、Abis接口的数据进行跟踪分析。通过对A接口采集数据分析,可以发现切换局数据不全(遗漏切换关系)、信令负荷、硬件故障(找出有问题的中继或时隙)及话务量不均(部分数据定义错误、链路不畅等原因)等问题。通过对Abis接口数据进行收集分析,主要是对测量仪表记录的LAY3信令进行分析,同时根据信号质量分布图、频率干扰检测图、接收电平分布图,结合对信令信道或话音信道占用时长等的分析,可以找出上、下行链路路径损耗过大的问题,还可以发现小区覆盖情况、一些无线干扰及隐性硬件故障等问题。
6.自动路测系统分析:采用安装于移动车辆上的自动路测终端,可以全程监测道路覆盖及通信质量。由于该终端能够将大量的信令消息和测量报告自动传回监控中心,可以及时发现问题,并对出现问题的地点进行分析,具有很强的时效性。所采用的方法同5。
在实际工作中,这几种方法都是相辅相成、互为印证的关系。GSM无线网络优化就是利用上述几种方法,围绕接通率、掉话率、拥塞率、话音质量和切换成功率及超闲小区、最坏小区等指标,通过性能统计测试→数据分析→制定实施优化方案→系统调整→重新制定优化目标→性能统计测试的螺旋式循环上升,达到网络质量明显改善的目的。 需要考虑几方面关键因素,包括:
· 能够处理数量逐渐增长的移动设备的网络基础设施· 整体网络流量、使用情况以及性能的可视性,包括每台设备的应用性能· 管理优化关键业务型应用程序和其它次优先级的带宽的能力· 具有支持必要的移动策略的政策,同时确保它们的性能的安全性和可靠性 基本信息
书名:网络优化(第2版)
作者:谢金星、邢文训、王振波
定价:19元
出版日期:2009-7-1
出版社:清华大学出版社
图书简介
本书系统介绍了网络优化的基本模型和基本算法,包括构造这些算法的基本思想以及相应算法在计算机上的一些具体实现技巧和复杂性分析.
全书由7章组成: 第1章为概论,第2章介绍关于算法的一些基本知识,第3章到第7章分别讨论树的问题、最短路问题、最大流问题、最小费用流问题和匹配问题.每章还安排了一些练习题.
本书可作为数学、应用数学、运筹学、管理科学、系统科学、信息科学、计算机科学与工程等专业的高年级大学生和研究生教材,也可供其他相关专业的学者和技术人员参考.
目录
序言I
前言III第1章 概论1
1.1 网络优化问题的例子1
1.2 图与网络2
1.2.1 有向图与网络的基本概念2
1.2.2 无向图与无向网络的基本概念5
1.3 图与网络的数据结构6
1.3.1 邻接矩阵表示法6
1.3.2 关联矩阵表示法7
1.3.3 弧表表示法7
1.3.4 邻接表表示法8
1.3.5 星形表示法8
1.4 计算复杂性的概念11
1.4.1 组合最优化问题11
1.4.2 多项式时间算法13
1.4.3 多项式问题16
练习题18第2章 算法基础19
2.1 NP,NPC和NP-hard概念19
2.1.1 问题、实例与输入规模19
2.1.2 判定问题21
2.1.3 非确定多项式问题类(NP)22
2.1.4NP完全问题类(NPC)25
2.2算法设计与分析29
2.2.1 贪婪算法30
2.2.2 动态规划31
2.2.3 线性规划方法--全幺模矩阵34
2.2.4 两分法36
2.2.5 网络搜索算法37
2.3 小结38
练习题38第3章 最小树与最小树形图41
3.1 树的基本概念41
3.2 最小树算法44
3.2.1 Kruskal算法44
3.2.2Prim算法46
3.2.3 Sollin算法48
3.3 最小树形图49
3.4 最大分枝53
练习题56第4章 最短路问题58
4.1 最短路问题的数学描述58
4.2 无圈网络与正费用网络: 标号设定算法60
4.2.1Bellman方程60
4.2.2 无圈网络61
4.2.3 正费用网络62
4.3 一般费用网络: 标号修正算法65
4.3.1Bellman-Ford算法65
4.3.2 一般的标号修正算法67
4.3.3 Floyd-Warshall算法68
练习题70第5章 最大流问题73
5.1 最大流问题的数学描述73
5.1.1 网络中的流73
5.1.2 最大流问题76
5.1.3 增广路定理77
5.2 增广路算法79
5.2.1 Ford-Fulkerson标号算法79
5.2.2 残量网络81
5.2.3 最大容量增广路算法82
5.2.4 容量变尺度算法83
5.3 最短增广路算法83
5.3.1 距离标号84
5.3.2 最短增广路算法85
5.3.3 复杂度分析87
5.4 一般的预流推进算法88
5.4.1 一般的预流推进算法88
5.4.2 复杂度分析91
5.5 最高标号预流推进算法94
5.5.1 最高标号预流推进算法94
5.5.2 算法的复杂度分析94
5.6 单位容量网络上的最大流算法96
5.6.1 单位容量网络上的最大流算法97
5.6.2 单位容量简单网络上的最大流算法98
练习题98第6章 最小费用流问题102
6. 1 最小费用流问题的数学描述102
6. 1. 1 最小费用流问题102
6. 1. 2 最小费用流模型的特例及扩展104
6. 2 消圈算法与最小费用路算法106
6. 2. 1 消圈算法106
6. 2. 2 最小费用路算法108
6. 3 原始-对偶算法111
6. 3. 1 对偶问题及互补松弛条件111
6. 3. 2 原始-对偶算法112
6. 4 瑕疵算法115
6. 5 松弛算法122
6. 6 网络单纯形算法127
6. 6. 1 算法的一般思路128
6. 6. 2 处理退化的方法131
6. 6. 3 初始的基本可行解133
6. 6. 4 容量有界的情形133
练习题136第7章 匹配问题141
7. 1 匹配问题的数学描述141
7. 2 二部基数匹配问题144
7. 2. 1 增广路算法144
7. 2. 2 应用简单网络上的最大流算法147
7. 3 非二部基数匹配问题147
7. 4 二部赋权匹配问题151
7. 5 非二部赋权匹配问题152
练习题162索引及英文关键词165
参考文献170
‘陆’ 从哪方面的数据分析来提搞网络营销运营效率。
很少有人能意橘裤颤识到网络营销数据分析的重要性问题,重视并用好数据监测统计分析,是提高网络营销效率、优化网络营销效果的重要依据,没有这个东西作参考,后续的很多工作无法及时有效的去解决各类问题。数据可以让我们发现问题,从而调整策略、解决问题,提升整体运营效率。
一般来讲,网络营销方面的数据分析主要包括:
1、SEO数据监测分析:
这一点大家平时接触得比较多,比如收录、外链、快照、友链、关键字排名、PR等等;
2、网站访问数据统计分析:
主要是要让我们知道网站流量来源圆败、访客区域、访问时间高峰低谷的时间段、访客登录跳出页面最多数据、访客来源关键字、什么页面咨询率高、什么页面跳出流失高、什么页面浏览高、访客的回头率如何等众多数据,通过CNZZ等都有这方面的服务;
3、询盘和成交转化统计分析:
主要是对咨询量进行记录、纯乎统计和分析,也能发现很多规律,可以将咨询进行客户分类,重点客户、优质客户、普通和边缘客户等,也有利于提升工作效率。
菜根谭网络营销机构认为:网络营销绝对不仅仅是网络推广,而是一项从项目策略规划、网站(网店)策划建设、网站销售力策划、网络传播推广、销售转化和数据分析等诸多环节组成的有机性系统工程,该工程的核心就是销售转化。而数据统计分析是将网络营销系统各环节有机整合的重要环节,数据可以让我们发现问题,从而调整策略、解决问题,提升整体运营效率。
‘柒’ 网络需求分析的具体内容包括哪些
从分析的内容来看,主要应该包括网络需求分析、网络规划与结构分析和网络扩展性分析三个内容。
1、网络需求分析
包括环境分析、业务需求分析、管理需求分析、安全需求分析。
(1)环境分析是指对企业的信息环境基本情况的了解和掌握,例如办公自动化情况、计算机和网络设备的数量配置和分布、技术人员掌握专业知识和工程经验的状况,以及地理环境(如建筑物)等等。通过环境分析,可以对建网环境有个初步的认识,便于后续工作的开展。
(2)业务需求分析的目标是明确企业的业务类型、应用系统软件种类以及它仍对网络功能指标(如带宽,服务质量Qos)的要求。
业务需求是企业建网中首要的环节,是进行网络规划与设计的基本依据。那种为了网络而建网络,缺乏企业业务需求分析的网络规划是盲目的,会为网络建设埋下各种隐患。
通过业务需求分析,可为以下方面提供决策依据:
需实现或改进的企业网络功能有哪些。
需要技术的企业应用有哪些。
需要电子邮件服务吗?
需要Web务器吗?
需要上网吗?
需要什么样的数据共享模式。
需要多大的带宽范围。
需要网络升级吗?
网络的管理需求是企业建网不可或缺的方面,网络是否按照设计目标提供稳定的服务主要依靠有效的网搭春络管理。“向管理要效益”也是网络工程的真理。
(3)网络管理需求是建设网络不可或缺的方面,网络是否按照设计目标提供稳定的服务主要依靠有效的网络管理。网络管理包括两个方面:
人为制定的管理规定和策略,用于规范人员操作网络的行为。
网络管理员利用网络设备和网管软件提供的功能对网络进行的操作。通常所说的网管主要是指第二点,它在网络规模较小、结构简单时,可以很好地完成网管职能。
好点随着现代企业网络规模的日益扩大,逐渐显示出它的重要性,尤其是网络策略的制定对网管的有效实施管理和知祥耐保证网络高效运行是至关重要的。
网络管理的需求分析要回答以下类似的问题:
是否需要对网络进行远程管理。
谁来负责网络管理。
需要哪些管理功能。
选择哪个供应商的网管软件,是否有详细的评估。
选择哪个供应商的网络设备,其可管理性如何。
怎样跟踪分析处理网管信息。
如何更新网管策略。
(4)随着网络规模的扩大和开放程度的提高,网络安全问题越来越突出。先前那些没有考虑网络安全性的企业网络不仅遭受重大经济损失,还使企业形象受到了破坏。
安全性设计是网络设计中极其重要的方面之。安全性设计的任务是分析威胁和开发需求,众多技术设计都要求这点,获取安全性目标意味着要做出权衡。安全性实现可能增加使用和运行网络的成本,严格的安全性策略还会影响用户的生产率,甚至会因为保护资源和数据而导致损失。而安全性过差会导致用户想出绕过安全性策赂的方法。如果所有通信都必须全部通过加密设备,那么安全性还会影响网络设计的冗余。
客户基本的安全性要求是保护资源以防止其无法使用、被盗用、被修改或被破坏。资源包括网络主机、服务器、用户系统、互连网络设备、系统和应用数据、以及公司形象等。
其他更特殊的需求包括以下个或多个目标:
允许外部用户访问公共Web或FTP服务器上的数据,但不允许访问内部数据。
授权并认证分支部门用户、移动用户和远程用户。
检测入侵者并隔离他们所做的破坏。
认证从内部或外部路由器接收的路由选择列表更新。
保护通过侧传送到远程站点的数据。
从物理上保护主机和网络互连设备(例如将设备锁在屋内)。
利用用户账号核对目录及文件的访问权限,从逻辑上保护主机和互连网络设备。
防止应用程序和数据感染软件病毒。
就安全性威胁及如何避免安全性问题培训网络用户和网络管理员。
通过版权或其他合法的方法保护产品及知识产权。
2、网络规划与结构分析
包括确定网络规划、拓扑结构分析、与外部网络互联方案。
(1)确定网络的规划即明确网络建设的范围,这是通盘考虑问题的前提。
网络规模般分为以下几种:
工作组或小型办公室局域网。
部门局域网。
骨干网络。
企业级网络。宴昌
明确网络规模的大好处是便于制定适合的方案,选购合适的设备,提高网络的性能价格比。
确定网络规模涉及以下方面的内容:
哪些部门需要进入网络。
哪些资源需要上网。
有多少网络用户。
采用什么档次的设备。
网络及网络终端的数量。
(2)网络拓扑结构受企业的地理环境制约,尤其是局域网段的拓扑结构,它几乎与建筑物的结构致。所以,网络拓扑结构的规划要充分考虑企业的地理环境,以利于后期工作的实施。
拓扑结构分析要明确以下指标:
网络的按入点数量。
网络的接入点的分布。
网络连接的转接点分布位置。
网络设备间的位置。
网络中各种连接的距离参数。
其他结构化布线系统中的基本指标。
(3)建网的目的就是要拉近人们的交流信息的距离,网络的范围可以说是越大越好。电子商务、家庭办公、远程教育等互联网应用的迅速发展,使得网络互联成为企业建网的个必不可少的方面。与外部网络的互联涉及是否需要上网以及采用什么技术上网等。
3、网络扩展性分析
通过科学合理的规划能够取得用低的成本建立佳的网络,达到高的性能,提供优的服务等完美效果。
可扩展性有两层含义,其是指新的部门能够简单接入现有网络;其二是指新的应用能够无缝地集成到现有的网络中来。可见,在规划网络时,不但要分析网络当前的技术指标,而且还要估计网络未来的增长,以满足新的需求,保证网络的稳定性,保护企业的投资。
扩展性分析要明确以下指标:
(1)企业需求的新增长点有哪些。
(2)网络结点和布线的预留比率是多少。
(3)哪些设备便于网络扩展。
(4)带宽的增长估计。
(5)主机设备的性能。
(6)操作系统平台的性能。
‘捌’ 网络优化都是要做什么啊谁会啊
主要包括网络资源管理器,应用性能加速器,网页性能加速器三大类,针对不同的需求及功能要求进行网络的优化。